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1. Introduction

In [8], R. Gow proves the following theorem.

Theorem 1.1. Let G = GL(n,Fq), where q is odd. Let G+ be the split
extension of G by the transpose-inverse automorphism. That is,

G+ = 〈G, τ | τ2 = 1, τ−1gτ = tg−1 for all g ∈ G〉.

Then all complex irreducible representations of G+ can be obtained in the
field of real numbers.

Denote by ε(π) the classical Frobenius-Schur indicator of the irreducible
representation (π, V ) with character χ. That is, ε(π) = 1

|G|
∑

g∈G χ(g2), and
Frobenius and Schur proved that ε(π) = 1 if (π, V ) is a real representation,
ε(π) = −1 if χ is real-valued, but π is not a real representation, and ε(π) = 0
otherwise. Then the conclusion of Theorem 1.1 is equivalent to the statement
that every irreducible representation π of G+ satisfies ε(π) = 1.

Gow obtained the following intriguing result from Theorem 1.1.

Corollary 1.1. The sum of the degrees of the irreducible representations of
GL(n,Fq) is equal to the number of symmetric elements in GL(n,Fq).

Theorem 1.1 only implies Corollary 1.1 for q odd, but Klyachko [16] ob-
tained Corollary 1.1 for any q by obtaining a model for GL(n,Fq). Different
proofs of Klyachko’s main theorem in [16, Theorem A] were also obtained
by Inglis and Saxl [13] and by Howlett and Zworestine [11]. I.G. Macdonald
also proves Corollary 1.1 for any q by directly computing the sum of the
degrees of the characters of GL(n,Fq) using symmetric functions [17, Ch.
IV.6, Ex. 5].

Several years after the papers of Gow and Klyachko, Kawanaka and Mat-
suyama [15] developed the notion of a twisted Frobenius-Schur indicator.
If (π, V ) is a complex irreducible representation of a finite group G, the
twisted Frobenius-Schur indicator of π depends on an order two automor-
phism ι of G, and is denoted ει(π). Let χ be the character associated to the
representation π. Then Kawanaka and Matsuyama define ει(π) as follows:

ει(π) =
1
|G|

∑
g∈G

χ(g ιg).
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If ι is the identity automorphism of G, then ε(π) = ει(π). One of the
main results of [15] is that ει(π) is a useful indicator for the irreducible
representation (π, V ), as we now explain. For a chosen basis of V , let R(g)
denote the matrix for π(g) with respect to this basis. Then the following
holds.

ει(π) =



1 if a basis for V may be chosen such that
R(ιg) = R(g) for all g ∈ G

−1 if χ(ιg) = χ(g) for all g ∈ G, but there does not exist
a basis for V such that R(ιg) = R(g) for all g ∈ G

0 otherwise.

One of the implications of Theorem 1.1 is that every irreducible π of
GL(n,Fq) satisfies ει(π) = 1, where here ιg = tg

−1. By applying the twisted
version of the involution formula, as we will see in Proposition 2.1, we are
able to obtain Corollary 1.1.

Before the paper of Kawanaka and Matsuyama, Gow also proved [9] the
following results about the symplectic group over a finite field.

Theorem 1.2. Let G = Sp(2n,Fq) with q odd. Each non-faithful real-valued
irreducible character of G is the character of a real representation, whereas
each faithful real-valued irreducible character of G has Schur index 2 over
the real numbers.

Corollary 1.2. When q ≡ 1(mod 4), the sum of the degrees of the irre-
ducible complex characters of the symplectic group Sp(2n,Fq) is given by

qn(n+1)/2(qn + 1) · · · (q + 1).

Gow [9, p. 251] notes that Corollary 1.2 “probably holds when q ≡ 3(mod
4), but our method of proof does not yield such a result”. It is this open
case that motivates the work in this paper.

For odd q, since PSp(2n,Fq) is simple (except for n = 1, q = 3, which
can be handled separately), an irreducible representation π of Sp(2n,Fq)
is faithful if and only if its central character ωπ satisfies ωπ(−I) = −1.
Therefore, the content of Theorem 1.2 is that any irreducible representation
π of Sp(2n,Fq) whose character is real-valued satisfies ε(π) = ωπ(−I).

Define ι to be the order 2 automorphism for Sp(2n,Fq) which conjugates
elements by a certain skew-symplectic element:

(1) ιg =
(
−In

In

)
g

(
−In

In

)
.

When q ≡ 1(mod 4), the automorphism ι defined above is inner by an
element whose square is −I, and from this fact it will follow from Lemma
2.1 that ει(π) = ωπ(−I)ε(π) for any irreducible π of G. For q ≡ 1(mod 4),
every irreducible character of Sp(2n,Fq) is real-valued, and so by Theorem
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1.2, we have ει(π) = 1 for every irreducible representation π, and Corollary
1.2 follows by applying a counting argument.

When q ≡ 3(mod 4), the automorphism ι is not an inner automorphism,
and there are irreducible characters of Sp(2n,Fq) which are not real-valued.
However, the main result of this paper is the following, which covers all odd
q, thus generalizing Theorem 1.2 and Corollary 1.2.

Theorem 1.3. Let q be odd, and ι the automorphism of Sp(2n,Fq) as in (1).
Then every irreducible representation π of Sp(2n,Fq) satisfies ει(π) = 1.
The sum of the degrees of the irreducible complex characters of Sp(2n,Fq)
is given by

qn(n+1)/2(qn + 1) · · · (q + 1).

The main idea in proving Theorem 1.3 for the case q ≡ 3(mod 4) is to
consider the following group, which contains G = Sp(2n,Fq) as an index 2
subgroup:

Sp(2n,Fq)ι,−I = 〈G, τ | τ2 = −I, τ−1gτ = ιg for all g ∈ G〉.

We will prove that every irreducible φ of Sp(2n,Fq)ι,−I satisfies ε(φ) =
ωφ(−I), and this is the main statement needed to obtain Theorem 1.3, as
described in Proposition 2.2. The method that is used, like in [8, 9], is
an induction argument using the Berman-Witt generalization of the Brauer
induction theorem. The bulk of the work for this argument is in the analysis
of maximal R-elementary subgroups at 2, in Section 5.

We also obtain results for the group of similitudes GSp(2n,Fq) for q
odd. Let µ be the similitude character, and ι the inner automorphism of
GSp(2n,Fq) which conjugates by the skew-symplectic element as in (1).
Define σ to be the order 2 automorphism of GSp(2n,Fq) which acts as
σg = µ(g)−1 · ιg. Then the main result for this group is the following, with
the rather surprising result for the sum of the character degrees.

Theorem 1.4. Let q be odd, and let σ be the automorphism of GSp(2n,Fq)
as defined above. Then every irreducible π of GSp(2n,Fq) satisfies εσ(π) =
1. The sum of the degrees of the irreducible characters of GSp(2n,Fq) is
equal to the number of symmetric matrices in GSp(2n,Fq).

2. Twisted Frobenius-Schur Indicators

If (π, V ) is an irreducible complex representation of a finite group G, call
it a real representation if there exists a basis for V such that for any g ∈ G,
all entries of the matrix for π(g) with respect to this basis are in the field of
real numbers. For an irreducible χ of G, define the Frobenius-Schur indicator
of χ, written ε(χ), to be ε(χ) = 1

|G|
∑

g∈G χ(g2). Frobenius and Schur [6]
proved the following theorem, which gives a useful meaning to ε(χ).
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Theorem 2.1. Let χ be the character of a complex irreducible representation
of a finite group G. Then

ε(χ) =


1 if χ is the character of a real representation
−1 if χ is real-valued but not the character of

a real representation
0 otherwise.

In 1990, Kawanaka and Matsuyama [15] generalized the notion of Frobenius-
Schur indicators to include a twist by an order two automorphism of G,
ι : G→ G. For a complex irreducible character χ of G, define

ει(χ) =
1
|G|

∑
g∈G

χ(g ιg),

where we are writing the automorphism ι as acting on the left. Kawanaka
and Matsuyama proved the following generalization of Frobenius and Schur’s
Theorem 2.1. For a complex representation (π, V ) of a finite group G, if a
basis is chosen for V , let R(g) denote the matrix for π(g) with respect to
this basis.

Theorem 2.2. Let χ be the character of a complex irreducible representation
(π, V ) of the group G, ι : G→ G an order 2 automorphism of G, and ει(χ)
defined above. Then

ει(χ) =



1 if a basis for V may be chosen such that
R(ιg) = R(g) for all g ∈ G

−1 if χ(ιg) = χ(g) for all g ∈ G, but there does not exist
a basis for V such that R(ιg) = R(g) for all g ∈ G

0 otherwise.

We call ει(χ) the twisted Frobenius-Schur indicator of χ.
We now take a slightly different point of view of the situation. If (π, V ) is

a complex representation of a finite group G, then the contragredient of π is
the representation of G acting on the dual space V ∗, written π̂, with action
π̂(g)(l(v)) = l(π(g−1)v), where v ∈ V and l ∈ V ∗. If χ is the character
of π, then χ is the character of π̂. Let (π, V ) be a complex irreducible
representation of a finite group G such that π ∼= π̂, which is equivalent to
the character χ of π being real-valued. Then π ∼= π̂ if and only if there is a
nondegenerate bilinear form B : V × V → C such that

B(π(g)u, π(g)v) = B(u, v) for all g ∈ G, u, v ∈ V .

By an application of Schur’s Lemma, B is unique up to scalar, which implies

(2) B(u, v) = ε(π)B(v, u)

for a complex number ε(π) which evidently satisfies ε(π)2 = 1. Define ε(π) =
0 if π 6∼= π̂. Then ε(π) is exactly the Frobenius-Schur indicator ε(χ) in
Theorem 2.1. This is proven in a much more general setting by Bump and
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Ginzburg [1], but we now only state the generalization that we need, which
is the case corresponding to Theorem 2.2 of Kawanaka and Matsuyama.

Let ι be an order 2 automorphism of the finite group G, and let (π, V ) be
a complex irreducible representation of G such that ιπ ∼= π̂, where ιπ(g) =
π( ιg). Note that if χ is the character of π and ιχ the character of ιπ, then
ιπ ∼= π̂ is equivalent to the statement that ιχ = χ. Similar to the untwisted
case above, we have this isomorphism if and only if there is a nondegenerate
bilinear form Bι, unique up to scalar by Schur’s Lemma, satisfying

Bι(π(g)u, ιπ(g)v) = Bι(u, v) for all g ∈ G, u, v ∈ V.

So there is a constant ει(π) satisfying

(3) Bι(u, v) = ει(π)Bι(v, u) and ει(π)2 = 1.

Letting ει(π) = 0 when ιπ 6∼= π̂, we have that ει(π) is exactly the twisted
Frobenius-Schur indicator ει(χ) of Kawanaka and Matsuyama as in Theorem
2.2. This point of view of twisted Frobenius-Schur indicators is sometimes
more convenient in proofs.

The following proposition, which generalizes the Frobenius-Schur invo-
lution formula, relates twisted Frobenius-Schur indicators to combinatorial
information. This result is implicit in Kawanaka and Matsuyama’s work [15],
and a proof of a more general statement appears in Bump and Ginzburg’s
paper [1, Proposition 1, Theorem 2].

Proposition 2.1. Let G be a finite group and ι an order 2 automorphism
of G.
(i) For any h ∈ G, ∑

χ∈Irr(G)

ει(χ)χ(h) = |{g ∈ G | g ιg = h}|.

(ii) ει(χ) = 1 for every χ ∈ Irr(G) if and only if∑
χ∈Irr(G)

χ(1) = |{g ∈ G | ιg = g−1}|.

If ι is an inner automorphism of G, then we may say precisely how ε(π)
and ει(π) are related. If ι is inner given by ιg = h−1gh, then since ι is of
order two, we have h2 is in the center of G.

Lemma 2.1. Let ι be an inner automorphism of order 2 of G, given by
ιg = h−1gh, where h2 = z is in the center of G. Then for any χ ∈ Irr(G)
with central character ωχ,

ει(χ) = ωχ(z)ε(χ).

Proof. We have

ει(χ) =
1
|G|

∑
g∈G

χ(g ιg) =
1
|G|

∑
g∈G

χ(z−1(gh)2) =
χ(z)
χ(1)

ε(χ).
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Now if χ is real-valued, then χ(z)
χ(1) = χ(z)

χ(1) = ωχ(z). If χ is not real-valued,
then ε(χ) = 0, and so ει(χ) = 0 from the above calculation. Thus in either
case we have ει(χ) = ωχ(z)ε(χ).

Now we consider extensions of the group G using a given order 2 au-
tomorphism ι. For any order 2 element z in the center of G, we define the
following group, which contains G as an index 2 subgroup:

Gι,z = 〈G, τ | τ2 = z, τ−1gτ = ιg for all g ∈ G〉.
The idea is to get information about the ει(χ)’s for χ ∈ Irr(G) by studying
the ε(ψ)’s for ψ ∈ Irr(Gι,z). Let us start with an irreducible representation
(π, V ) of G with character χ, and define π+ to be the representation π of G
induced to Gι,z, and call its character χ+. There is a nice criterion for χ+

to be irreducible.

Lemma 2.2. π+ is an irreducible representation of Gι,z if and only if π 6∼=
ιπ.

Proof. By Frobenius reciprocity, 〈χ+, χ+〉Gι,z = 〈χ, χ+|G〉G. By direct
calculation, we see that χ+(g) = χ(g) + ιχ(g) for g ∈ G. So we have

〈χ+, χ+〉Gι,z = 〈χ, χ+|G〉G = 〈χ, χ+ ιχ〉G

= 1 + 〈χ, ιχ〉 =

{
2 if π ∼= ιπ

1 if π 6∼= ιπ
.

Lemma 2.3. For any χ ∈ Irr(G) with central character ωχ, we have
1
|Gι,z|

∑
g∈Gι,z

χ+(g2) = ε(χ) + ωχ(z)ει(χ).

Proof. We first split the sum into the two cosets of G in Gι,z, G and Gτ .
Then note that (gτ)2 = gτgτ = gzτ−1gτ = zg ιg. Finally we apply the fact
that χ+(g) = χ(g) + ιχ(g) for g ∈ G:

1
|Gι,z|

∑
g∈Gι,z

χ+(g2) =
1
|Gι,z|

(∑
g∈G

χ+(g2) +
∑
g∈G

χ+(zg ιg)
)

=
1

2|G|

(∑
g∈G

(χ(g2) + χ(ιg2)) +
∑
g∈G

(χ(zg ιg) + χ(z ιgg))
)
.

But now as g runs over all elements of G, so does ιg. So the sum is

=
1

2|G|

(
2
∑
g∈G

χ(g2) + 2
∑
g∈G

χ(zg ιg)
)

=
1
|G|

∑
g∈G

χ(g2) +
ωχ(z)
|G|

∑
g∈G

χ(g ιg) = ε(χ) + ωχ(z)ει(χ).

We may now describe how we obtain information about the ει(π)’s of G
from the Frobenius-Schur indicators of Gι,z.
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Proposition 2.2. Suppose there is a z in the center of G such that for
every irreducible φ of Gι,z with central character ωφ we have ε(φ) = ωφ(z).
Suppose further that π̂ ∼= ιπ for every irreducible π of G. Then ει(π) = 1
for every irreducible π of G.

Proof. Take any π ∈ Irr(G), and first assume that π+ is reducible. Then
π+ = φ1 + φ2 for φ1, φ2 irreducible representations of Gι,z. From Lemma
2.3, we have

1
|Gι,z|

∑
g∈Gι,z

χ+(g2) = ε(π) + ωπ(z)ει(π).

Since π+ is reducible, we have χ+ = ψ1 + ψ2, where χ+ is the character of
π+, and ψ1, ψ2 are the characters of φ1, φ2, respectively, and so

1
|Gι,z|

∑
g∈Gι,z

χ+(g2) =
1
|Gι,z|

∑
g∈Gι,z

ψ1(g2)+
1
|Gι,z|

∑
g∈Gι,z

ψ2(g2) = ε(φ1)+ε(φ2).

So now ε(φ1) + ε(φ2) = ε(π) + ωπ(z)ει(π). Now, ωπ(z) = ωφ1(z) = ωφ2(z),
since φ1 and φ2 are both constituents of the representation induced from π.
So now ε(φ1) = ε(φ2) = ωπ(z). If ωπ(z) = 1, then ε(π) = 1 and ει(π) = 1.
If ωπ(z) = −1, then ε(π) = −1 and ει(π) = 1.

Now take π to be an irreducible representation of G such that π+ is ir-
reducible. By Lemma 2.2, π 6∼= ιπ. We have assumed that π̂ ∼= ιπ, and so
π̂ 6∼= π, which means ε(π) = 0. Since π+ is irreducible, Lemma 2.3 says that
ε(π+) = ε(π) + ωπ(z)ει(π) = ωπ(z)ει(π). Since π+ is the representation
induced from π, we must have ωπ+(z) = ωπ(z). Since ε(π+) = ωπ+(z), we
must have ει(π) = 1.

We note that Proposition 2.2 can also be proven using the meanings of
Frobenius-Schur indicators in terms of the bilinear forms in Equations (2)
and (3).

When z = 1, denote Gι,z = G+. In Theorem 1.1, Gow proves that for
G = GL(n,Fq) and ι the inverse-transpose automorphism, every irreducible
π of G+ satisfies ε(π) = 1. Since z = 1 in this case, this is the same as
proving that ε(π) = ωπ(z) always holds. Since every element of GL(n,Fq)
is conjugate to its transpose, it is also true that π̂ ∼= ιπ for every irreducible
π of G. So the conclusions of Proposition 2.2 follow, and Proposition 2.1
may be applied to see Klyachko and Gow’s result of Corollary 1.1. It should
also be noted that if z = 1 for Proposition 2.2, there is also the consequence
that ε(π) ≥ 0 for every irreducible π of G. So a consequence of Theorem 1.1
of Gow is that ε(π) ≥ 0 for every irreducible π of GL(n,Fq). Prasad [18,
Theorem 4] also proves this fact using parabolic induction.

3. Conjugacy Properties in Symplectic and Similitude Groups

Let F be a field such that char(F ) 6= 2, V a 2n-dimensional F -vector
space, and let 〈·, ·〉 : V × V → F be a nondegenerate skew-symmetric bi-
linear form. The group of similitudes of 〈·, ·〉, (or general symplectic group)
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is defined as GSp(2n, F ) = {g ∈ GL(2n, F ) : 〈gv, gw〉 = µ(g)〈v, w〉 for
some µ(g) ∈ F× for all v, w ∈ V }. The function µ : GSp(2n, F )→ F× is a
multiplicative character called the similitude character. Then the symplectic
group Sp(2n, F ) is the subgroup of GSp(2n, F ) which is the kernel of µ, leav-
ing the inner product invariant. We will also write GSp(V ) = GSp(2n, F )
and Sp(V ) = Sp(2n, F ).

The following proposition is a generalization of a result of Gow [10,
Lemma 1]. A proof due to Bump and Ginzburg appears in [19, Proposi-
tion 4].

Proposition 3.1. Let V be an F -vector space such that char(F ) 6= 2,
equipped with a nondegenerate skew-symmetric bilinear form 〈·, ·〉.

(i) If −β ∈ F is a square in F , there exists a unique conjugacy class of
GSp(V ) whose elements g satisfy g2 = −βI, µ(g) = β.

(ii) Suppose that −β ∈ F is not a square in F , and let K be a quadratic
extension of F containing the square roots of −β. Let ϕ : λ 7→ λ be the
nontrivial element of Gal(K/F ). If the norm map N : K → F , N(λ) = λλ
is surjective, then there exists a unique conjugacy class of GSp(V ) whose
elements g satisfy g2 = −βI, µ(g) = β.

Now let the field F be the finite field Fq of odd characteristic. We consider
V = F2n

q with the standard basis, and let Sp(2n,Fq) be the transformations

on V leaving 〈v, w〉 = tvJw invariant, where J =
(

In
−In

)
.

Consider the Frobenius automorphism ϕ of GL(n,Fq2), which raises each
entry of an element g to the power q, and write ϕg = g(q). Define the unitary
group over Fq2 , U(n,Fq2), to be the subgroup of elements g of GL(n,Fq2)
that satisfy g tg(q) = I.

We have the following Proposition, whose proof is adapted from unpub-
lished notes of Bump and Ginzburg, which gives more information about
the conjugacy class described in Proposition 3.1.

Proposition 3.2. Let q be odd. For each β ∈ F×q , there is a unique
conjugacy class in GSp(2n,Fq) of elements g satisfying g2 = −µ(g)I and
µ(g) = β. The centralizer of this conjugacy class contains a subgroup of
index q − 1 isomorphic to{

GL(n,Fq) if −β is a square
U(n,Fq2) if −β is not a square.

Proof. First, since the norm map from Fq2 down to Fq is surjective, then
by Proposition 3.1 the conjugacy class described is unique. For β ∈ F×q , the
element

g =
(

In
−βIn

)
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of GSp(2n,Fq) satisfies µ(g) = β and g2 = −βI. It is a direct computation
that the centralizer of g in GSp(2n,Fq) is given by

C(g) =
{
h =

(
A B
−βB A

)
| tAB = tBA, tAA+ β tBB = µ(h)I

}
.

We note that C(g) contains elements of every similitude, for if λ ∈ F×q , then
the element h ∈ C(g) with B = In, and

A =
(
aI bI
bI −aI

)
,

where a2+b2 = λ, satisfies µ(h) = λ. So the subgroup of symplectic elements
in C(g), or the set of elements of ker(µ) in C(g), call it C1(g), is a normal
subgroup in C(g) of index q − 1.

Now let γ be a square root of −β, so if −β is not a square in Fq, then
γ ∈ Fq2 . Define a map on C1(g) by

F :
(

A B
−βB A

)
7→ A+ γB.

Then F is a multiplicative homomorphism, and the image satisfies
t(A+ γB)(A− γB) = I,

so if −β is a square, the image of F is in GL(n,Fq), and if −β is not a
square, then the image is in GL(n,Fq2). Letting C = A + γB, we have
tC−1 = A− γB, and so given C in the image of F , we find unique A and B
mapping to C,

A =
1
2

(C + tC−1), B =
1

2γ
(C − tC−1),

so that F is injective.
If −β is a square in F×q , then for any C ∈ GL(n,Fq), we may choose A

and B over Fq as above, and so F is surjective. It follows that C1(g) is
isomorphic to GL(n,Fq) in this case.

If −β is not a square, then ϕC = C(q) = tC−1, since ϕγ = γq = −γ, so
that the image of F is contained in U(n,Fq2). In that case, the choices for
A and B above are stable under the Frobenius, and so defined over Fq. It
follows that F surjects onto U(n,Fq2), and so in this case C1(g) is isomor-
phic to U(n,Fq2).

We call g ∈ GSp(2n, F ) a skew-symplectic involution if µ(g) = −1 and
g2 = I. Wonenburger proved the following in [21].

Theorem 3.1. Let G = Sp(2n, F ) where char(F ) 6= 2. Then every element
of g ∈ G may be written g = h1h2, where h1 and h2 are skew-symplectic
involutions.
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Going back to the case that F = Fq for q odd, let ι be the automorphism
of Sp(2n,Fq) that conjugates elements by the skew-symplectic involution(
−In

In

)
. We immediately apply Wonenburger’s result to the case at

hand.

Proposition 3.3. Let G = Sp(2n,Fq) with q odd and ι defined as above.
For every g ∈ G, there is an element s ∈ G such that s−1gs = ιg−1, and
such that ιs−1 = s. In particular, we have g−1 is conjugate to ιg in G, and
every irreducible character χ of G satisfies ει(χ) = ±1.

Proof . The first statement implies the second since if for every g ∈ G,
we have ιg is conjugate to g−1, we have χ(ιg) = χ(g). From Theorem 3.1,
we know that there exists an element h ∈ GSp(2n,Fq) with µ(h) = −1,

h2 = I, and such that h−1gh = g−1. Now let t =
(
−In

In

)
, which is

itself a skew-symplectic involution. Conjugating both sides by t, we have
(th)−1g(th) = ιg−1. Since µ(t) = µ(h) = −1, we have µ(th) = 1, and so
in fact th ∈ G. Letting s = th, we have ιs−1 = ι(th)−1 = t(ht)t = th = s.

As a consequence of Proposition 3.3, the automorphism ι must be outer
when q ≡ 3(mod 4). Otherwise, since Sp(2n,Fq) has irreducible complex
characters χ such that ε(χ) = 0 (for example, by [5, Lemma 5.3]), then by
Lemma 2.1, we would have ει(χ) = 0, contradicting the proposition.

The following results from [19, Corollary 1 and Theorem 4] are useful in
our situation.

Proposition 3.4. Let g ∈ GSp(2n, F ), where char(F ) 6= 2. Then g is
conjugate to µ(g)g−1 by a skew-symplectic involution.

Proposition 3.5. Let G = Sp(2n,Fq), where q ≡ 3(mod 4). Let ι be the
order 2 automorphism of G defined by the following conjugation by a skew-
symplectic element:

ιg =
(
−In

In

)
g

(
−In

In

)
.

Define Gι,−I as the following group containing G as an index 2 subgroup:

Gι,−I = 〈G, τ | τ2 = −I, τ−1gτ = ιg for every g ∈ G〉.
Then every element of Gι,−I is conjugate to its inverse, and so every complex
character of Gι,−I is real-valued.

For q ≡ 3(mod 4), we now have that ει(χ) = ±1 for any irreducible χ
of G = Sp(2n,Fq), by Proposition 3.3, and that every irreducible of Gι,−I

is real-valued. So to obtain that ει(χ) = 1 for every irreducible χ of G, by
Proposition 2.2, we need to show that ε(ψ) = ωψ(−I) for every irreducible
ψ of Gι,−I . Because of Gow’s Theorem 1.2, though, we can already say the
following.
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Proposition 3.6. Let G = Sp(2n,Fq) with q ≡ 3(mod 4), and let ι be the
order 2 automorphism of G defined as before.

(i) If χ is an irreducible real-valued character of G, then ει(χ) = 1.
(ii) ει(χ) = 1 for every irreducible χ of G if and only if ε(ψ) = ωψ(−I)

for every irreducible ψ of Gι,−I .

Proof. For (i), Gow’s Theorem 1.2 states that ωχ(−I) = ε(χ) for real-
valued χ of G. Since χ is real-valued and ιχ = χ by Proposition 3.3, then
by Lemma 2.2, we have χG

ι,−I
= ψ1 + ψ2 where ψ1 and ψ2 are irreducible

characters of Gι,−I which are extensions of χ. Also ψ1 and ψ2 are real-valued
by Proposition 3.5. From Lemma 2.3,

ε(ψ1) + ε(ψ2) = ε(χ) + ωχ(−I)ει(χ).

Now, ωχ(−I) = ε(χ) and ει(χ) = ±1. If ε(χ) = −1, then we must have
ε(ψ1) = ε(ψ2) = −1 since they are both extensions of χ and real-valued.
Then since ωχ(−I) = ε(χ), we must have ει(χ) = 1. If ε(χ) = 1, then at least
one of ε(ψ1) or ε(ψ2) must be 1 by the equation above, but then they must
both be 1 since χG

ι,−I
is a real representation, and real subrepresentations

must have real complements. Again this implies ει(χ) = 1.
For (ii), the “if” part is exactly Proposition 2.2. For the “only if”, we

have the analysis above when χ is real-valued and χG
ι,−I

= ψ1 + ψ2, and
this case follows from the fact that ωχ(−I) = ωψ1(−I) = ωψ2(−I). When χ
is not real-valued, we have χG

ι,−I
= ψ is irreducible from Lemma 2.2, and

ε(ψ) = ωχ(−I)ει(χ) from Lemma 2.3, where ωχ(−I) = ωψ(−I).

4. Brauer-Witt-Berman Induction

The following proposition is the main tool to be used in an induction
argument for the main theorem, in the same way it is used in [8, 9]. Part (i)
is a result coming from the Witt-Berman generalization of Brauer’s induction
theorem. An R-elementary subgroup at 2, of a finite group G, is a subgroup
which is a semidirect product, 〈a〉B, such that a has odd order and B is a
2-group such that for every b ∈ B, we have b−1ab = a or a−1.

Proposition 4.1. Let χ be a real-valued irreducible complex character of a
finite group G. Then:
(i) There exists an R-elementary subgroup at 2, H of G, and a real-valued
irreducible character ψ of H such that 〈χ, ψG〉 is an odd integer, and ε(χ) =
ε(ψ).
(ii) If H = 〈a〉B and ψ are as in (i), then either H may be taken so that
a = 1, or ψ may be taken so that 〈a〉 6⊂ ker(ψ).
(iii) For any subgroup M of G that contains H, there is an irreducible real-
valued character θ of M such that 〈χ, θG〉 is odd, and ε(χ) = ε(ψ) = ε(θ).
(iv) H can be taken to be either a Sylow 2-subgroup of G, or 〈a〉B, where
a is a real element of G with odd order and B is a Sylow 2-subgroup of
NR(a) = {x ∈ G | x−1ax = a or a−1}. That is, we may assume H is a
maximal R-elementary subgroup at 2.
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Proof. (i): The fact that there is a subgroup H with a real-valued ψ
such that 〈χ, ψG〉 is odd is a special case of the more general statement
coming from the Witt-Berman Theorem, as proven in [3, Lemma 70.25] and
[4, 15.12]. The fact that ε(χ) = ε(ψ) may be concluded by using divisibility
properties of the Schur index. See, for example, [14, Corollary 10.2 (c)].

(ii): Let H = 〈a〉B be the R-elementary subgroup at 2 of G from part
(i). Suppose that a 6= 1 and 〈a〉 ⊂ ker(ψ). Then η = ψ|B is an irreducible
real-valued character of the 2-group B. If 〈ηG, χ〉 is odd, then we are done
by just replacing H by B and ψ by η. So suppose 〈ηG, χ〉 is even. Consider
the induced character ηH . Since η = ψ|B, then by Frobenius reciprocity
we have 〈ηH , ψ〉 = 〈η, ψ|B〉 = 1. Since η is real-valued, ηH is also, and the
non-real-valued constituents of ηH will have the same multiplicity as their
conjugates. So writing ηH as a sum of irreducibles of H, we have

ηH = ψ +
∑
i

aiθi +
∑
j

bj(ξj + ξj),

where ψ is different from the θi’s and ξj ’s, and the θi are real-valued while
the ξj are not. Now induce both sides to G, and take the inner product with
χ. Since we are assuming that 〈ηG, χ〉 is even, while 〈ψG, χ〉 is odd, we must
have that 〈θGi , χ〉 is odd for at least one of the θi’s, let θ be one of them. We
must finally show that 〈a〉 6⊂ ker(θ). If not, then θ|B is an irreducible of B.
Since ψ 6= θ, and 〈a〉 ⊂ ker(ψ), we have θ|B 6= ψ|B. But then we have

〈ηH , θ〉 = 〈η, θ|B〉 = 〈ψ|B, θ|B〉 = 0,

a contradiction since θ was taken as a constituent of ηH . So now 〈a〉 6⊂ ker(θ),
and we may replace ψ by θ, since 〈θG, χ〉 is odd.

(iii): Take the ψ obtained from part (i) of H, which is real-valued. Write
ψM as a sum of irreducibles of M , ψM =

∑
i aiθi, where, since ψM is

real-valued, each θi appears in the sum with the same multiplicity as its
conjugate. Since (ψM )G = ψG, we have, where T(θj) = TrR(θj)/R(θj),

〈ψG, χ〉 =
∑
j

bj〈T(θj)G, χ〉 =
∑
j

bj [R(θj) : R]〈θGj , χ〉.

But 〈ψG, χ〉 is odd, and so there must be a θj = θ of M such that 〈θG, χ〉
is odd and θ is real-valued. Then ε(θ) = ε(χ) = ε(ψ) from divisibility
properties of the Schur index.

(iv): First, a may be taken to be real if it is not 1, because otherwise the
R-elementary subgroup at 2, H, is of the form 〈a〉 ×B. Then a real-valued
irreducible ψ of this would have to be the product of a real-valued irreducible
of 〈a〉 with a real-valued irreducible of B. But since a has odd order, the
only irreducible real-valued character it has is the trivial character, which
would mean 〈a〉 would be in ker(ψ), which may be avoided by part (ii). We
may then take H to be a maximal R-elementary subgroup at 2 by applying
part (iii).
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The idea in applying Proposition 4.1 is to either calculate directly the
Frobenius-Schur indicators of the characters of maximal R-elementary sub-
groups at 2 of a group, or to embed a maximal R-elementary subgroup at
2 in a subgroup that we can handle more easily. Then through Proposition
4.1(i) and (iii), we may find the Frobenius-Schur indicators of the real-valued
characters of the whole group. We are interested in doing this for the group
Sp(2n,Fq)ι,−I , q ≡ 3(mod 4), all of whose characters are real-valued, by
Proposition 3.5. For the rest of this section we assume that q ≡ 3(mod 4).

Thus the task at hand is to show that the required irreducibles ψ of a max-
imal R-elementary subgroup at 2 of Sp(2n,Fq)ι,−I , satisfy ε(ψ) = ωψ(−I),
or to embed the R-elementary subgroup at 2 in another subgroup that
satisfies this. We analyze the R-elementary subgroups at 2 of the group
Sp(2n,Fq)ι,−I in the next section, and we will embed many of these sub-
groups in two types of subgroups that are described in the remainder of this
section.

In the end, the proof will be by induction on n, and we now explain
the base case n = 1. From the character table of SL(2,Fq), q odd, we
compute that the sum of the degrees of the irreducible characters is q2 + q.
We may also count that the number of matrices in SL(2,Fq) which satisfy
g ιg = I, or ιg = g−1, is equal to q2 + q. So by Proposition 2.1(ii), we
have that every character χ of SL(2,Fq) satisfies ει(χ) = 1. Now by Propo-
sition 3.6(ii), this implies that ε(ψ) = ωψ(−I) for every irreducible ψ of
SL(2,Fq)ι,−I when q ≡ 3(mod 4). The base case is proven, and now the
induction hypothesis is that this holds true for all irreducible characters of
Sp(2m,Fq)ι,−I , q ≡ 3(mod 4), for all m < n.

Assuming the induction hypothesis, we have a family of subgroups of
Sp(2n,Fq)ι,−I whose Frobenius-Schur indicators we may calculate. If m1 +
m2 = n, we embed Sp(2m1,Fq) × Sp(2m2,Fq) in Sp(2n,Fq) orthogonally.
Then the action of ι on each of the smaller symplectic groups in the product
acts the same as ι on the large symplectic group.

Proposition 4.2. Let m1 + m2 + . . . + mr = n, with mi positive integers.
Let M = Sp(2m1,Fq) × · · · × Sp(2mr,Fq). Then assuming the induction
hypothesis stated above, every irreducible character χ of M ι,−I ∼= 〈M, τ〉
satisfies ε(χ) = ωχ(−I).

Proof. Any irreducible character ψ of M is of the form ψ1ψ2 · · ·ψr, where
ψi is an irreducible character of Mi = Sp(2mi,Fq). From the induction
hypothesis, we know that ει(ψi) = 1 for any ψi. Since ι acting on each
factor in the product acts like ι on M , we have, using the formula for ει(ψ),

ει(ψ) = ει(ψ1) · · · ει(ψr) = 1.

Now, every irreducible χ ofM ι,−I is either isomorphic to ψ induced toM ι,−I ,
which we write ψ+, for some irreducible ψ of M , or is an extension of an
irreducible ψ, that is, ψ+ = χ+ χ′ for some other irreducible χ′.
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In the first case, Lemma 2.2 says that ψ+ is irreducible when ε(ψ) = 0,
so by Lemma 2.3, ε(χ) = ωψ(−I)ει(ψ) = ωψ(−I), since ει(ψ) = 1. But
now ωψ(−I) = ωχ(−I), so we have ε(χ) = ωχ(−I). In the other case we
have ψ+ = χ + χ′. By Lemma 2.3, ε(χ) + ε(χ′) = ε(ψ) + ωψ(−I)ει(ψ).
But ει(ψ) = 1 and ε(ψ) = ωψ(−I) by Gow’s Theorem 1.2, and ωψ(−I) =
ωχ(−I), so ε(χ) = ωχ(−I).

Recall that the wreath product of a group H with Z/2Z is the group

〈σ, (h1, h2) ∈ H ×H | σ2 = 1, σ(h1, h2)σ = (h2, h1)〉.
If H is a subgroup of Sp(2n,Fq), then we embed H × H in Sp(4n,Fq)
orthogonally, and we may take

σ =


In

In
In

In

 .

This embeds the wreath product inside of Sp(4n,Fq). Note that if H is fixed
by ι, then since σ is fixed by ι, we have the wreath product of H with Z/2Z
is fixed by ι. We give the following result, whose proof is very similar to the
proof of Gow [8, Lemma 4], except the twist by ι is added.

Proposition 4.3. Let H be a subgroup of Sp(2n,Fq) fixed by ι and let K
the wreath product of H with Z/2Z, which is thus a subgroup of Sp(4n,Fq)
fixed by ι. If ει(ψ) = 1 for every irreducible ψ of H, then ει(χ) = 1 for every
irreducible χ of K.

Proof. Any irreducible of K is either induced or extended from an irre-
ducible of H × H, since this is a subgroup of index 2. Any irreducible of
H ×H is of the form ψiψj , where ψi, ψj are irreducibles of H. Then ψiψj
induced to H is irreducible if and only if i 6= j, and in this case ψiψj and
ψjψi induce to the same character. If i = j, then ψiψj may be extended
to K in two different ways. This means that the sum of the degrees of the
characters of K is

2
∑
i<j

ψi(1)ψj(1) + 2
∑
i

ψi(1)2 =
(∑

i

ψi(1)
)2 +

∑
i

ψi(1)2,

where {ψi}i is the set of irreducible characters of H. We know that ει(ψi) =
1 for every ψi of H. By Proposition 2.1(ii), we have∑

i

ψi(1) =
∣∣{h ∈ H | ιh = h−1}

∣∣,
and let us call this quantity c. Since

∑
i ψi(1)2 = |H|, we have that the sum

of the degrees of the irreducible characters of K is equal to c2 + |H|. We now
show that this is the same number of elements g ∈ K such that ιg = g−1.

There are 2 cosets of N = H × H in K, and call the order 2 element
that acts on H ×H by transposition σ. An element (h1, h2) ∈ N has image
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(ιh1,
ιh2) under the automorphism ι of K. Since (h1, h2)−1 = (h−1

1 , h−1
2 ), in

order for (h1, h2) = g ∈ N to satisfy ιg = g−1, we must have ιh1 = h−1
1 and

ιh2 = h−1
2 . The number of such elements in this coset is c2.

Since ισ = σ = σ−1, an element σ(h1, h2) ∈ σN satisfies ι(σ(h1, h2)) =
(σ(h1, h2))−1 when σ(ιh1,

ιh2) = (h−1
1 , h−1

2 )σ. That is, when (ιh2,
ιh1) =

(h−1
1 , h−1

2 ), or just when ιh1 = h−1
2 . So we may choose h1 to be any element

of H, and h2 is determined. So the number of elements in the coset σN
satisfying ιg = g−1 is |H|. Now the total number of such elements in K is
c2 + |H|, which is also the sum of the degrees of the irreducible characters.
So by Proposition 2.1(ii), every irreducible χ of K satisfies ει(χ) = 1.

We need to apply the following form of a result of Gow [9, Lemma 2.4].

Lemma 4.1. Let H be a finite group whose center contains an element
z of order 2. Suppose that every real-valued irreducible character χ of H
satisfies ε(χ) = ωχ(z). Let K be the wreath product of H with Z/2Z. Then
every real-valued irreducible θ of K satisfies ε(θ) = ωθ(z).

Finally, we have the following proposition for calculating Frobenius-Schur
indicators of wreath products of the symplectic group.

Proposition 4.4. Suppose that H = Sp(2m,Fq) satisfies the induction hy-
pothesis that ει(χ) = 1 for every irreducible χ of H. Let K be the wreath
product of H with Z/2Z, viewed as a subgroup of Sp(4m,Fq). Then every
real-valued irreducible ψ of Kι,−I satisfies ε(ψ) = ωψ(−I)

Proof. By directly applying Proposition 4.3, since K is fixed by ι, we have
that ει(θ) = 1 for every irreducible θ of K. Gow’s Theorem 1.2 says that
every real-valued irreducible χ of Sp(2m,Fq) satisfies ε(χ) = ωχ(−I). So by
applying Lemma 4.1, every real-valued irreducible θ of K satisfies ε(θ) =
ωθ(−I). Every irreducible ψ of Kι,−I is either induced or extended from an
irreducible θ of K. Then by Lemma 2.2, ψ is induced from an irreducible
θ of K if and only if ε(θ) = 0, since ει(θ) = 1. Then ε(ψ) = ωθ(−I)ει(θ)
by Lemma 2.3. So then ε(ψ) = ωθ(−I) = ωψ(−I). If ψ is real-valued and
extended from θ of K, then θK

ι,−I
= ψ + ψ′ for another irreducible ψ′ of

Kι,−I . By Lemma 2.3 we have ε(ψ)+ε(ψ′) = ε(θ)+ωθ(−I), since ει(θ) = 1.
Since θ is real-valued in this case, we have ε(θ) = ωθ(−I). So then we must
have ε(ψ) = ωθ(−I) = ωψ(−I).

5. Maximal R-elementary Subgroups at 2

For all of this section we again assume that q ≡ 3(mod 4). Our application
of Proposition 4.1 is that in order to calculate the Frobenius-Schur indicators
of Sp(2n,Fq)ι,−I , we need to calculate Frobenius-Schur indicators of maxi-
mal R-elementary subgroups at 2 of the form N = 〈a〉B, where a is a real
element of odd order in Sp(2n,Fq)ι,−I , and B is a Sylow 2-subgroup of the R-
normalizer of a in Sp(2n,Fq)ι,−I , NR(a) = {x ∈ Sp(2n,Fq)ι,−I |x−1ax = a
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or a−1}. Call N = 〈a〉B the maximal R-elementary subgroup at 2 asso-
ciated with a. Choosing a different Sylow 2-subgroup of NR(a) yields an
isomorphic R-elementary subgroup at 2, and also choosing a conjugate of a
yields an isomorphic R-elementary subgroup at 2. Since a is of odd order, it
is an element of the subgroup Sp(2n,Fq), rather than the other coset, but
by Proposition 3.5, every element of Sp(2n,Fq)ι,−I is real, and so a could
be any element of odd order in Sp(2n,Fq).

In [9], Gow calculated Frobenius-Schur indicators of Sp(2n,Fq), which he
did by analyzing maximal R-elementary subgroups at 2 of Sp(2n,Fq) of the
form N ′ = 〈a〉B′, where a is a real element of Sp(2n,Fq) of odd order, and
B′ is a Sylow 2-subgroup of the R-normalizer of a in Sp(2n,Fq). Throughout
this section, N ′ = 〈a〉B′ will always be a maximal R-elementary subgroup
at 2 of Sp(2n,Fq), while N = 〈a〉B will be that of the group Sp(2n,Fq)ι,−I .
We may take advantage of Gow’s analysis of R-elementary subgroups at 2
of Sp(2n,Fq) through the following three lemmas. The first follows from an
application of the orbit-stabilizer lemma.

Lemma 5.1. Let a ∈ Sp(2n,Fq) have odd order. The maximal R-elementary
subgroup at 2 of Sp(2n,Fq)ι,−I associated with a, N = 〈a〉B, contains as an
index 2 subgroup the maximal R-elementary subgroup at 2 of Sp(2n,Fq)
associated with a, N ′ = 〈a〉B′. In particular, if s is the element from Propo-
sition 3.3 such that s−1as = ιa−1, then N ∼= 〈N ′, sτ〉, where N ′ = 〈a〉B′
and B′ is a Sylow 2-subgroup of the R-normalizer of a in Sp(2n,Fq) fixed
by sτ under conjugation.

In [9], Gow shows that many R-elementary subgroups at 2 of Sp(2n,Fq)
may be taken to be contained in products or wreath products of smaller
symplectic groups. In the next lemma, we apply Lemma 5.1 to show that
we may also take the associated R-elementary subgroup at 2 of Sp(2n,Fq)ι,−I
to be contained in corresponding subgroups.

Lemma 5.2. Let a ∈ Sp(2n,Fq) have odd order. Suppose that the maximal
R-elementary subgroup at 2, N ′ = 〈a〉B′ in Sp(2n,Fq) associated with a, is
such that either

(i) we may take a and the R-normalizer of a in Sp(2n,Fq) to be contained
in a subgroup of the form M = Sp(2n1,Fq)×· · ·×Sp(2nt,Fq) ⊂ Sp(2n,Fq),
so that N ′ is contained in M , or

(ii) we may take a and the R-normalizer of a in Sp(2n,Fq) to be contained
in a subgroup K ⊂ Sp(2n,Fq), where K is the wreath product of Sp(n,Fq)
with Z/2Z, so that N ′ is contained in K.

Then, if N = 〈a〉B is the maximal R-elementary subgroup at 2 associated
with a in Sp(2n,Fq)ι,−I , we have, for the conditions above respectively, that

(i) N may be taken to be in a subgroup of the form M ι,−I = 〈M, τ〉 ⊂
Sp(2n,Fq)ι,−I , or

(ii) N may be taken to be in a subgroup of the form Kι,−I = 〈K, τ〉 ⊂
Sp(2n,Fq)ι,−I .
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Proof. In (i), since a ∈ M , then we may take a as a = (a1, . . . , at) ∈ M ,
where ai ∈ Sp(2ni,Fq). For each ai, take the element si ∈ Sp(2ni,Fq) that
exists from Proposition 3.3, so then we may take s = (s1, . . . , st) ∈ M .
The R-normalizer of a in Sp(2n,Fq) is contained in M , and conjugation by
sτ is an order 2 automorphism. Since there are an odd number of Sylow
2-subgroups, we may find a Sylow 2-subgroup fixed by conjugation by sτ
contained in M , call it B′. Then from Lemma 5.1, N ∼= 〈N ′, sτ〉, where
N ′ = 〈a〉B′. Since N ′ ⊂M and s ∈M , we have N = 〈N ′, sτ〉 ⊂ 〈M, τ〉.

In (ii), if a ∈ K, and since a has odd order, then a ∈ Sp(n,Fq)×Sp(n,Fq),
rather than the other coset in K. As before we may take s ∈ Sp(n,Fq) ×
Sp(n,Fq), and a Sylow 2-subgroup B′ of the R-normalizer of a in Sp(2n,Fq)
fixed by conjugation by sτ . Now, N ∼= 〈N ′, sτ〉, where N ′ = 〈a〉B′, from
Lemma 5.1. Then N ′ ⊂ K and s ∈ K, so N = 〈N ′, sτ〉 ⊂ 〈K, τ〉.

In some cases, Gow computes the required Frobenius-Schur indicators of
R-elementary subgroups at 2 of Sp(2n,Fq) directly. The following lemma
shows that we may compute the Frobenius-Schur indicators of the associated
R-elementary subgroups at 2 of Sp(2n,Fq)ι,−I from Gow’s computations,
under suitable conditions.

Lemma 5.3. Let H be a finite group, λ an order 2 automorphism of H, z
an element of the center of H, and let

Hλ,z = 〈H,u | u2 = z, u−1hu = λh for all h ∈ H〉.

(i) Let T be a normal subgroup of H and Hλ,z. Suppose that each ir-
reducible character θ of H satisfying T 6⊂ ker(θ) is either real-valued and
satisfies ε(θ) = ωθ(z), or is not real-valued and satisfies ελ(θ) 6= −1. Then
every real-valued irreducible characters χ of Hλ,z such that T 6⊂ ker(χ) sat-
isfies ε(χ) = ωχ(z).

(ii) Suppose that each irreducible character of H is either real-valued and
satisfies ε(θ) = ωθ(z), or is not real-valued and satisfies ελ(θ) 6= −1. Then
every irreducible real-valued character χ of Hλ,z satisfies ε(χ) = ωχ(z).

Proof. (i): Let χ be an irreducible real-valued character of Hλ,z such
that T 6⊂ ker(χ). Then χ is either extended or induced from an irreducible
character θ of H. Supposing first that χ is extended from an irreducible
θ of H, then θ must also be real-valued and satisfy T 6⊂ ker(θ), and so by
assumption θ satisfies ε(θ) = ωθ(z). In this case, χ is a constituent of θ
induced to Hλ,z, and by Lemma 2.3, we have

ε(χ) + ε(χ′) = ε(θ) + ωθ(z)ελ(θ),

where χ′ is another extension of θ, and χ′ is real-valued since χ and θ are.
If ε(θ) = −1, then θ cannot extend to a real representation of Hλ,z, and we
must have ε(χ) = ε(χ′) = −1. Then ε(χ) = ωθ(z) = ωχ(z). If ε(θ) = 1,
then θ induced to Hλ,z is a real representation. But at least one of ε(χ) or
ε(χ′) must be 1, since they are both ±1, and their sum is at least 0. By
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Maschke’s Theorem, a real subrepresentation of a real representation must
have a real complement, so that ε(χ) = 1 = ωχ(z).

If χ is induced from an irreducible θ of H, then we must have T 6⊂ ker(θ),
because otherwise T ⊂ ker(χ). If θ is real-valued, then since λθ 6= θ by
Lemma 2.2, we have ελ(θ) = 0. So by Lemma 2.3, and since ε(θ) = ωθ(z),
we have

ε(χ) = ε(θ) + ωθ(z)ελ(θ) = ε(θ) + 0 = ωθ(z) = ωχ(z).

If θ is not real-valued, we have ε(θ) = 0, and by Lemma 2.3,

ε(χ) = ε(θ) + ωθ(z)ελ(θ) = ωθ(z)ελ(θ).

Since χ is assumed to be real-valued, then ε(χ) 6= 0, and so ελ(θ) 6= 0.
Since ελ(θ) 6= −1 by assumption, then ελ(θ) = 1 and so ε(χ) = ωθ(z) =
ωχ(z). Now for every real-valued irreducible χ satisfying T 6⊂ ker(χ), we
have ε(χ) = ωχ(z).

(ii): The statement quickly follows from (i) by letting T = H.

Lemma 5.3 will typically be applied in the situation that H is a maximal
R-elementary subgroup at 2, N ′, of Sp(2n,Fq) associated with an odd order
real element a. Then, as in Lemma 5.1, the maximal R-elementary sub-
group at 2, N , of Sp(2n,Fq)ι,−I associated with a is isomorphic to a group
generated by N ′ and the element sτ of Proposition 3.3. Then (sτ)2 = −I,
and conjugation by sτ gives an order 2 automorphism of N ′, which we take
to be λ. So in terms of Lemma 5.3, we have N ′ = H and N = Hλ,−I , and
the normal subgroup T is taken to be 〈a〉.

Sylow 2-subgroups:
The first case of a maximal R-elementary subgroup at 2 of Sp(2n,Fq)ι,−I ,

of the form 〈a〉B, that we will analyze is when a = 1, in which case B is
a Sylow 2-subgroup of Sp(2n,Fq)ι,−I . From Lemma 5.1, we know that a
Sylow 2-subgroup of Sp(2n,Fq)ι,−I , which we will call T2(2n), is generated
by a Sylow 2-subgroup of Sp(2n,Fq) fixed by ι, which we denote by S2(2n),
and the element τ . That is,

T2(2n) = 〈S2(2n), τ〉 ∼= S2(2n)ι,−I .

Gow [9, Lemma 3.4] proved the following result on the Frobenius-Schur
indicators of the Sylow 2-subgroups of Sp(2n,Fq).

Lemma 5.4. Let S2(2n) by a Sylow 2-subgroup of of Sp(2n,Fq) and θ any
complex irreducible character of S2(2n). Then ε(θ) = ωθ(−I).

We have the following result for the Frobenius-Schur indicators of the Sylow
2-subgroup of Sp(2n,Fq)ι,−I .

Lemma 5.5. Let S2(2n) be a Sylow 2-subgroup of Sp(2n,Fq) that is fixed
by ι. Let T2(2n) ∼= S2(2n)ι,−I be a Sylow 2-subgroup of Sp(2n,Fq)ι,−I . Then
every real-valued irreducible character χ of T2(2n) satisfies ε(χ) = ωχ(−I).
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Proof. From Lemma 5.4, every irreducible character θ of S2(2n) sat-
isfies ε(χ) = ωχ(−I). The result follows by applying Lemma 5.3(ii) to
T2(2n) ∼= S2(2n)ι,−I .

Subgroups for a real element of Sp(2n,Fq):
Now we consider a maximal R-elementary subgroup at 2 of Sp(2n,Fq)ι,−I

of the form 〈a〉B, where a (not the identity) is an odd order real element
of Sp(2n,Fq), that is, a is conjugate to a−1 by an element of Sp(2n,Fq).
Gow [9] considered the maximal R-elementary subgroups at 2 of Sp(2n,Fq)
associated to real elements a. We will use Lemmas 5.1 and 5.2 through-
out to make conclusions about the maximal R-elementary subgroups at 2
of Sp(2n,Fq)ι,−I associated to real elements of Sp(2n,Fq), based on Gow’s
analysis of the corresponding subgroups of Sp(2n,Fq).

So let a ∈ Sp(2n,Fq) be a real element of odd order, so that a is conjugate
to its inverse in Sp(2n,Fq). As an element of GL(2n,Fq), a is of course a real
element, and so has the same minimal polynomial as a−1. This self-adjoint
polynomial, m(x), may be factored into irreducibles, some of which are self-
adjoint, and the other irreducible factors appear with the same multiplicities
as their adjoints. This is explained by Wonenburger in [21, Section 1]. So
factor m(x) as

(4) m(x) =
e∏
i=1

(pi(x)p̃i(x))µi
f∏
j=1

(rj(x))νj ,

where p̃i(x) is the adjoint polynomial of pi(x), rj(x) are self-adjoint polyno-
mials, and all of the pi(x) and rj(x) are irreducibles of Fq[x].

Lemma 5.6. Suppose that e + f > 1 in the decomposition of m(x), the
minimal polynomial of a, as in Equation (4). Let M = Sp(2n1,Fq) ×
· · · × Sp(2ne+f ,Fq) be the direct product of e + f symplectic groups, where∑e+f

i=1 ni = n. Then N = 〈a〉B is contained in the subgroup M ι,−I of
Sp(2n,Fq)ι,−I .

Proof. Gow [9, Lemma 4.1] proved that the corresponding subgroup of
Sp(2n,Fq), N ′ = 〈a〉B′, is contained in the subgroup M of Sp(2n,Fq), by
showing that a and the R-normalizer of a in Sp(2n,Fq) are contained in M .
The lemma follows by applying Lemma 5.2.

The next case we consider is when e = 1 and f = 0 in Equation (4).
That is, the minimal polynomial of a is the power of the product of an ir-
reducible and its adjoint. In this case we must analyze another subgroup of
Sp(2n,Fq)ι,−I , which we construct as follows. Let α ∈ Fq2 be a square root
of −1, and consider the group 〈GL(n,Fq), αI〉. We now extend this group
by an element, β, whose square is −I, and whose conjugation gives the
transpose-inverse automorphism. That is, we consider the following group,
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which contains GL(n,Fq) as an index 4 normal subgroup:

L = 〈GL(n,Fq), α, β | α2 = β2 = −I, αg = gα for g ∈ GL(n,Fq),

β−1gβ = tg
−1 for g ∈ GL(n,Fq), β−1αβ = α−1〉.

We have the following for this case.

Lemma 5.7. Let e = 1 and f = 0 in the factorization in Equation (4)
of m(x), the minimal polynomial of a. Then N = 〈a〉B is contained in a
subgroup of Sp(2n,Fq)ι,−I isomorphic to L.

Proof. The minimal polynomial of a is m(x) = (p(x)p̃(x))µ, where
p(x) is irreducible in Fq[x] and is not self-adjoint. Consider the subgroup

of Sp(2n,Fq) consisting of elements of the form
(
g

tg
−1

)
, where g ∈

GL(n,Fq), which is a subgroup isomorphic to GL(n,Fq). Gow showed [9,
Lemma 4.2] that a can be taken to be in this subgroup, and that the R-
normalizer of a in Sp(2n,Fq) is contained in the group generated by this

subgroup isomorphic to GL(n,Fq) and the element
(

I
−I

)
. If we con-

jugate a by the element τ , the result is ιa = a, since we have taken a to be
the block diagonal element above. Then τ , which can be taken to be the

element
(
−αI

αI

)
, is in the centralizer of a in Sp(2n,Fq)ι,−I , and so in

the R-normalizer of a in Sp(2n,Fq)ι,−I . This gives all of the R-normalizer
of a in Sp(2n,Fq)ι,−I . So now N = 〈a〉B is contained in the subgroup gen-

erated by the GL(n,Fq) subgroup, the element β =
(

I
−I

)
, and the

element τ , which is isomorphic to L.

Lemma 5.8. Any real-valued irreducible character χ of L satisfies ε(χ) =
ωχ(−I).

Proof. Let W = 〈GL(n,Fq), α〉, and let λ be the transpose-inverse auto-
morphism of GL(n,Fq), and of W , where tα

−1 = α−1 = −α. From Theorem
1.1 and Proposition 2.2, we know that ελ(ψ) = 1 for every irreducible ψ of
GL(n,Fq). Since α is in the center of W , every irreducible character of W is
an extension of an irreducible of GL(n,Fq). If θ is an irreducible of W , which
extends the irreducible ψ of GL(n,Fq), then we may directly calculate that
ελ(θ) = ελ(ψ) = 1. It also follows from Theorem 1.1, as noted in the com-
ments after Proposition 2.2, that every irreducible character ψ of GL(n,Fq)
satisfies ε(ψ) = 1 or 0. This also holds for any irreducible θ of W , since if θ
extends ψ of GL(n,Fq), either ε(ψ) = 0 and thus ε(θ) = 0, or ε(ψ) = 1 but
ωθ(α) is not real and thus ε(θ) = 0, or ε(ψ) = 1 and ωθ(α) = ±1, in which
case ε(θ) = 1.

We have L ∼= W λ,−I , where λ is the transpose-inverse automorphism.
Every irreducible of L is induced or extended from an irreducible of W . An
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irreducible χ of L is induced from an irreducible of ψ of W if and only if
ε(ψ) = 0, by Lemma 2.2, in which case ε(χ) = ωψ(−I)ελ(ψ), by Lemma
2.3. We have shown above that ελ(ψ) = 1, and since ωψ(−I) = ωχ(−I), in
this case we have ε(χ) = ωχ(−I).

If, on the other hand, χ of L is extended from an irreducible ψ of W , then
we have ε(ψ) = 1, and ψL = χ + χ′ for another irreducible χ′ of L. From
Lemma 2.3, and since ε(ψ) = ελ(ψ) = 1, we have

ε(χ) + ε(χ′) = ε(ψ) + ωψ(−I)ελ(ψ) = 1 + ωψ(−I).

Now, ε(χ) = ±1, and at least one of ε(χ) or ε(χ′) must equal 1, since their
sum is 2 or 0. Since ψ is the character of a real representation, so is ψL,
and the representation has a real subrepresentation. This must have a real
complement from Maschke’s Theorem, and so ε(χ) = ε(χ′) = 1. So finally
ωψ(−I) = ωχ(−I) = 1, and so ε(χ) = ωχ(−I).

The remaining cases in this section deal with the situation e = 0 and
f = 1 in the factorization in Equation (4) of the minimal polynomial of a.
So now we assume m(x) = r(x)ν , where r(x) is an irreducible self-adjoint
polynomial. We first deal with the case that m(x) has more than one distinct
elementary divisor.

Lemma 5.9. Suppose m(x) = r(x)ν for an irreducible self-adjoint polyno-
mial r(x), and suppose that the distinct elementary divisors of a are

r(x)l1 , . . . , r(x)lt ,

where l1 < · · · < lt, and t > 1. Then N = 〈a〉B is contained in a subgroup of
the form M ι,−I of Sp(2n,Fq)ι,−I , where M = Sp(2n1,Fq)×· · ·×Sp(2nt,Fq)
is the direct product of smaller symplectic groups.

Proof. Gow [9, Lemma 4.3] showed that the corresponding subgroup
N ′ = 〈a〉B′ is contained in the subgroup M of Sp(2n,Fq), by showing a and
the R-normalizer of a in Sp(2n,Fq) are contained in M . The lemma follows
from Lemma 5.2.

We may now assume that a has a single elementary divisor, and we first
cover the case that this elementary divisor r(x)l is such that the self-adjoint
irreducible polynomial r(x) is of even degree.

Lemma 5.10. Let a have the single elementary divisor r(x)l, occurring with
multiplicity c, where r(x) is irreducible and self-adjoint of even degree. Let
c have 2-adic decomposition

c = 2b1 + · · ·+ 2bt , b1 < · · · < bt.

If t > 1, then the subgroup N = 〈a〉B of Sp(2n,Fq)ι,−I is contained in
M ι,−I , where M is the direct product of t smaller symplectic groups.

If c = 2b and b ≥ 2, then N is contained in Kι,−I , where K is a wreath
product of Sp(n,Fq) with Z/2Z.
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If c = 2, then every irreducible real-valued character χ of N not containing
〈a〉 in its kernel satisfies ε(χ) = ωχ(−I).

If c = 1, every irreducible real-valued character χ of N satisfies ε(χ) =
ωχ(−I).

Proof. Gow [9, Lemma 4.4] proves that if t > 1, the corresponding
subgroup N ′ = 〈a〉B′ of Sp(2n,Fq) is contained in the subgroup M , and if
c = 2b, b ≥ 2, N ′ is contained in the subgroup K, by showing that a and
the R-normalizer of a in Sp(2n,Fq) are contained in these subgroups. So by
Lemma 5.2, for these cases the subgroups N of Sp(2n,Fq)ι,−I are contained
in M ι,−I and Kι,−I , respectively.

Gow [9, p. 267-269] shows that for c = 2, every irreducible character θ
of N ′ not containing 〈a〉 in its kernel satisfies ε(θ) = ωθ(−I), and that for
c = 1, N ′ is isomorphic to a generalized quaternion group with central order
2 element coinciding with −I. So for c = 2, the conclusion of the lemma
in this case follows from applying Lemma 5.3(i). For the case c = 1, N ′

is generalized quaternion, and it is easily checked that all irreducible char-
acters θ of N ′, except possibly one-dimensional non-real-valued characters,
satisfy ε(θ) = ωθ(−I). As in the comments after Lemma 5.3, let λ be the
automorphism of N ′ defined by conjugation by sτ , where N = 〈N ′, sτ〉 from
Lemma 5.1. All one-dimensional characters satisfy ελ(θ) 6= −1, since this
indicator can only take the values 0 or 1 for one-dimensionals. Then from
Lemma 5.3(ii), every real-valued irreducible χ of N satisfies ε(χ) = ωχ(−I).

The cases that remain deal with the situation that a has a single ele-
mentary divisor which is the power of a self-adjoint irreducible r(x) of odd
degree. The only possibilities for this are r(x) = x±1. But we are assuming
that a has odd order, and so it cannot have −1 as an eigenvalue. Therefore
we may assume that a is unipotent. The case that is now covered is when
a has the single type of elementary divisor of the form (x − 1)2l+1, which
must occur with even multiplicity, since the underlying vector space is of
even dimension.

Lemma 5.11. Suppose a has a single type of elementary divisor (x−1)2l+1

occurring with multiplicity 2c.
If c is not a power of 2, then N is contained in a subgroup of the form

M ι,−I , where M is the direct product of smaller symplectic groups.
If c is a power of 2 greater than 1, then N is contained in a subgroup of

the form Kι,−I , where K is the wreath product of Sp(n,Fq) with Z/2Z.
If c = 1, then N is a subgroup such that every real-valued character χ of

N not containing 〈a〉 in its kernel satisfies ε(χ) = ωχ(−I).

Proof. Gow [9, Lemma 4.5] proved that for the first two cases that the
corresponding subgroup N ′ of Sp(2n,Fq) is contained in a subgroup of the
form M and K, respectively, by showing a and the R-normalizer of a in
Sp(2n,Fq) are contained in these subgroups. Lemma 5.2 then applies.
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For the case c = 1, Gow [9, p. 270] proves that the corresponding N ′

is such that every irreducible character θ of N ′ such that 〈a〉 is not in the
kernel of θ satisfies ε(θ) = ωθ(−I). The lemma for the case c = 1 follows
from applying Lemma 5.3.

The last case for which a is a real element of Sp(2n,Fq) is the case that a
has a single elementary divisor of the form (x− 1)2l. Since we are assuming
that a is a real element of Sp(2n,Fq), then the elementary divisor (x− 1)2l

must occur with even multiplicity, which follows from results of Feit and
Zuckerman in [5, Lemmas 5.2 and 5.3].

Lemma 5.12. Suppose a has a single type of elementary divisor (x − 1)2l

occurring with multiplicity 2c.
If c > 1 and is not a power of 2, then the subgroup N = 〈a〉B of

Sp(2n,Fq)ι,−I is contained in a subgroup of the form M ι,−I , where M is
the direct product of smaller symplectic groups.

If c > 1 and is a power of 2, N is contained in a subgroup of the form
Kι,−I , where K is the wreath product of Sp(n,Fq) with Z/2Z.

Proof. Gow [9, Lemma 4.7] proved that N ′ of Sp(2n,Fq) is contained
in M and K, respectively, by showing that a and the R-normalizer of a
in Sp(2n,Fq) are contained in these subgroups. The lemma follows from
Lemma 5.2.

Lemma 5.13. Suppose a has a single type of elementary divisor (x − 1)2l

occurring with multiplicity 2. Then every real-valued character χ of N =
〈a〉B not containing 〈a〉 in its kernel satisfies ε(χ) = ωχ(−I).

Proof. From Gow [9, p.273-274], the element a could lie in one of two
conjugacy classes in Sp(2n,Fq). Let u be a unipotent element of Sp(n,Fq)
that has the elementary divisor (x−1)2l occurring with multiplicity 1. Then
a is either conjugate in Sp(2n,Fq) to an element of the form (u, u−1) or (u, u).

First consider the case that a is of the form (u, u−1). We conveniently
change the basis of the underlying vector space so that we may write a as
a block diagonal element. Gow calculates that B′, the Sylow 2-subgroup of
the R-normalizer of a in Sp(2n,Fq), consists of the 8 elements generated by(

±I
∓I

)
, k =

(
I

I

)
.

Now let s be the element of Sp(n,Fq) such that s−1us = ιu−1, and (sτ)2 =
−I, from Proposition 3.3. The group N = 〈a〉B is generated by N ′ = 〈a〉B′

and the element v =
(
sτ

sτ

)
. Define the automorphism λ of N ′ to be

conjugation by the element v. Gow showed that every real-valued irreducible
character θ of N ′ not containing 〈a〉 in its kernel satisfies ε(θ) = ωθ(−I). We
now show that any other character θ of N ′ which does not contain 〈a〉 in its
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kernel satisfies ελ(θ) 6= −1. The group N ′ contains as an abelian subgroup
the following normal subgroup of index 2:

A =
〈
a =

(
u

u−1

)
,

(
±I

∓I

)〉
.

Every irreducible of N ′ is either induced or extended from an irreducible of
A. But since we know that any one-dimensional θ must satisfy ελ(θ) 6= −1,
we only need to consider irreducibles induced from A. Let ψ be a one-
dimensional of A which is nontrivial on 〈a〉, so that ψ(a) = ζ for a nontrivial
root of unity ζ, and ψ of the order 2 generators of A listed above are ±1.
The automorphism λ sends a to its inverse, and acts trivially on the other
generating elements of N ′ given above. The representation of the character
θ = ψN

′
may be given by the matrix representation

R(a) =
(
ζ

ζ−1

)
, R(k) =

(
1

1

)
,

and the elements (±I,∓I) are sent to scalar matrices. It is now clear that
ελ(θ) = 1. The result for this case now follows from Lemma 5.3(i).

The other case is when a is taken to be the element (u, u), where again
we take a basis so that this element can be viewed as block diagonal. Gow
calculates [9, p.272-273] that the Sylow 2-subgroup of the centralizer of a in
Sp(2n,Fq) is the Sylow 2-subgroup V of the group generated by elements of
the form (

βI γI
−γI βI

)
,

(
I

I

)
,

where β2 + γ2 = 1 in Fq. Then, Gow finds that B′, the Sylow 2-subgroup of
the R-normalizer of a in Sp(2n,Fq), is generated by the group V above and
the element (

bh ch
−ch bh

)
,

where b2 + c2 = −1 in Fq, and where h is the skew-symplectic involution
which inverts u, as given by Wonenburger’s Theorem 3.1. Gow shows that
every real-valued irreducible θ of N ′ = 〈a〉B′ which does not contain 〈a〉
in its kernel satisfies ε(θ) = ωθ(−I). Furthermore, he shows that the only
characters of N ′ which do not contain 〈a〉 in their kernels and that are
not real-valued, are induced from certain one-dimensional characters of the
group 〈a〉V , which is an index 2 subgroup of N ′ = 〈a〉B′. These two-
dimensional characters of N ′, induced from one-dimensional characters of
〈a〉V , are the ones we must check satisfy the conditions of Lemma 5.3(i).

Let s be the element of Sp(n,Fq) such that s−1us = ιu−1, and (sτ)2 =
−I, from Proposition 3.3. Then N is generated by N ′ = 〈a〉B′ and the
element (sτ, sτ). As before, define λ to be the automorphism of N ′ given
by conjugation by the element (sτ, sτ). Noting that s = th, where t =(
−I

I

)
, and h is the skew-symplectic involution inverting u, we may
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calculate exactly how λ acts on the generators of N ′. We may then give a
specific matrix representation for each of the characters θ of N ′ which we
must check, and directly see that for each of them, we have ελ(θ) = 1, as in
the previous case. The lemma then follows by applying Lemma 5.3(i).

Subgroups for a non-real element of Sp(2n,Fq):
We now cover the remaining cases of maximal R-elementary subgroups

at 2 of Sp(2n,Fq)ι,−I , and so we let a be an element of Sp(2n,Fq) of odd
order which is not conjugate in Sp(2n,Fq) to its inverse. It follows from
results of Wall [20], as explained by Feit and Zuckerman in [5, Lemmas 5.2
and 5.3], that an element of Sp(2n,Fq), q ≡ 3(mod 4), is not real if and only
if it has an elementary divisor of the form (x ± 1)2l which occurs with odd
multiplicity. Since we are assuming that a has odd order, then it cannot
have −1 as an eigenvalue, and so it has (x − 1)2l as an elementary divisor
occurring with odd multiplicity. In particular, the minimal polynomial m(x)
of a may be factored as m(x) = f(x)(x− 1)ν , where f(x) is self-adjoint and
relatively prime to x− 1, and ν ≥ 2.

Since a is a non-real element of Sp(2n,Fq), then the maximal R-elementary
subgroup at 2 of a in Sp(2n,Fq) is of the form N ′ = 〈a〉B′, where B′ is a
Sylow 2-subgroup of the centralizer of a in Sp(2n,Fq). The structure of the
centralizers of elements of Sp(2n,Fq) are described by Wall [20, p.36], and
these are the results that we refer to in this section. The results of Huppert
[12] give the possible minimal polynomials of an element g ∈ Sp(V ) such
that V does not admit a g-invariant orthogonal decomposition. It is from
these results that we are able to give the orthogonal decompositions in the
proofs of Lemmas 5.15 and 5.16 below. Our first step in this section is to
reduce m(x) to a power of x− 1.

Lemma 5.14. Let a have minimal polynomial m(x) = f(x)(x− 1)ν , where
f(x) is non-constant. Then N = 〈a〉B is contained in a subgroup of the
form (Sp(2n1,Fq)× Sp(2n2,Fq))ι,−I .

Proof. As shown by Wonenburger [21, Section 3], the underlying Fq-vector
space V on which a acts may be orthogonally decomposed as

V ∼= ker(f(x)) ⊥ ker((x− 1)ν).

So we may replace a by an element conjugate to a under Sp(2n,Fq) of
the form (a1, a2), where the minimal polynomial of a1 restricted to the Fq-
subspace ker(f(x)) of V , is f(x), and a1 ∈ Sp(2n1,Fq), where n1 < n, and
similarly a2 ∈ Sp(2n2,Fq) with n2 < n, and the minimal polynomial of a2

restricted to ker((x− 1)ν) is (x− 1)ν .
By the results of Wall [20, p. 36], the centralizer of (a1, a2) in Sp(2n,Fq)

is the direct product of the centralizer of a1 in Sp(2n1,Fq) and the central-
izer of a2 in Sp(2n2,Fq). Since a is a non-real element of Sp(2n,Fq), then its
R-normalizer is exactly its centralizer in Sp(2n,Fq). Now the result follows
from Lemma 5.2.
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We may now assume that the minimal polynomial of a is of the form
m(x) = (x − 1)ν . The next lemma reduces us further to the case that a
has only one elementary divisor.

Lemma 5.15. Suppose that the distinct elementary divisors of a are

(x− 1)l1 , (x− 1)l2 , . . . , (x− 1)lt ,

where l1 < l2 < · · · < lt, t > 1. Then N = 〈a〉B is contained in a subgroup
of Sp(2n,Fq)ι,−I of the form (Sp(2n1,Fq)× · · · × Sp(2nt,Fq))ι,−I .

Proof. By applying the main results of Huppert [12], we may orthogonally
decompose the underlying Fq-vector space V , non-canonically, as

V ∼= W1 ⊥ · · · ⊥Wt,

where a restricted to Wj has the single elementary divisor (x − 1)lj . We
may then replace a by an element conjugate to it in Sp(2n,Fq) of the form
(a1, . . . , at), where aj ∈ Sp(2nj ,Fq). From Wall [20, p.36], the central-
izer of a in Sp(2n,Fq) is isomorphic to the product of the centralizers of
aj in Sp(2nj ,Fq). Therefore we may take a and its centralizer to be in
Sp(2n1,Fq)× · · · × Sp(2nt,Fq), and the result follows from Lemma 5.2.

We are now reduced to the situation that a has the single elementary divisor
(x − 1)2l occurring with odd multiplicity, which brings us to the final case
to consider.

Lemma 5.16. Suppose a ∈ Sp(2n,Fq) has (x− 1)2l as its only elementary
divisor, occurring with odd multiplicity c.

If c > 1, then N = 〈a〉B, is contained in a subgroup of Sp(2n,Fq)ι,−I of
the form M ι,−I , where M is the direct product of smaller symplectic groups.

If c = 1, then N = 〈a〉B is such that all of its irreducible characters
satisfy ε(χ) = ωχ(−I).

Proof. According to Wall, the Sylow 2-subgroup of the centralizer of a
in Sp(2n,Fq) is isomorphic to a Sylow 2-subgroup of the orthogonal group
O(c,Fq), with c odd, which we denote by S(c). Because of the structure of
S(c), we must consider the cases c ≡ 1 and 3(mod 4) separately.

First let c = 4m + 1. Then by results of Carter and Fong [2, Sec. II],
S(c) ∼= S+(4m)× S(1), where S+(4m) is the Sylow 2-subgroup of the split
orthogonal group O+(4m,Fq). By Huppert [12], we may orthogonally de-
compose the underlying Fq-vector space V on which a ∈ Sp(2n,Fq) acts,
non-canonically, as

V ∼= W4m ⊥W1,

where a restricted to W4m has the single elementary divisor (x − 1)2l with
multiplicity 4m, and a restricted to W1 has the single elementary divisor (x−
1)2l with multiplicity 1. We replace a by an element of the form (a4m, a1),
from this orthogonal decomposition of V , where a4m ∈ Sp(8lm,Fq) and
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a1 ∈ Sp(2l,Fq). From Gow [9, p. 265], again by applying results of Wall,
the centralizers of a4m and a1 in these smaller symplectic groups have Sylow
2-subgroups isomorphic to S+(4m) and S(1), respectively. But since the
centralizer of a in Sp(2n,Fq) has Sylow 2-subgroup S+(4m) × S(1), now
the maximal R-elementary subgroup at 2 in Sp(2n,Fq) associated with a
may be embedded in the subgroup M ∼= Sp(8lm,Fq) × Sp(2l,Fq), and so
N = 〈a〉B is contained in M ι,−I .

Now let c = 4m + 3. By Carter and Fong’s results [2, Sec. II], S(c) ∼=
S+(4m) × S(3), and S(3) ∼= S−(2) × S(1), where S−(2) is the Sylow 2-
subgroup of the nonsplit orthogonal group O−(2,Fq). We again use the
results of Huppert [12] to orthogonally decompose the space V as

V ∼= W4m ⊥W2 ⊥W1,

where a restricted to Wj has the single elementary divisor (x − 1)2l with
multiplicity j, and a may be replaced by (a4m, a2, a1) ∈ Sp(8ml,Fq) ×
Sp(4l,Fq) × Sp(2l,Fq). The centralizers of aj in Sp(2lj,Fq) have Sylow
2-subgroups, calculated by Gow [9, p. 265, p.272-273] using the results of
Wall, which are isomorphic to S+(4m), S−(2), and S(1), for j = 4m, 2,
and 1, respectively. We therefore have N = 〈a〉B ⊂ M ι,−I , where M =
Sp(8ml,Fq)× Sp(4l,Fq)× Sp(2l,Fq).

Finally, we consider the case c = 1. By Wall [20, p.36], the Sylow 2-
subgroup of the centralizer of a in Sp(2n,Fq) consists of only 2 elements,
which are ±I. If s is the element of Sp(2n,Fq) such that s−1as = ιa−1, from
Proposition 3.3, then we have B = 〈±I, sτ〉. So N contains as an index 2
subgroup the cyclic group C ∼= 〈a〉 × 〈±I〉, on which the element sτ acts by
inversion, and (sτ)2 = −I. We therefore have N ∼= Cλ,−I , where λ is the
automorphism which inverts the elements of C. Every irreducible χ of N is
induced or extended from an irreducible θ of C, and θN is irreducible if and
only if λθ 6= θ, from Lemma 2.2. But λθ = θ, and so θN is irreducible if and
only if θ is not real-valued. We also see that since θ is one-dimensional that
ελ(θ) = 1, and ε(θ) = 1 when θ is real-valued, and ε(θ) = 0 otherwise. So
when ε(θ) = 0, if χ = θN , we have by Lemma 2.3 and the comments above,

ε(χ) = ε(θ) + ωθ(−I)ελ(θ) = 0 + ωθ(−I) = ωχ(−I).

When ε(θ) = 1, θN = χ+ χ′, where χ and χ′ are extensions of θ. Again by
Lemma 2.3 and the comments above, we have

ε(χ) + ε(χ′) = ε(θ) + ωθ(−I)ελ(θ) = 1 + ωθ(−I).

At least one of ε(χ) and ε(χ′) is 1, but then the other must be 1, since θN is a
real representation, and real subrepresentations will have a real complement.
This forces ωθ(−I) = ωχ(−I) = 1. We therefore have any irreducible χ of
N satisfies ε(χ) = ωχ(−I).
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6. Main Results

Theorem 6.1. Let G = Sp(2n,Fq), and let ι : G → G be the order 2
automorphism of G defined by

ιg =
(
−In

In

)
g

(
−In

In

)
.

Let Gι,−I = 〈G, τ | τ2 = −I, τ−1gτ = ιg for all g ∈ G〉.
(i) If q ≡ 3(mod 4), then every complex irreducible representation φ of

Gι,−I , with central character ωφ, satisfies ε(φ) = ωφ(−I)
(ii) If q is odd, then every complex irreducible representation π of G sat-

isfies ει(π) = 1.

Proof. (i): The proof is by induction on n. The case for n = 1 is
proven in Section 4, and we have the induction hypothesis that the result
is true for any m < n. Let φ be any complex irreducible representation
of Gι,−I with character χ. Then χ must be real-valued by Proposition 3.5.
By Proposition 4.1(i), there is an irreducible real-valued character ψ of an
R-elementary subgroup at 2, N of Gι,−I , such that 〈χ|N , ψ〉 is odd and
ε(χ) = ε(ψ). By Proposition 4.1(ii) and (iv), we may choose N to either be
a Sylow 2-subgroup of Gι,−I , or N to be a maximal R-elementary subgroup
at 2, N = 〈a〉B, with a a real element of odd order, and with ψ satisfying
〈a〉 6⊂ ker(ψ).

In Section 5, we consider every possible maximal R-elementary subgroup
at 2 with a of odd order. If N is a Sylow 2-subgroup, Lemma 5.5 says
that every real-valued irreducible character ψ of N satisfies ε(ψ) = ωψ(−I).
When N is not a Sylow 2-subgroup, in some cases, we prove that every
irreducible real-valued character ψ of N satisfying 〈a〉 6⊂ ker(ψ) (we don’t
even need this assumption in some cases) is such that ε(ψ) = ωψ(−I). So if
N is one of these subgroups, and if ψ is the character of N such that 〈χ|N , ψ〉
is odd, then ε(χ) = ε(ψ), and ωψ(−I) = ωχ(−I) since ψ is a constituent of
χ|N . So in these cases, we have ε(χ) = ωχ(−I).

In other cases, we prove that an isomorphic copy of N is contained in a
subgroup of the form M ι,−I or Kι,−I , where M is a product of symplectic
groups of smaller dimension, and K is a wreath product of a symplectic
group of half the dimension with Z/2Z. In the case of Lemma 5.7, we
prove an isomorphic copy of N is contained in a subgroup L, which contains
GL(n,Fq) as a subgroup of index 4. By Proposition 4.1(iii), if N is contained
in a subgroup of Gι,−I , then there is a real-valued irreducible character
θ of that subgroup such that 〈θGι,−I , χ〉 is odd and ε(χ) = ε(ψ) = ε(θ).
But now, by Propositions 4.2 and 4.4 along with the induction hypothesis,
and by Lemma 5.8, every real-valued irreducible θ of a group of the form
M ι,−I , Kι,−I , or L, satisfies ε(θ) = ωθ(−I). So if N falls into this category,
ε(χ) = ε(θ) = ωθ(−I) = ωχ(−I). This exhausts all possible cases for N ,
and the result is obtained.
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(ii): First assume q ≡ 1(mod 4). Then by Gow’s Theorem 1.2, we have
ε(π) = ωπ(−I) for every irreducible π of Sp(2n,Fq). The automorphism ι

is inner by the element
(
−αIn

αIn

)
, where α2 = −1, and this matrix

has square −I. So by Lemma 2.1, ει(π) = ωπ(−I)ε(π) = ωπ(−I)2 = 1. If
q ≡ 3(mod 4), then first we have ει(π) = ±1 by Proposition 3.3. Now by
part (i) and Proposition 2.2, we have ει(π) = 1 for every irreducible π of G.

Theorem 6.2. Let G = GSp(2n,Fq), where q is odd, and µ is the similitude
character. Let ι : G → G be the inner order 2 automorphism of G defined
by conjugation by the skew-symplectic element as in Theorem 6.1. Let κ :
G→ G be the order 2 automorphism of G defined by

κg = µ(g)−1g.

Let σ : G→ G be the order 2 automorphism that is the composition of ι with
κ, σ = ι ◦ κ. Then every complex irreducible representation π of G satisfies
εκ(π) = ωπ(−I), and equivalently satisfies εσ(π) = 1.

Proof. First, by Proposition 3.4, we have εκ(π) = ±1 for every irreducible

(π, V ) of G. Now let t =
(
−In

In

)
, so κt = −t, and let χ be the

character of π. Then

εσ(π) =
1
|G|

∑
g∈G

χ(g σg) =
1
|G|

∑
g∈G

χ(−gt κ(gt)) = ωπ(−I)εκ(π).

Since εσ(π) = ±1, we have a nondegenerate bilinear form Bσ : V ×V → C,
unique up to scalar, such that for all g ∈ G, u, v ∈ V ,

Bσ(π(g)u, σπ(g)v) = Bσ(u, v) and Bσ(u, v) = εσ(π)Bσ(v, u).

Let Z be the center of G = GSp(2n,Fq) consisting of scalar matrices, and
let H = Z · Sp(2n,Fq). Then H is an index 2 subgroup of G consisting of
every element whose similitude factor is a square in F×q . Every irreducible
representation φ of Sp(2n,Fq) may be extended to an irreducible representa-
tion of H by just extending the central character to Z, and so any irreducible
representation of H restricted to Sp(2n,Fq) is irreducible. Since H is an in-
dex 2 subgroup of G, every irreducible representation π of G restricted to
H is either irreducible or the direct sum of 2 distinct irreducibles.

First assume that (π, V ) of G restricts to an irreducible (π′, V ) of H.
Then π′ restricted to Sp(2n,Fq) is some irreducible φ. Note that for g ∈
Sp(2n,Fq), we have σg = ιg. Then for any g ∈ Sp(2n,Fq) and u, v ∈ V , we
have

Bσ(π(g)u, σπ(g)v) = Bσ(φ(g)u, ιφ(g)v) = Bσ(u, v).
From Theorem 6.1(ii), we know that ει(φ) = 1, so there is a nondegenerate
symmetric bilinear form, unique up to scalar, satisfying

Bι(φ(g)u, ιφ(g)v) = Bι(u, v),
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for all g ∈ Sp(2n,Fq), u, v ∈ V . So then Bσ must be a scalar multiple of Bι,
and therefore must also be symmetric. Then we have εσ(π) = 1.

Now assume that the irreducible (π, V ) of G, when restricted to H, is
isomorphic to the direct sum of two irreducible representations (π1, V1) and
(π2, V2), which restrict to Sp(2n,Fq) to give the irreducibles (φ1, V1) and
(φ2, V2), respectively. Now for any g ∈ Sp(2n,Fq), and u, v ∈ V1, we have

Bσ(φ1(g)u, ιφ1(g)v) = Bσ(u, v).

Again from Theorem 6.1(ii), ει(φ1) = 1, and so there is a symmetric non-
degenerate bilinear form Bι on V1, unique up to scalar, with the property
of ι-twisted-invariance under Sp(2n,Fq). Then if Bσ restricted to V1 × V1

is nondegenerate, it would have to be a scalar multiple of Bι, and so Bσ
would be symmetric on V1 × V1. But since Bσ is either symmetric or skew-
symmetric on all of V × V , then being nondegenerate and symmetric on a
subspace forces it to be symmetric everywhere. So now we must show Bσ is
nondegenerate on V1 × V1.

For g ∈ Sp(2n,Fq), u ∈ V1, and v ∈ V2, we have

Bσ(π(g)u, σπ(g)v) = Bσ(φ1(g)u, ιφ2(g)v) = Bσ(u, v).

So if Bσ is nondegenerate on V1 × V2, then we would have φ̂1
∼= ιφ2. But

ιφ2
∼= φ̂2, and so we would have φ2

∼= φ1. This would imply that π1
∼= π2,

since the central characters of π1 and π2 agree with the central character of
π. But we cannot have π restricted to an index 2 subgroup be the direct sum
of 2 isomorphic representations, by [14, Corollary 6.19]. So now Bσ must be
zero on V1×V2, by Schur’s Lemma, which means Bσ must be nondegenerate
on V1×V1, since Bσ is nondegenerate on V ×V and V = V1⊕V2. Therefore
Bσ is symmetric, and εσ(π) = 1.

So for every irreducible π of GSp(2n,Fq), we have εσ(π) = 1, and since
εσ(π) = ωπ(−I)εκ(π), we also have εκ(π) = ωπ(−I).

Corollary 6.1. Let q be odd. The sum of the degrees of the complex irre-
ducible characters of Sp(2n,Fq) is equal to

|Sp(2n,Fq)|
|GL(n,Fq)|

= qn(n+1)/2(qn + 1) · · · (q + 1)

= the number of skew-symplectic symmetric matrices in GSp(2n,Fq).
The sum of the degrees of the complex irreducible characters of GSp(2n,Fq)
is equal to

|GSp(2n,Fq)|
2|GL(n,Fq)|

+
|GSp(2n,Fq)|
2|U(n,Fq2)|

= the number of symmetric matrices in GSp(2n,Fq).

Proof. For G = Sp(2n,Fq), we have from Theorem 6.1(ii) and Proposition
2.1(ii), with ι defined as before,∑

χ∈Irr(G)

χ(1) = |{g ∈ Sp(2n,Fq) | g ιg = I}|.
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We have ιg = tgt, where t ∈ GSp(2n,Fq) and µ(t) = −1, so that g ιg = (gt)2,
where µ(gt) = −1. So now∑

χ∈Irr(G)

χ(1) = |{h ∈ GSp(2n,Fq) | h2 = I and µ(h) = −1}|.

From Proposition 3.2, the elements of GSp(2n,Fq) satisfying h2 = I and
µ(h) = −1 form a single conjugacy class whose centralizer contains an index
q − 1 subgroup isomorphic to GL(n,Fq). So the size of the conjugacy class
is

|GSp(2n,Fq)|
(q − 1)|GL(n,Fq)|

=
|Sp(2n,Fq)|
|GL(n,Fq)|

= qn(n+1)/2(qn + 1) · · · (q + 1).

For G = GSp(2n,Fq), we have from Theorem 6.2 and Proposition 2.1(ii)
that ∑

χ∈Irr(G)

χ(1) = |{g ∈ GSp(2n,Fq) | g σg = I}|,

where g σg = µ(g)−1(gt)2, where −µ(gt) = µ(g). So now∑
χ∈Irr(G)

χ(1) = |{h ∈ GSp(2n,Fq) | h2 = −µ(h)I}|.

From Proposition 3.2, for each choice of µ(h), there is a single conjugacy
class of elements satisfying h2 = −µ(h)I, with centralizer having a subgroup
of index q − 1 isomorphic to GL(n,Fq) if −µ(h) is a square, and U(n,Fq2)
if −µ(h) is not a square. Since half of the elements of F×q are squares and
half nonsquares, we have∑

χ∈Irr(G)

χ(1) =
|GSp(2n,Fq)|
2|GL(n,Fq)|

+
|GSp(2n,Fq)|
2|U(n,Fq2)|

.

Finally, if g ∈ GSp(2n,Fq), and J =
(

In
−In

)
, then Jg is symmetric

if and only if Jg = −tgJ , since tJ = −J . Multiplying by g on the right,
and using tgJg = µ(g)J , gives g2 = −µ(g)I. So now the sum of the de-
grees for GSp(2n,Fq) is the number of symmetric matrices in GSp(2n,Fq),
and the sum of the degrees for Sp(2n,Fq) is the number of skew-symplectic
symmetric matrices in GSp(2n,Fq).

Remark. The methods in this paper do not work for characteristic 2.
However, Gow proved [7] that if q is a power of 2, then every character
of Sp(2n,Fq) is real-valued. From the remark of Prasad at the end of [18,
Lemma 1], one may conclude that if q is even, every generic representation
of Sp(2n,Fq) is real. For SL(2,Fq) and q even, one may check that all of the
representations are real, and the sum of the degrees is equal to the number
of symmetric matrices (and involutions) in the group.
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