Group Actions

Math 430 - Spring 2020

The notion of a group acting on a set is one which links abstract algebra
to nearly every branch of mathematics. Group actions appear in geometry,
linear algebra, and differential equations, to name a few. Group actions
are a fundamental tool in pure group theory as well, and one of our main
applications will be the Sylow Theorems. These notes should be used as
a supplement to Section 4.1-4.3 of Dummit and Foote’s text. Some of the
notation here will differ from the notation in that text, but we point out in
class when this is the case.

Let G be a group and let X be a set. Let Sym(X) denote the group of all
permutations of the elements of X (also written as Sx). So, if X is a finite
set and | X| = n, then Sym(X) = 5,,. We will give two equivalent definitions
of G acting on X.

Definition 1. We say that G acts on X if there is a homomorphism
¢: G — Sym(X).

One way of thinking of G acting on X is that elements of the group G
may be “applied to” elements of X to give a new element of X. The next
definition takes this point of view.

Definition 2. We say that G acts on X if there is a map
x:Gx X =X,

so that if g € G and x € X, then x(g,2) = g xx € X, such that:
(i) For every g,h € G, x € X, we have (gh) *x = g * (h x x),
(ii) For every = € X, e x x = x, where e € G is the identity.

If the group G acts on the set X, we will call X a G-set. Note that we
will also write g.x for g * x, where g € G and z € X.
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Before giving examples, we need to show that the two above definitions
actually define the same notion.

Theorem 1 Definition 1 and Definition 2 are equivalent.

Proof. First assume that G and X satisfy Definition 1, so that we have a
homomorphism ¢ : G — Sym(X). We now show that G and X must also
then satisfy Definition 2. We define a map * : Gx X — X by gxx = ¢(g)(z).
First, for every g, h € G, x € X, using the fact that ¢ is a homomorphism,
we have

(gh) x z = ¢(gh)(x) = (¢(g) 0 6(h))(x) = ¢(9)(¢(h)(x)) = g * (h * x),

so that = satisfies condition (i) of Definition 2. Also, since ¢ is a homomor-
phism, ¢(e) is the trivial permutation, where e € G is the identity element.
So e x x = ¢(e)(x) = z, which is condition (ii) of Definition 2. Thus G and
X satisfy Definition 2.

Now suppose G and X satisfy Definition 2, so that we have a map

x :GxX =X

which satisfies (i) and (ii). We define a map ¢ : G — Sym(X) by ¢(g)(z) =
g * x. We first show that this is well-defined, that is, ¢(g) is actually a one-
to-one and onto map from X to itself. To show that ¢(g) is onto, let z € X,
and consider ¢! * z € X. Then we have

g)g xa)=gx (g xx)= (g9 ) xr=exz =1,

so ¢(g) is onto. To show that ¢(g) is one-to-one, suppose that we have
o(g)(x) = ¢(g)(y) for x,y € X, so that g * x = g * y. Using both conditions
(i) and (ii) of Definition 2, we have

g x(gra) =g x(gHy) = (97 ) xz = (97" g)xy = exa=exy=>z =y
Finally, we show that ¢ is a homomorphism. Let g,h € G, x € X. We have
¢(gh)(x) = (gh) x x = g * (hx x) = ¢(g)(d(h)(x)) = (¢(g) © 6(h)) ().

Thus, G and X satisfy Definition 1. [J



Now that we have a few ways of thinking about group actions, let’s see
some examples.

Example 1. As mentioned before, we may take X = {1,2,... n},
G =S, =Sym(X), and ¢ : S,, = S, to be the identity map.

Example 2. Let X = R" and G = GL(n,R), and for A € G, v € X,
define A x v = Av. That is, we let G act on X as linear transformations.

Example 3. Let X be a unit cube sitting in R3, and let G be the group of
symmetries of X, which acts on X again as linear transformations on R3.

Example 4. Let X be a group H, and let GG also be the same group
H, where H acts on itself by left multiplication. That is, for h € X = H and
g € G = H, define gxh = gh. This action was used to show that every group
is isomorphic to a group of permutations (Cayley’s Theorem, in Section 4.2
of Dummit and Foote).

Before defining more terms, we’ll first see a nice application to finite group
theory.

Theorem 2 Let G be a finite group, and let H be a subgroup of G such that
|G : H| = p, where p is the smallest prime dividing |G|. Then H is a normal
subgroup of G.

Proof. We let X be the set of left cosets of H in G. From the proof of
Lagrange’s Theorem, we have |X| = [G : H| = p, and so Sym(X) = S,,.
We define an action of G on X by g*xaH = gaH, for g € G and aH € X.
That is, we let G act on the left cosets of H in G by left multiplication. This
satisfies Definition 2, since for any g1, g2, a € G, we have (g192)*aH = g1g.0H
and e * aH = aH. From Theorem 1, and since Sym(X) = S,, we have a
homomorphism ¢ : G — S),.

For any g € G,g ¢ H, we have g« H = gH # H, and so ¢(g) cannot
be the trivial permutation of left cosets of H in G, that is, g & ker(¢) when
g € H. We must therefore have ker(¢) < H. From the first isomorphism
theorem for groups, we have G/ker(¢) = im(¢), where im(¢) = ¢(G) is a
subgroup of S,. So we have
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Note that p is the largest prime dividing p!, and p? does not divide p!, while
p is the smallest prime dividing |G|. Since ker(¢) < H and H is a proper
subgroup of G, we cannot have G = ker(¢), that is, [G : ker(¢)] # 1. The
only possibility is that |G /ker(¢)| = [G : ker(¢)] = p, since this is the only
divisor of |G| which divides p!. We now have

_ gl

. Ker = ‘G| =
G+ kex(0)] v

 [ker(g)]

so that |H| = |ker(¢)|. Since ker(¢) C H, we must have H = ker(¢), which
is a normal subgroup of G. U

=[G : H]

We now define a few important terms relevant to group actions.

Definition 3. Let G be a group which acts on the set X. For x € X, the
stabilizer of x in G, written stabg(x), is the set of elements g € G such that
g *xx = x. In symbols,

stabg(z) ={g € G | gxx =z}

In some texts this is called the isotropy subgroup of z, and is written G, (we
show below that this is actually a subgroup of G).

For z € X, the orbit of x under G, written orbg(x), is the set of all
elements in X of the form ¢ x x for ¢ € G. In symbols,

orbg(z) ={g*z | g € G}.
We will also use the notation Gz or G.x for the orbit of z under G.

Example 5. Let G = {(1),(12),(346),(364),(12)(346),(12)(364)},
and let ¢ : G — Sg, ¢(a) = «, be the natural injection, as G is a subgroup of
Se. Then G acts on {1,2,3,4,5,6}. First note that since 5 is fixed by every
element of G, we have stabg(5) = G, and orbg(5) = {5}. We also have

stabg(3) = stabg(4) = stabg(6) = ((1 2)), stabg(1) = stabg(2) = ((3 4 6)),

orbg(3) = orbg(4) = orbg(6) = {3,4,6}, orbg(1l) = orbs(2) = {1, 2}.

Example 6. Let G be any group, and we let G act on itself by conjugation.
That is, for g,a € G, we define gxa = gag~'. We first check that this satisfies
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Definition 2. First, we have e * a = eae™! = a. Now let g, h,a € G. Then we
have
(gh) x a = gha(gh)™ = ghah™'g™" = g x (h* a),

so this is indeed a group action. If we fix an a € GG, we see that the orbit of
a is

orbg(a) = {gag™" | g € G},
which is called the conjugacy class of a in G. If we look at the stabilizer of

a in G, we have
stabg(a) ={g € G | gag~' = a}l,

which is the centralizer of a in G, also written Cg(a). The next Lemma
shows us that stabilizers of group actions are always subgroups, and so in
particular, centralizers of elements of groups are subgroups.

Lemma 1 If G acts on X, and x € X, then stabg(x) is a subgroup of G.

Proof. Let z € X. Since e * x = x, we know that e € stabg(x), and so
the stabilizer of x in G is nonempty. Now suppose g, h € stabg(x). Since
g*xxr = x, we have

1 1 1

g x(grr) =gt xr = (glg)xr =g lxr = exr =g v = g ¥z = 1.
So, g7! € stabg(x). We also have

(gh)xx=gx* (h*xx)=g*x =1,
so gh € stabg(z). Thus stabg(z) < G. O

The next result is the most important basic result in the theory of group
actions.

Theorem 3 (Orbit-Stabilizer Lemma) Suppose G is a group which acts
on X. For any x € X, we have

lorbg(z)| = [G : stabg(z)],

which means that the cardinalities are equal even when these are infinite sets.
If G is a finite group, then

|G| = |stabg(z)| |orbg(z)].
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Proof. Fix x € X. From Lemma 1, stabg(x) is a subgroup of G, and we
recall that[G : H] denotes the cardinality of the set of left cosets of H in G.
Let K denote the set of left cosets of H in G. Define a function

f orbg(z) — K,

by f(g*x) = gH. First, we check that f is well-defined, and at the same time
check that f is injective. If g1, 92 € G, g1 & = ga *xx € orbg(x) if and only if
(95 1) xx =z, iff g; *g1 € stabg(z) = H, which is equivalent to go H = g, H.
So g1 xx = go *x x if and only if f(g; x ) = f(ge * x), and f is well-defined
and injective. Also f is onto, since for any gH € K, f(g*x) = gH. Thus, f
gives a one-to-one correspondence, and so

lorbg(z)| = |K| = [G : stabg(x)].

When G is finite, it follows from the proof of Lagrange’s Theorem that
|G : stabg(x)] = |G]/|stabg(x)| So, in this case, |G| = [stabg(z)| |orbg(x)|.
O

Next, we connect the concept of a group action with the important notion
of an equivalence relation.

Theorem 4 Let G be a group which acts on a set X, and for x,y € X,
define x ~ y to mean that there is a g € G such that g xx = y. Then ~ is
an equivalence relation on X, and the equivalence class of x € X is orbg(x).

Proof. We must check that ~ satisfies the reflexive, symmetric, and
transitive properties. First, for any z € X, we have e x x = x, where e is the
identity in GG, and so z ~ z and the reflective property holds. Next, if x ~ y,
then there is a ¢ € G such that g x x = y. It follows from Definition 2 that
we then have g~ x y = x, so that y ~  and the symmetric property holds.
Now assume x ~ y and y ~ z, where g * x = y and h xy = 2. Then from
Definition 2, h* (g x ) = (hg) * = z, and so x ~ z and transitivity holds.
So, ~ is an equivalence relation.

From the definition of an equivalence class, if x € X, then the class of x
istheset {fye X | e ~y} ={ye X | y=gx*ux for some g € G}. This is
exactly the definition of the orbit of x under G. [

We conclude with one more application to group theory, this time to the
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conjugacy classes of a group, as introduced in Example 6 above. Note that
if G is a group and z € G is in the center of G, then the conjugacy class of
z is just {z}.

Theorem 5 (Class Formula) Let G be a finite group, let Z(G) be the cen-
ter of G, and let A be a collection of distinct representatives of conjugacy
classes of G which are not in Z(G). Then we have

Gl =12(@)| +)_[G : Co(a)).

a€A

Proof. For any = € G, let cl(x) denote the conjugacy class of z in G. From
Example 6 above, we let GG act on itself by conjugation, and for any x € G,
we have orbg(z) = cl(z), and stabg(z) = Cg(a). From Theorem 3, we have,
for each x € G,

lcl(@)] = [G/|Ca(x)| =[G - Calx)].

Since from Theorem 4 the conjugacy classes of G are just equivalence classes,
we have that conjugacy classes form a partition of G. So, the union of distinct
conjugacy classes of G gives G. Let B be a set of representatives of distinct
conjugacy classes of G, and we have

Gl=)_ledb)| =) _[G: Ca(d)]. (1)

beB beB

We also know that b € Z(G) exactly when gbg~' = b for every g € G, which
happens exactly when [cl(b)| = 1. So, }__ ;s [cl(2)| = |Z(G)]. If we choose
A to be a set of representatives of conjugacy classes which are not in Z(G),
splitting (1) into a sum over Z(G) and a sum over A gives the result. [J



