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A note on orthogonal similitude groups
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Let V be a vector space over the field F such that charðF Þ 6¼ 2, and let V have a symmetric
nondegenerate bilinear form. Let GOðV Þ be the orthogonal similitude group for this symmetric
form, with similitude character �. We prove that if g 2 GOðV Þ with �ðgÞ ¼ �, then g ¼ t1t2
where t1 is an orthogonal involution, and t2 is such that t22 ¼ �I and �ðt2Þ ¼ �. As an applica-
tion, we obtain an expression for the sum of the degrees of the irreducible characters of
GOðn,FqÞ for odd q.
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1. Introduction

This note is an addendum to [1], where we obtain a factorization in the symplectic
similitude group. In Theorem 1 below, we obtain a factorization in the group of
orthogonal similitudes GOðV Þ, where V is an F-vector space with charðF Þ 6¼ 2, and
the similitude character is �. The method is the same as in [1], and the notation
established there is freely used. In the proof of Theorem 1, we refer to [1] to all parts
that immediately apply to the orthogonal case, while any changes that are needed
in the proof are given specifically.

As an application of Theorem 1, we use a result of Gow [2] on the orthogonal group
over a finite field to obtain information on the characters of the orthogonal similitude
group over a finite field, as given in Theorem 2 and Corollary 2. In a paper to appear by
Adler and Prasad [3], Corollary 1 is used to prove a theorem on p-adic groups. In
particular, if V is a vector space over a p-adic field, Adler and Prasad prove that any
irreducible admissible representation of GOðV Þ restricted to OðV Þ is multiplicity free,
and they also prove the corresponding statement for the symplectic similitude group.

*Email: vinroot@math.tifr.res.in

Linear and Multilinear Algebra
ISSN 0308-1087 print: ISSN 1563-5139 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/03081080500209588



2. The main theorem

Let V be an F-vector space, with charðF Þ 6¼ 2, equipped with a nondegenerate bilinear
symmetric form h�, �i : V� V ! F. Then the orthogonal group of similitudes of V with
respect to this form is the group GOðV Þ ¼ fg 2 GLðV Þ : hgv, gwi ¼ �ðgÞhv,wi for
some �ðgÞ 2 F � for all v,w 2 V g. Then � : GOðV Þ ! F � is a multiplicative character
called the similitude character, and the orthogonal group is OðV Þ ¼ kerð�Þ.

THEOREM 1 Let g be an element of GOðV Þ satisfying �ðgÞ ¼ �. Then we may factor g as
g ¼ t1t2, where t1 is an orthogonal involution and t2 satisfies t

2
2 ¼ �I and �ðt2Þ ¼ �.

Proof Wonenburger [4] proved that any element of OðV Þ is the product of two
orthogonal involutions. So if �ðgÞ ¼ � is a square in F, then the theorem follows
directly from Wonenburger’s result. So we assume � is not a square.

As in [1], for any monic polynomial f 2 F ½x� of degree d, define the �-adjoint of f to be

f̂f ðxÞ ¼ f ð0Þ�1xdf ð�=xÞ,

and define a monic polynomial to be self-�-adjoint if f̂f ¼ f. Then, for any g 2 GOðV Þ,
the minimal polynomial of g is self-�-adjoint. All of the results in sections 2 and 3 of [1]
are valid for transformations g which are self-�-adjoint, as the proofs only use this fact.
These results reduce us to looking at the case that either g is a cyclic transformation
for V, that is V is generated by vectors of the form giv for some v 2 V, or the
case that g has minimal polynomial of the form qðxÞs, where q(x) is an irreducible
self-�-adjoint polynomial.

We deal with the cyclic case first. In [1, Proposition 3(i)], we prove that if g 2 GLðV Þ

is a cyclic transformation with self-�-adjoint minimal polynomial, ignoring any inner
product structure, then we can factor g ¼ t1t2 such that t21 ¼ I and t22 ¼ �I. This is
proven as follows. If V is cyclic for the vector v, then we let P be the space spanned
by vectors of the form ðgi þ �igiÞv and let Q be the space spanned by the vectors of
the form ðgi � �igiÞv. Then V ¼ P�Q, and the transformation having P as its þ1 eigen-
space and Q as its �1 eigenspace is exactly the involution t1 that we seek. For the case
that g 2 GOðV Þ, we must show that this t1 is orthogonal. Let ðgi þ �igiÞv 2 P and
ðg j � � jg jÞv 2 Q. Then we have:

ðgi þ �ig�iÞv, ðg j � � jg�jÞv
� �

¼ ðgi þ �ig�iÞv, g jv
� �

� giv, � jg�jv
� �

� �ig�iv, � jg �jv
� �

¼ ðgi þ �ig�iÞv, g jv
� �

� g jv, �ig�iv
� �

� g jv, giv
� �

¼ ðgi þ �ig�iÞv, g jv
� �

� g jv, ðgi þ �ig�iÞv
� �

¼ 0:

So P and Q are mutually orthogonal. Now let u and u0 be any two vectors in V ¼ P�Q.
Write u ¼ wþ y, u0 ¼ w0 þ y0, where w,w0 2 P and y, y0 2 Q. We compute ht1u, t1u

0i:

t1u, t1u
0

� �
¼ t1ðwþ yÞ, t1ðw

0 þ y0Þ
� �

¼ w� y, w0 � y0
� �

¼ w,w0
� �

þ y, y0
� �

� y,w0
� �

� w, y0
� �

¼ w,w0
� �

þ y, y0
� �

:
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While computing hu, u0i gives us:

u, u0
� �

¼ wþ y, w0 þ y0
� �

¼ w,w0
� �

þ y, y0
� �

þ y,w0
� �

þ w, y0
� �

¼ w,w0
� �

þ y, y0
� �

:

Therefore, we have ht1u, t1u
0i ¼ hu, u0i, and t1 is orthogonal. Since g satisfies �ðgÞ ¼ �,

then t2 ¼ t1g satisfies �ðt2Þ ¼ �.
We now deal with the case that the minimal polynomial of g is of the form qðxÞs,

where q(x) is irreducible and self-�-adjoint. It follows from [1, Lemmas 4 and 5] and
the cyclic case above that we may assume that V is the sum of two cyclic spaces, and
further we may assume that for any u1 2 V satisfying qðgÞs�1u1 6¼ 0, the cyclic space
U1 generated by u1 is degenerate, and for an appropriate u2 2 V, we have
V ¼ U1 �U2 where U2 is the cyclic space generated by u2. We follow the proof of
[1, Proposition 3(iii)]. We may write U1 ¼ P1 �Q1 where P1 is spanned by vectors
of the form ðgk þ �kg�kÞu1 and Q1 is spanned by vectors of the form ðgk � �kg�kÞu1.

There are two different cases, the first is when either q(x) is relatively prime to x2 � �
or qðxÞ ¼ x2 � � and s is odd. In this case, we find a u2 2 Q?

1 , and V ¼ U1 �U2 where
U2 is cyclically generated by u2. Then U2 ¼ P2 �Q2, where P2 is spanned by vectors
of the form ðgk þ �kg�kÞu2 and Q2 is spanned by vectors of the form ðgk � �kg�kÞu2.
Letting P ¼ P1 � P2 and Q ¼ Q1 �Q2, we are able to show that if t1 is the involution
with P as its þ1 eigenspace and Q as its �1 eigenspace, then ðt1gÞ

2
¼ �I (for the

symplectic group, we actually show this in the second case of Proposition 3(iii)). We
need to show that t1 is orthogonal. From the cyclic case above, we have Pi ? Qi for
i ¼ 1, 2. In the proof of [1, Proposition 3(iii)], we show that Pi ? Qj for i 6¼ j. So now
P ? Q, and from the argument in the cyclic case above, we have that t1 is orthogonal,
and so t2 ¼ t1g satisfies �ðt2Þ ¼ �.

In the case that qðxÞ ¼ x2 � � and s is even, we are able to find a u2 2 P?
1 such that

V ¼ U1 �U2, where U2 is the space cyclically generated by u2. We define P2 and Q2 as
before. We let P ¼ P1 �Q2 be the þ1 eigenspace and Q ¼ P2 �Q1 be the �1 eigen-
space of an involution t1, and this satisfies ðt1gÞ

2
¼ �I. To show t1 is orthogonal, we

need only show that P ? Q and appeal to the cyclic case above. We have already
shown Pi ? Qi for i ¼ 1, 2, so now we need P1?P2 and Q1?Q2. We have:

gk � �kg�k
� �

u1, gl � �lg�l
� �

u2
� �

¼ gk � �kg�k
� �

u1, g
lu2

� �
� gk � �kg�k

� �
u1, �

lg�lu2
� �

¼ �lg�l gk � �kg�k
� �

u1, u2
� �

� gl gk � �kg�k
� �

u1, u2
� �

¼ � gl � �lg�l
� �

gk � �kg�k
� �

u1, u2
� �

¼ 0,

since

gl � �lg�l
� �

gk � �kg�k
� �

u1

¼ glþk þ �lþkg�ðlþkÞ
� �

u1 � �k gl�k þ �l�kg�ðl�kÞ
� �

u1 2 P1
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and u2 2 P ?
1 . So now as before, we have t1 orthogonal. This exhausts all cases, and

the theorem is proved. g

COROLLARY 1 Any element of g 2 GOðV Þ is conjugate to �ðgÞg�1 by an orthogonal
involution.

3. Application over a finite field

Let G be a finite group with an order 2 automorphism �, let ð�,V Þ be an irreducible
complex representation, and let �̂� denote the contragredient representation. If �� ffi �̂�,
where ��ðgÞ ¼ �ð�gÞ, then we obtain a bilinear form B� : V� V ! C satisfying

B�ð�ðgÞv,
��ðgÞwÞ ¼ B�ðv,wÞ for every v,w 2 V: ð�Þ

By Schur’s Lemma, this bilinear form is unique up to scalar, which means we have,
for all v,w 2 V,

B�ðv,wÞ ¼ "�ð�ÞB�ðw, vÞ,

where "�ð�Þ ¼ �1. That is, B� is either symmetric or skew-symmetric. Since the character
of �̂� is ��� if � is the character of �, then �� ffi �̂� is equivalent to �� ¼ ���.

Let Fq be the finite field of q elements, and let q be odd. We let Oðn, FqÞ be the
orthogonal group for any symmetric form (split or nonsplit) for an Fq-vector space.
Let GOðn, FqÞ be the corresponding orthogonal similitude group with similitude
character �.

PROPOSITION 1 Let q be odd and G ¼ GOðn, FqÞ. Define � to be the order 2 automorphism
of G that acts as �g ¼ �ðgÞ�1g. Then every irreducible representation � of G satisfies
�� ffi �̂�, that is, "�ð�Þ ¼ �1. g

Proof From Corollary 2, we have g is conjugate to �ðgÞg�1, and so g�1 is always
conjugate to �g. Thus every character satisfies �� ¼ ���, and so for every � we have
"�ð�Þ ¼ �1. g

Gow [2] showed that for q odd, every irreducible representation of Oðn, FqÞ is
self-dual and orthogonal. This corresponds to � being the identity automorphism,
and "�ð�Þ ¼ "ð�Þ ¼ 1. We are able to apply his result in order to obtain the following
stronger version of Proposition 1.

THEOREM 2 Let q be odd and G ¼ GOðn, FqÞ. Define � to be the order 2 automorphism
of G that acts as �g ¼ �ðgÞ�1g. Then every irreducible representation � of G satisfies
"�ð�Þ ¼ 1.

Proof Since "�ð�Þ ¼ �1 from Proposition 1, then we have a bilinear form B� as in (*).
Let Z be the center of G ¼ GOðn, FqÞ consisting of scalar matrices, and let

H ¼ Z �Oðn, FqÞ. Then H is an index 2 subgroup of G consisting of elements whose
similitude factor is a square in F

�
q . Every irreducible representation � of Oðn, FqÞ

may be extended to an irreducible representation of H by just extending the central
character to Z, and so any irreducible representation of H restricted to Oðn, FqÞ
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is irreducible. Since H is an index 2 subgroup of G, every irreducible representation
� of G restricted to H is either irreducible or the direct sum of 2 distinct irreducibles.

First assume that ð�,V Þ of G restricts to an irreducible ð�0,V Þ of H. Then
�0 restricted to Oðn, FqÞ is some irreducible �. Note that for g 2 Oðn, FqÞ, we have
�g ¼ g. Then for any g 2 Oðn, FqÞ and u, v 2 V, we have

B�ð�ðgÞu,
��ðgÞvÞ ¼ B�ð�ðgÞu,�ðgÞvÞ ¼ B�ðu, vÞ:

From Gow’s result, we know that "ð�Þ ¼ 1, so there is a nondegenerate symmetric
bilinear form, unique up to scalar, satisfying

Bð�ðgÞu,�ðgÞvÞ ¼ Bðu, vÞ,

for all g 2 Oðn, FqÞ, u, v 2 V. So then B� must be a scalar multiple of B, and therefore
must also be symmetric. Then we have "�ð�Þ ¼ 1.

Now assume that the irreducible ð�,V Þ of G, when restricted to H, is isomorphic to
the direct sum of two irreducible representations ð�1,V1Þ and ð�2,V2Þ, which restrict
to Oðn, FqÞ to give the irreducibles ð�1,V1Þ and ð�2,V2Þ, respectively. Now for any
g 2 Oðn, FqÞ, and u, v 2 V1, we have

B�ð�1ðgÞu,�1ðgÞvÞ ¼ B�ðu, vÞ:

Again from Gow’s result, "ð�1Þ ¼ 1, and so there is a symmetric nondegenerate
Oðn, FqÞ-invariant bilinear form B on V1, unique up to scalar. Then if B� restricted to
V1�V1 is nondegenerate, it would have to be a scalar multiple of B, and so B�

would be symmetric on V1�V1. But since B� is either symmetric or skew-symmetric
on all of V� V, then being nondegenerate and symmetric on a subspace forces it to
be symmetric everywhere. So now we must show B� is nondegenerate on V1�V1.

For g 2 Oðn, FqÞ, u 2 V1, and v 2 V2, we have

B�ð�ðgÞu,
��ðgÞvÞ ¼ B�ð�1ðgÞu,�2ðgÞvÞ ¼ B�ðu, vÞ:

So if B� is nondegenerate on V1�V2, then we would have �̂�1 ffi �2. But �2 ffi �̂�2, and
so we would have �2 ffi �1. This would imply that �1 ffi �2, since the central characters
of �1 and �2 agree with the central character of �. But we cannot have � restricted
to an index 2 subgroup be the direct sum of 2 isomorphic representations, by
[5, Corollary 6.19]. So now B� must be zero on V1�V2, by Schur’s Lemma, which
means B� must be nondegenerate on V1�V1, since B� is nondegenerate on V� V
and V ¼ V1 � V2. Therefore, B� is symmetric, and "�ð�Þ ¼ 1. g

Kawanaka and Matsuyama [6] obtained a formula for the invariants "�ð�Þ which
generalized the classical formula of Frobenius and Schur. One of the results in [6],
which generalizes the Frobenius–Schur involution formula, is that if "�ð�Þ ¼ 1 for
all irreducible representations � of a group G, then the sum of the degrees of the
irreducibles of G is equal to the number of elements in G satisfying g �g ¼ 1. From
this and Theorem 2, we obtain the following.
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COROLLARY 2 Let q be odd and let G ¼ GOðn, FqÞ. The sum of the degrees of the
irreducible representations of G is equal to

��fg 2 Gj g2 ¼ �ðgÞI g
��:

It is perhaps worth noting that in the case of the group of similitudes for a split
orthogonal group over Fq, this is equal to the number of symmetric matrices in G.
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