
Group Actions

Math 430 - Spring 2020

The notion of a group acting on a set is one which links abstract algebra
to nearly every branch of mathematics. Group actions appear in geometry,
linear algebra, and differential equations, to name a few. Group actions
are a fundamental tool in pure group theory as well, and one of our main
applications will be the Sylow Theorems. These notes should be used as
a supplement to Section 4.1-4.3 of Dummit and Foote’s text. Some of the
notation here will differ from the notation in that text, but we point out in
class when this is the case.

Let G be a group and let X be a set. Let Sym(X) denote the group of all
permutations of the elements of X (also written as SX). So, if X is a finite
set and |X| = n, then Sym(X) ∼= Sn. We will give two equivalent definitions
of G acting on X.

Definition 1. We say that G acts on X if there is a homomorphism
φ : G→ Sym(X).

One way of thinking of G acting on X is that elements of the group G
may be “applied to” elements of X to give a new element of X. The next
definition takes this point of view.

Definition 2. We say that G acts on X if there is a map

∗ : G×X → X,

so that if g ∈ G and x ∈ X, then ∗(g, x) = g ∗ x ∈ X, such that:
(i) For every g, h ∈ G, x ∈ X, we have (gh) ∗ x = g ∗ (h ∗ x),
(ii) For every x ∈ X, e ∗ x = x, where e ∈ G is the identity.

If the group G acts on the set X, we will call X a G-set. Note that we
will also write g.x for g ∗ x, where g ∈ G and x ∈ X.
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Before giving examples, we need to show that the two above definitions
actually define the same notion.

Theorem 1 Definition 1 and Definition 2 are equivalent.

Proof. First assume that G and X satisfy Definition 1, so that we have a
homomorphism φ : G → Sym(X). We now show that G and X must also
then satisfy Definition 2. We define a map ∗ : G×X → X by g∗x = φ(g)(x).
First, for every g, h ∈ G, x ∈ X, using the fact that φ is a homomorphism,
we have

(gh) ∗ x = φ(gh)(x) = (φ(g) ◦ φ(h))(x) = φ(g)(φ(h)(x)) = g ∗ (h ∗ x),

so that ∗ satisfies condition (i) of Definition 2. Also, since φ is a homomor-
phism, φ(e) is the trivial permutation, where e ∈ G is the identity element.
So e ∗ x = φ(e)(x) = x, which is condition (ii) of Definition 2. Thus G and
X satisfy Definition 2.

Now suppose G and X satisfy Definition 2, so that we have a map

∗ : G×X → X

which satisfies (i) and (ii). We define a map φ : G→ Sym(X) by φ(g)(x) =
g ∗ x. We first show that this is well-defined, that is, φ(g) is actually a one-
to-one and onto map from X to itself. To show that φ(g) is onto, let x ∈ X,
and consider g−1 ∗ x ∈ X. Then we have

φ(g)(g−1 ∗ x) = g ∗ (g−1 ∗ x) = (gg−1) ∗ x = e ∗ x = x,

so φ(g) is onto. To show that φ(g) is one-to-one, suppose that we have
φ(g)(x) = φ(g)(y) for x, y ∈ X, so that g ∗ x = g ∗ y. Using both conditions
(i) and (ii) of Definition 2, we have

g−1 ∗ (g ∗x) = g−1 ∗ (g ∗y)⇒ (g−1g)∗x = (g−1g)∗y ⇒ e∗x = e∗y ⇒ x = y.

Finally, we show that φ is a homomorphism. Let g, h ∈ G, x ∈ X. We have

φ(gh)(x) = (gh) ∗ x = g ∗ (h ∗ x) = φ(g)(φ(h)(x)) = (φ(g) ◦ φ(h))(x).

Thus, G and X satisfy Definition 1. �
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Now that we have a few ways of thinking about group actions, let’s see
some examples.

Example 1. As mentioned before, we may take X = {1, 2, . . . , n},
G = Sn = Sym(X), and φ : Sn → Sn to be the identity map.

Example 2. Let X = Rn and G = GL(n,R), and for A ∈ G, v ∈ X,
define A ∗ v = Av. That is, we let G act on X as linear transformations.

Example 3. Let X be a unit cube sitting in R3, and let G be the group of
symmetries of X, which acts on X again as linear transformations on R3.

Example 4. Let X be a group H, and let G also be the same group
H, where H acts on itself by left multiplication. That is, for h ∈ X = H and
g ∈ G = H, define g∗h = gh. This action was used to show that every group
is isomorphic to a group of permutations (Cayley’s Theorem, in Section 4.2
of Dummit and Foote).

Before defining more terms, we’ll first see a nice application to finite group
theory.

Theorem 2 Let G be a finite group, and let H be a subgroup of G such that
[G : H] = p, where p is the smallest prime dividing |G|. Then H is a normal
subgroup of G.

Proof. We let X be the set of left cosets of H in G. From the proof of
Lagrange’s Theorem, we have |X| = [G : H] = p, and so Sym(X) ∼= Sp.
We define an action of G on X by g ∗ aH = gaH, for g ∈ G and aH ∈ X.
That is, we let G act on the left cosets of H in G by left multiplication. This
satisfies Definition 2, since for any g1, g2, a ∈ G, we have (g1g2)∗aH = g1g2aH
and e ∗ aH = aH. From Theorem 1, and since Sym(X) ∼= Sp, we have a
homomorphism φ : G→ Sp.

For any g ∈ G, g 6∈ H, we have g ∗ H = gH 6= H, and so φ(g) cannot
be the trivial permutation of left cosets of H in G, that is, g 6∈ ker(φ) when
g 6∈ H. We must therefore have ker(φ) ≤ H. From the first isomorphism
theorem for groups, we have G/ker(φ) ∼= im(φ), where im(φ) = φ(G) is a
subgroup of Sp. So we have

|G|
|ker(φ)|

= |G/ker(φ)|
∣∣∣|Sp| = p!.
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Note that p is the largest prime dividing p!, and p2 does not divide p!, while
p is the smallest prime dividing |G|. Since ker(φ) ≤ H and H is a proper
subgroup of G, we cannot have G = ker(φ), that is, [G : ker(φ)] 6= 1. The
only possibility is that |G/ker(φ)| = [G : ker(φ)] = p, since this is the only
divisor of |G| which divides p!. We now have

[G : ker(φ)] =
|G|
|ker(φ)|

= p = [G : H] =
|G|
|H|

,

so that |H| = |ker(φ)|. Since ker(φ) ⊆ H, we must have H = ker(φ), which
is a normal subgroup of G. �

We now define a few important terms relevant to group actions.

Definition 3. Let G be a group which acts on the set X. For x ∈ X, the
stabilizer of x in G, written stabG(x), is the set of elements g ∈ G such that
g ∗ x = x. In symbols,

stabG(x) = {g ∈ G | g ∗ x = x}.

In some texts this is called the isotropy subgroup of x, and is written Gx (we
show below that this is actually a subgroup of G).

For x ∈ X, the orbit of x under G, written orbG(x), is the set of all
elements in X of the form g ∗ x for g ∈ G. In symbols,

orbG(x) = {g ∗ x | g ∈ G}.

We will also use the notation Gx or G.x for the orbit of x under G.

Example 5. Let G = {(1), (1 2), (3 4 6), (3 6 4), (1 2)(3 4 6), (1 2)(3 6 4)},
and let φ : G→ S6, φ(α) = α, be the natural injection, as G is a subgroup of
S6. Then G acts on {1, 2, 3, 4, 5, 6}. First note that since 5 is fixed by every
element of G, we have stabG(5) = G, and orbG(5) = {5}. We also have

stabG(3) = stabG(4) = stabG(6) = 〈(1 2)〉, stabG(1) = stabG(2) = 〈(3 4 6)〉,

orbG(3) = orbG(4) = orbG(6) = {3, 4, 6}, orbG(1) = orbG(2) = {1, 2}.

Example 6. Let G be any group, and we let G act on itself by conjugation.
That is, for g, a ∈ G, we define g∗a = gag−1. We first check that this satisfies
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Definition 2. First, we have e ∗ a = eae−1 = a. Now let g, h, a ∈ G. Then we
have

(gh) ∗ a = gha(gh)−1 = ghah−1g−1 = g ∗ (h ∗ a),

so this is indeed a group action. If we fix an a ∈ G, we see that the orbit of
a is

orbG(a) = {gag−1 | g ∈ G},

which is called the conjugacy class of a in G. If we look at the stabilizer of
a in G, we have

stabG(a) = {g ∈ G | gag−1 = a},

which is the centralizer of a in G, also written CG(a). The next Lemma
shows us that stabilizers of group actions are always subgroups, and so in
particular, centralizers of elements of groups are subgroups.

Lemma 1 If G acts on X, and x ∈ X, then stabG(x) is a subgroup of G.

Proof. Let x ∈ X. Since e ∗ x = x, we know that e ∈ stabG(x), and so
the stabilizer of x in G is nonempty. Now suppose g, h ∈ stabG(x). Since
g ∗ x = x, we have

g−1 ∗ (g ∗x) = g−1 ∗x⇒ (g−1g)∗x = g−1 ∗x⇒ e∗x = g−1 ∗x⇒ g−1 ∗x = x.

So, g−1 ∈ stabG(x). We also have

(gh) ∗ x = g ∗ (h ∗ x) = g ∗ x = x,

so gh ∈ stabG(x). Thus stabG(x) ≤ G. �

The next result is the most important basic result in the theory of group
actions.

Theorem 3 (Orbit-Stabilizer Lemma) Suppose G is a group which acts
on X. For any x ∈ X, we have

|orbG(x)| = [G : stabG(x)],

which means that the cardinalities are equal even when these are infinite sets.
If G is a finite group, then

|G| = |stabG(x)| |orbG(x)|.
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Proof. Fix x ∈ X. From Lemma 1, stabG(x) is a subgroup of G, and we
recall that[G : H] denotes the cardinality of the set of left cosets of H in G.
Let K denote the set of left cosets of H in G. Define a function

f : orbG(x)→ K,

by f(g∗x) = gH. First, we check that f is well-defined, and at the same time
check that f is injective. If g1, g2 ∈ G, g1 ∗x = g2 ∗x ∈ orbG(x) if and only if
(g−12 g1)∗x = x, iff g−12 g1 ∈ stabG(x) = H, which is equivalent to g2H = g1H.
So g1 ∗ x = g2 ∗ x if and only if f(g1 ∗ x) = f(g2 ∗ x), and f is well-defined
and injective. Also f is onto, since for any gH ∈ K, f(g ∗ x) = gH. Thus, f
gives a one-to-one correspondence, and so

|orbG(x)| = |K| = [G : stabG(x)].

When G is finite, it follows from the proof of Lagrange’s Theorem that
[G : stabG(x)] = |G|/|stabG(x)| So, in this case, |G| = |stabG(x)| |orbG(x)|.
�

Next, we connect the concept of a group action with the important notion
of an equivalence relation.

Theorem 4 Let G be a group which acts on a set X, and for x, y ∈ X,
define x ∼ y to mean that there is a g ∈ G such that g ∗ x = y. Then ∼ is
an equivalence relation on X, and the equivalence class of x ∈ X is orbG(x).

Proof. We must check that ∼ satisfies the reflexive, symmetric, and
transitive properties. First, for any x ∈ X, we have e ∗ x = x, where e is the
identity in G, and so x ∼ x and the reflective property holds. Next, if x ∼ y,
then there is a g ∈ G such that g ∗ x = y. It follows from Definition 2 that
we then have g−1 ∗ y = x, so that y ∼ x and the symmetric property holds.
Now assume x ∼ y and y ∼ z, where g ∗ x = y and h ∗ y = z. Then from
Definition 2, h ∗ (g ∗ x) = (hg) ∗ x = z, and so x ∼ z and transitivity holds.
So, ∼ is an equivalence relation.

From the definition of an equivalence class, if x ∈ X, then the class of x
is the set {y ∈ X | x ∼ y} = {y ∈ X | y = g ∗ x for some g ∈ G}. This is
exactly the definition of the orbit of x under G. �

We conclude with one more application to group theory, this time to the
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conjugacy classes of a group, as introduced in Example 6 above. Note that
if G is a group and z ∈ G is in the center of G, then the conjugacy class of
z is just {z}.

Theorem 5 (Class Formula) Let G be a finite group, let Z(G) be the cen-
ter of G, and let A be a collection of distinct representatives of conjugacy
classes of G which are not in Z(G). Then we have

|G| = |Z(G)|+
∑
a∈A

[G : CG(a)].

Proof. For any x ∈ G, let cl(x) denote the conjugacy class of x in G. From
Example 6 above, we let G act on itself by conjugation, and for any x ∈ G,
we have orbG(x) = cl(x), and stabG(x) = CG(a). From Theorem 3, we have,
for each x ∈ G,

|cl(x)| = |G|/|CG(x)| = [G : CG(x)].

Since from Theorem 4 the conjugacy classes of G are just equivalence classes,
we have that conjugacy classes form a partition of G. So, the union of distinct
conjugacy classes of G gives G. Let B be a set of representatives of distinct
conjugacy classes of G, and we have

|G| =
∑
b∈B

|cl(b)| =
∑
b∈B

[G : CG(b)]. (1)

We also know that b ∈ Z(G) exactly when gbg−1 = b for every g ∈ G, which
happens exactly when |cl(b)| = 1. So,

∑
z∈Z(G) |cl(z)| = |Z(G)|. If we choose

A to be a set of representatives of conjugacy classes which are not in Z(G),
splitting (1) into a sum over Z(G) and a sum over A gives the result. �
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