General Information:
Meeting Time:  TTh 2  3:20 
Location:  Morton 203

Instructor:  Ryan Vinroot
Office: Jones 100D
Office Hours: Mon 23pm, Tues 1112, Wed 1:303:30 (also by appointment).

Textbook:  Abstract Algebra (Third Edition) by
David S. Dummit and Richard M. Foote 
Grade Breakdown:  Class Participation  5%, Midterm  30%, Homework  35%, Final Exam  30%. The
grading scale will be the standard 10 percentage point scale, so that a final
score of 93 or higher is an A, 9092 is an A, 8789 is a B+, 8386 is a
B, 8082 is a B, 7779 is a C+, 7376 is a C, 7072 is a C, etc. 
Attendance & Lecture Policy:  It is expected that you attend all
lectures, with exceptions minimized. It is greatly appreciated when you
are on time. Please do your best to stay awake and attentive during
lecture, please do not email or text during lecture, and keep all cell
phones/hand held devices/tablets/laptops put away during lecture (unless
you are specifically writing notes on a tablet). While it is
understandable that you may miss a lecture here and there, or be sleepy in
class once in awhile, repeated absences, late arrivals, naps, or general
nonattentiveness will negatively affect your class participation score.

Prerequisite:  Math 307  Abstract Algebra I. In particular, it
is expected that you are able to write clear proofs with techniques you
have learned in Math 307 and Math 214. 

Course Summary:
We will begin the course by continuing the group theory you saw in Abstract Algebra I. In
particular, we will first cover the Isomorphism theorems for groups (where the
first isomorphism theorem serves as a review of much of the group theory you
saw in Math 307). We will then cover a few more topics on group theory from
Chapters 3 and 4 of the text, including composition series and the Sylow theorems.
We will then move on to ring theory, and plan to cover material from Chapters
7, 8, and 9 from the text (where some topics from 307 will be quickly
reviewed). Finally, we will finish the course with a study of field extensions
in Chapter 13 of the book.
Dates & Course Announcements:
Midterm and Final Exams:
There will be one midterm (details will be determined later). The final exam
will be timed. The midterm and the final will each count as 30% of your final
grade. The final exam will be on Wed, May 13, from 2 PM until 5 PM.
Exam Calendar (Tentative):
Exam 
Date 
Time/Due 
Location

Midterm 
TBA 
TBA 
TBA

Final Exam 
Wed, May 13 
2 PM  5 PM 
TBA

 All relevant announcements will be listed here. Check back frequently (don't forget
to refresh your browser) for updates.
 Important Dates and Class Holidays:
 Fri, Jan 31: ADD/DROP DEADLINE
 Sat, Mar 7  Sun, Mar 15: NO CLASS (Spring Break)
 Fri, Mar 23: WITHDRAW DEADLINE
 Wed, May 13, 2:00 PM  5:00 PM  FINAL EXAM
 (1/22) I will determine regular office hours after the add/drop period.
For these first two weeks, my office hours will be: Fri Jan 24, 1 pm2 pm; Mon Jan 27, 11 am12 noon; Tues Jan 28, 3:30 pm4:30 pm; Wed Jan 29, 2 pm3 pm; Thurs Jan 30, 12 pm.
 (1/30) Here are some notes on the material
on group actions we covered in class. A more expanded version would be in
Sections 4.14.3 of the textbook, although this also contains several results
you saw in Math 307 (such as Cayley's Theorem and Lagrange's Theorem) which
use the notion of group actions.
 (1/30) My office hours next week will be as follows: Mon Feb 3, 2 pm3pm; Tues Feb 4, 11 am12 noon; Wed Feb 5, 2:30 pm4:30 pm.
 (2/6) I have set my regular weekly office hours for the semester (unless otherwise notified) as follows: Mon 23, Tues 1112, and Wed 1:303:30. As always, I am happy to try to find another appointment if these times don't work for you.
 (3/2) Today, Mon Mar 2, I have to shift my office hours to 12 instead of 23. I apologize for any inconvenience this causes.
Homework:
Homework problems will be a very important
part of the course, and there will be homework assigned almost every week.
Proofs and computations should be written
carefully and neatly, with attention paid to the completeness of your argument
and clarity of your steps. Individual homework
assignments should be written up by yourself, although some collaboration while
working on the homework is fine, and encouraged as long as the work you turn in
is your own formulation of a solution. You should not, under any
circumstances, attempt to copy solutions to problems online
(although I know this is very tempting), as this will have to be treated as plagiarism. Instead, email me for a hint, or
discuss problems in a group of classmates. There will
be homework problems which will be turned in and graded, and other homework
problems which will be suggested, but not to turn in.
Homework is due at the beginning of
class on the due date of the assignment, and if you like you may email me a pdf
of your homework (only) if you LaTex it (which is not required but welcomed). Homework that is turned in or in my email
inbox 10 minutes after the beginning of the class is considered late.
Everyone will get one free pass for a oneday late HW without penalty (by 5 pm
the day after it is due). Late penalties are:
10% off if it is turned in after the beginning of class,
but it is in my hands (on my door), or in my email inbox as a pdf by 5 pm on the day it is
due.
20% off if it is turned in by 5 pm the next weekday after the due date.
20% more off for each (week)day late, turned in by 5 pm, thereafter.
Everything
is easier, of course, if you turn in the homework on time!
Homework scores will each be out of 50 points. Your lowest homework score of
the semester will
be dropped.
Assignment 
Problems 
Due Date 
1  Turn in: pg. 101 #3, 4, 7, 8
Don't turn in: pg. 96 #11, 18, 19

Thurs, Jan 30 
2  Turn in: pg. 106 #7, pg. 116 #1, 2, pg. 122 #8
Don't turn in: pg. 106 #2, pg. 117 #10, pg. 122 #14

Thurs, Feb 6 
3  Turn in: pgs. 146147 #1, 13, 23, 30, 32
Don't turn in: pgs. 146147 #4, 14, 15, 21, 27

Thurs, Feb 13 
4  Turn in: pg. 147 #17, 34, pg. 231 #7, 9
Don't turn in: pg. 147 #31, pg. 231 #8, 10, 11

Thurs, Feb 20 
5  Turn in: pg. 238 #3(a), pgs. 247249 #2, 11, 16, 17
Don't turn in: pg. 238 #2, pgs. 248249 #7, 9, 25

Thurs, Feb 27 
Group  Turn in: Prove all properties of the bijection in the
Lattice Isomorphism Theorem (Theorem 20, pg. 99)

Tues, Mar 3 
6  Turn in: pgs. 256257 #8, 11, pgs. 264 #3, pg. 267 #3, 4

Thurs, Mar 20 
Math Major Writing Requirement (Math 300):
If you are a math major, and you would like to complete your major writing
requirement through a writing assignment in this class, please let me know in
the first week of class. This writing assignment will not count towards your
grade in this class, but will rather just serve as your Major Writing
Requirement (Math 300). You should only do this if all of the following hold:
(1) you are not doing an honors thesis in Mathematics, (2) you are not doing
your COLL 400 requirement in Mathematics, and (3) you are a senior. If you decide to do this, you must write your paper on
a topic in Abstract Algebra (or a closely related subject) approved by me, and you must keep to a schedule of turning in
drafts we agree on at the beginning of the semester in order to get credit.
Student Accessibility
Services:
William & Mary accommodates students with disabilities in accordance with
federal laws and university policy. Any student who feels they may need an
accommodation based on the impact of a learning, psychiatric, physical, or
chronic health diagnosis should contact Student Accessibility Services staff
at 7572212512 or at sas@wm.edu to determine if accommodations are warranted
and to obtain an official letter of accommodation. For more information,
please visit the SAS webpage.
