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Abstract. Let G be a finite Coxeter group. Using previous results on
Weyl groups, and covering the cases of non-crystallographic groups, we
show that G has an involution model if and only if all of its irreducible
factors are of type An, Bn, D2n+1, H3, or I2(n).
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1. Introduction

Let G be a finite group such that every irreducible complex representation
of G may be realized over the real numbers, or is orthogonal, and let Irr(G)
denote the collection of characters of irreducible complex representations of
G. Let 1 = x1, x2, . . . , xl be a set of representatives of conjugacy classes
such that x2

i = 1, and let CG(xi) be the centralizer of xi in G. From the
Frobenius-Schur involution formula (see [10, Cor. 4.6]), we have∑

χ∈Irr(G)

χ(1) =
∣∣{x ∈ G | x2 = 1}

∣∣ =
l∑

i=1

[G : CG(xi)].

Let ψi be a linear character of CG(xi). We say that the set of linear char-
acters {ψi}li=1 is an involution model for G if we have

l∑
i=1

IndGCG(xi)
(ψi) =

∑
χ∈Irr(G)

χ.

That is, {ψi}li=1 is an involution model for G exactly when each induced
character IndGCG(xi)

(ψi) is multiplicity free, and no pair of these induced
characters has a common constituent.

If G is a finite Coxeter group, then in fact all of the irreducible complex
representations of G are orthogonal, and we may ask if G has an involution
model. An involution model for the symmetric group is given in [9], and
for the Weyl group of type Bn in [1] and [14]. The involution model for
the symmetric group is applied in [12] to computational aspects of Fourier
transforms for finite groups. In [1], Baddeley finds an involution model for
Weyl group of type D2n+1, and in [2], he shows that the Weyl group of
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type D2n, n ≥ 2, does not have an involution model. It is mentioned in
[1] that it is easy to check that the Weyl group of type G2 (isomorphic to
the dihedral group of order 12, I2(6)) has an involution model, and that it
has been checked that the exceptional Weyl groups of type F4, E6, E7, and
E8, do not have involution models, and this can be verified with a computer
algebra package.

Here, we investigate whether there are involution models for the non-
crystallographic irreducible Coxeter groups, which are the dihedral groups
(we denote the dihedral group of order 2n by I2(n)), and the groups of type
H3 and H4. In Section 2, we show that the dihedral groups have involution
models, and in Section 3, we observe that the group of type H3 does have
an involution model, while the group of type H4 does not. For the group
of type H4, although we could verify by computer that it has no involution
model, we give a completely conceptual proof. The key feature of the group
of type H4 which prevents it from having an involution model is the fact
that it has an irreducible character with Schur index 2 over Q, a result of
Benson and Grove [3]. In Section 4, we apply the main results to classify all
finite subgroups of GL(2,R) and GL(3,R) which have involution models.

Every finite Coxeter group is isomorphic to a direct product of irreducible
Coxeter groups, which are classified as outlined above. If the finite group G
is a direct product of groups, say

G ∼= ⊕ki=1Gi,

then the involutions ofG are just ordered k-tuples of involutions coming from
the Gi, the centralizers of which are direct products of the corresponding Gi-
centralizers, and the irreducible representations of G are all tensor products
of irreducible representations of the Gi. This implies the following result.

Lemma 1. Let G be a finite group such that G ∼= ⊕ki=1Gi. Then G has an
involution model if and only if each Gi has an involution model.

We now state the main result, which follows from the known results on
Weyl groups, the cases of non-crystallographic groups covered here, and
Lemma 1.

Theorem 1. Let G be a finite Coxeter group. Then G has an involution
model if and only if each irreducible Coxeter factor of G is of type An, Bn,
D2n+1, H3, or I2(n).

2. The dihedral groups

The purpose of this section is to prove the following.

Proposition 1. The dihedral groups have involution models.

Proof. We denote the dihedral group with 2n elements by I2(n). In terms
of generators and relations, we write

I2(n) ∼= 〈σ, ρ | σ2 = 1, ρn = 1, σρσ = ρ−1〉.
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If n is odd, there are two conjugacy classes of elements which square to 1,
which are K1 = {1} and K2 = {σ, σρ, . . . , σρn−1}. Then CI2(n)(1) = I2(n),
and taking σ as a representative element of K2, we have CI2(n)(σ) = 〈σ〉. Let

1 be the trivial character of 〈σ〉. We claim that IndI2(n)
〈σ〉 (1) is multiplicity

free. It is enough to show that this induced representation is multiplicity
free when restricted to 〈ρ〉. For any irreducible character χ of 〈ρ〉, we apply
Frobenius reciprocity to obtain

〈Res〈ρ〉IndI2(n)
〈σ〉 (1), χ〉 = 〈1,Res〈σ〉IndI2(n)

〈ρ〉 (χ)〉 = 1,

since χI2(n)(σ) = 0.
Now let ε be the one-dimensional representation of I2(n) defined by ε(σ) =

−1 and ε(ρ) = 1. Since ε restricts to a nontrivial one-dimensional represen-
tation of 〈σ〉, we have

〈ε, IndI2(n)
〈σ〉 (1)〉 = 〈Res〈σ〉(ε),1〉 = 0.

Therefore the characters ψ1 = ε and ψ2 = 1 give us an involution model of
I2(n) when n is odd.

In the case that n is even, there are four conjugacy classes of elements
which square to 1. If xi is a representative of the class Ki, let us denote
Ti = CI2(n)(xi). There are two central classes, K1 = {1} and K2 = {ρn/2},
so that T1 = T2 = In, and there are the classes

K3 = {σ, ρ2σ, . . . , ρn−2σ} and K4 = {ρσ, ρ3σ, . . . , ρn−1σ}.
Taking σ and ρσ as representatives of K3 and K4, respectively, we have

T3 = 〈σ, ρn/2〉 and T4 = 〈ρσ, ρn/2〉.
Let ψ1 = ε, defined by ε(ρ) = 1 and ε(σ) = −1, and define ψ2 by ψ2(ρ) = −1
and ψ2(σ) = −1. Let ψ3 of T3 be the trivial character, and let ψ4 of T4 be
defined by ψ4(ρn/2) = −1 and ψ4(ρσ) = −1.

We now show that IndI2(n)
T3

(ψ3) and IndI2(n)
T4

(ψ4) are multiplicity free.
As before, we can just check that each of these induced representations
is multiplicity free when restricted to 〈ρ〉. We have, for any irreducible
character χ of 〈ρ〉,

〈Res〈ρ〉IndI2(n)
T3

(1), χ〉 = 〈1,ResT3IndI2(n)
〈ρ〉 (χ)〉,

which is equal to 1 if χ(ρn/2) = 1 and 0 if χ(ρn/2) = −1. The case for T4 is
similar, and we see that both induced representations are multiplicity free.

When restricting ψ1 and ψ2 to T3 or T4, the values are different than ψ3

and ψ4 on at least one element, and so neither ψ1 nor ψ2 are constituents
of IndI2(n)

T3
(ψ3) nor IndI2(n)

T4
(ψ4), by Frobenius reciprocity. We now need to

show that IndI2(n)
T3

(ψ3) and IndI2(n)
T4

(ψ4) have no irreducible constituents in
common. We have

〈IndI2(n)
T3

(1), IndI2(n)
T4

(ψ4)〉 = 〈1,ResT3IndI2(n)
T4

(ψ4)〉 = 0,
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since ψ4(ρn/2) = −1, and this is the only nontrivial element of T3 for which
ψ
I2(n)
4 takes nonzero value. We have thus obtained an involution model. �

3. Groups of type H3 and H4

The group of type H3 is isomorphic to the group of symmetries of the
icosahedron, has order 120, and is isomorphic to Alt(5)×Z/2Z, where Alt(5)
is the alternating group on 5 letters. The group Alt(5) has an involution
model, as given in [4, Sec. 3], and since Z/2Z has an involution model, it
follows from Lemma 1 that the group of type H3 has an involution model.

We now consider the group of type H4, which is isomorphic to the group
of symmetries of a 120-hedroid in R4, and has order 14, 400. The Coxeter
graph for H4 is as follows, where Π = {α1, α2, α3, α4} is the fundamental
root system:

d
α1

5 d
α2

d
α3

d
α4

The conjugacy classes and character table of H4 were first explicitly found by
Grove [6]. From those tables, we see that H4 has exactly three non-central
classes of involutions (classes K3, K26, and K27 in [6]). We may analyze the
centralizers of these involutions using results which we now outline.

The conjugacy classes of involutions in a Coxeter group have been classi-
fied by Richardson [13] and Springer [15], and this theory can be found in
[11, Chapter VIII]. Let W be a finite Coxeter group with fundamental root
system Π, and corresponding fundamental generators {sα | α ∈ Π}. For cer-
tain J ⊆ Π, there exists a specific involution cJ which lies in the parabolic
subgroup WJ = 〈sα | α ∈ J〉 of W , and every involution of W is conjugate
to some cJ . From [11, Sec. 27-3, Prop. B], two involutions cJ and cJ ′ are
conjugate exactly when the parabolic subgroups WJ and WJ ′ are conjugate,
and the centralizer of cJ is exactly the normalizer of WJ . Using [11, Sec.
27-3, Prop. A], it can be determined exactly which parabolic subgroups WJ

of W contain the involutions cJ . Namely, these are the parabolic subgroups
for which the Coxeter graph for WJ contains no disjoint copy of type An
(n ≥ 2), D2n+1, E6, or I2(2n+ 1).

Howlett [8] determined the structure of normalizers of parabolic sub-
groups in finite Coxeter groups. He proved that ifWJ is a parabolic subgroup
of W , then NW (WJ) is a semidirect product of WJ by the group

W ′ = {w ∈W | w(J) = J},

and furthermore proved that W ′ is a semidirect product with normal factor
W ′′, where W ′′ is isomorphic to a Coxeter group. In [8], each type of irre-
ducible finite Coxeter group is considered, and tables are given describing
the structure of W ′ for each possible parabolic subgroup WJ in every type.
We may now prove the following.
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Proposition 2. Each centralizer of an involution in H4 has the property
that all of its complex irreducible characters are real-valued.

Proof. From [11, Sec. 27-3, Prop. A], the parabolic subgroups WJ of H4

which contain the involutions cJ representing the three distinct conjugacy
classes of involutions are

J = {α1, α2, α3}, WJ
∼= H3, J = {α1}, WJ

∼= A1,

and J = {α1, α3},WJ
∼= A1 ×A1.

The normalizer in each case is determined in [8, pg. 79]. In the first case,
W ′ ∼= A1, and acts trivially on WJ

∼= H3, and so the normalizer is isomorphic
toH3×A1. In the second case, W ′ ∼= H3, and again we have the normalizer is
isomorphic to H3 ×A1. In these two cases, the centralizer of the involution
is a Coxeter group, and so all of their irreducible complex characters are
real-valued. In the third case, we have

W ′ = 〈w1, w2 | w2
1 = w2

2 = (w1w2)4 = 1〉 ∼= B2,

a dihedral group of 8 elements, where the action of W ′ on WJ is that w1

switches the generators of the two A1 factors (so w1(α1) = α2), and w2 acts
trivially. In particular, in this case the centralizer of an involution is a group
of order 32 which is not a Coxeter group, since it is neither a direct product
nor dihedral. However, this group does have the property that every element
is a product of two involutions, since this is true in the dihedral group W ′,
and every element in WJ is an involution. Thus, every element in this group
is conjugate to its inverse, and so every irreducible complex character of this
group is real-valued. �

It is noted in [7] that Theorem 2 has been verified with a computer, along
with more subgroups of H4, and in fact the irreducible characters of the
centralizers of involutions in H4 are all orthogonal.

Let χ be the character of an irreducible complex representation of a finite
group G, and let Q(χ) be the field of rationals with the values of χ adjoined.
Recall that the Schur index of χ over Q, denoted mQ(χ), is the smallest
positive integer m such that mχ is the character of a representation which
can be realized over the field Q(χ).

Lemma 2. Let G be a finite group such that, for any x ∈ G with x2 = 1,
the linear characters of CG(x) take only the values 1 and −1. If G has
any irreducible complex character χ such that mQ(χ) > 1, then G has no
involution model.

Proof. For any x ∈ G such that x2 = 1, let ψ be a linear character of CG(x).
Since ψ takes only the values ±1, then the induced character ψG can be
realized over Q. From [10, Cor. 10.2(c)], if χ is any irreducible constituent
of ψG, then

mQ(χ)
∣∣〈χ, ψG〉.
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If there is an irreducible character χ of G with mQ(χ) > 1, then χ cannot
appear with multiplicity one in any induced character of the form ψG. Thus
G cannot have an involution model. �

The following result completes the proof of Theorem 1.

Proposition 3. The Coxeter group of type H4 has no involution model.

Proof. From Proposition 2, the irreducible complex characters of the cen-
tralizer of an involution in H4 are all real-valued. In particular, the linear
characters of these centralizers take only the values ±1. Benson and Grove
[3] have shown that H4 has exactly one irreducible character (the unique
character of highest degree 48) which has Schur index 2 over Q. (In fact,
this is the only irreducible character of any irreducible finite Coxeter group
which does not have Schur index 1 over Q.) It follows from Lemma 2 that
H4 cannot have an involution model. �

Given the application to the case of H4 in Proposition 3, it may be of inter-
est to investigate the reality properties and Schur indices of the normalizers
of parabolic subgroups of finite Coxeter groups in general. This investigation
has begun in the paper of Guralnick and Montgomery [7], with the study of
Frobenius-Schur indicators of certain subgroups of Weyl groups.

4. Totally orthogonal subgroups of GL(2,R) and GL(3,R)

A finite group G is totally orthogonal if each of its irreducible complex
representations is orthogonal, that is, can be realized over the real numbers.
From the definition of an involution model, it is a necessary condition that
a finite group G be totally orthogonal in order to have an involution model.
We conclude with the following result, which says in the case of a finite
subgroup of GL(2,R) or GL(3,R), this is also a sufficient condition.

Corollary 1. Let G be a finite totally orthogonal subgroup of GL(2,R) or
GL(3,R). Then G has an involution model.

Proof. Although the finite subgroups of GL(2,R) and GL(3,R) are well
known and could be dealt with case by case, we instead appeal to a re-
sult of Wang and Grove [16], which states that if G is any finite group which
is totally orthogonal, then G is generated by involutions. In GL(2,R), there-
fore, the totally orthogonal finite subgroups are generated by reflections or
−I, where I is the identity in GL(2,R). Thus such a subgroup is either a
finite reflection group of rank 2, or the direct product of such a group with
〈−I〉, both of which have involution models by Theorem 3 and Lemma 1.

In GL(3,R), a finite totally orthogonal subgroup H will be generated by
−I, reflections, or elements which are the product of a reflection with −I.
Unless H is only generated by reflections and products of reflections with
−I, but does not contain −I, then it follows immediately from Theorem
3 and Lemma 1 that H has an involution model. Otherwise, we see that
〈H,−I〉 ∼= H × 〈−I〉 is a finite reflection group of rank 3, or the direct
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product of one with 〈−I〉. Then H × 〈−I〉 has an involution model, and so
H does by Lemma 1. �

There is no analogue of Corollary 1 for GL(4,R), as the Coxeter groups
of type D4, F4, and H4 are all totally orthogonal subgroups which do not
have involution models.
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