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Abstract. We prove that there exists an integer-valued function f on positive inte-
gers such that if a finite group G has at most k real-valued irreducible characters, then
|G{SolpGq| ď fpkq, where SolpGq denotes the largest solvable normal subgroup of G.
In the case k “ 5, we further classify G{SolpGq. This partly answers a question of
Iwasaki [15] on the relationship between the structure of a finite group and its number
of real-valued irreducible characters.

1. Introduction

Analyzing fields of character values is a difficult problem in the representation theory
of finite groups. Real-valued characters and rational-valued characters have received
more attention than others.

It is well-known that a finite group G has a unique real/rational-valued irreducible
character if and only if G has odd order. In [15], Iwasaki proposed to study the relation-
ship between the structure of G and the number of real-valued irreducible characters of
G, which we denote kRpGq. He showed that if kRpGq “ 2, then G has a normal Sylow
2-subgroup which is either homocyclic or a so-called Suzuki 2-group of type A. Going
further, Moretó and Navarro proved in [17] that if G has at most three irreducible real-
valued characters, then G has a cyclic Sylow 2-subgroup or a normal Sylow 2-subgroup
which is homocyclic, quaternion of order 8, or an iterated central extension of a Suzuki
2-group whose center is an elementary abelian 2-group. In particular, the groups with
at most three irreducible real-valued characters must be solvable. Indeed, it was even
proved in [18] that a finite group with at most three degrees of irreducible real-valued
characters must be solvable.

In a more recent paper [23], the third author studied groups with four real-valued
irreducible characters. Among other results, he proved that a nonsolvable group with
exactly four real-valued irreducible characters must be the direct product of SL3p2q and
an odd-order group. Classifying finite groups with exactly five real-valued irreducible
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characters seems to be a difficult problem. In the next result, which we prove in
Section 2, we control the nonsolvable part of those groups. We write SolpGq to denote
the solvable radical of G, i.e. the largest solvable normal subgroup of G.

Theorem A. Suppose that a finite group G has at most five real-valued irreducible
characters. Then G{ SolpGq is isomorphic to the trivial group, SL3p2q, A5, PSL2p8q ¨ 3
or 2B2p8q ¨ 3.

Theorem A and the aforementioned results suggest that the nonsolvable part of a
finite group perhaps is bounded in terms of the number of real-valued irreducible char-
acters of the group. We obtain the following result, proved in Section 4, which provides
a partial answer to Iwasaki’s problem.

Theorem B. There exists an integer-valued function f on positive integers such that if
G is a finite group with at most k real-valued irreducible characters, then |G{ SolpGq| ď
fpkq.

Our arguments would allow us to find explicit bounds in Theorem B, but these bounds
perhaps are far from best possible. Therefore, for the sake of simplicity, we have not
tried to find the best bounding function.

Our proof of Theorem B uses the classification of finite simple groups and the fol-
lowing statement for simple groups, proved in Section 3, which may be of independent
interest.

Theorem C. For a finite nonabelian simple group S and S Ĳ G ď AutpSq, let kRpG|Sq
denote the number of real-valued irreducible characters of G whose kernels do not con-
tain S. Then kRpG|Sq Ñ 8 as |S| Ñ 8.

There is no rational-valued analogue of Theorem B, as shown by the simple groups
PSL2p3

2k`1q with k ě 1. We also note that, by Brauer’s permutation lemma, the num-
ber of real-valued irreducible characters and that of conjugacy classes of real elements
in a finite group are always the same.

2. Nonsolvable groups with five real-valued irreducible characters

For a finite group G, we denote by RepGq the set of all real elements of G, EpGq the set
of orders of real elements of G and IrrRpGq the set of real-valued irreducible characters
of G. Recall that the generalized Fitting subgroup F˚pGq of G is the central product
of the layer EpGq of G (the subgroup of G generated by all quasisimple subnormal
subgroups of G) and the Fitting subgroup FpGq. Note that if G has a trivial solvable
radical, that is, it has no nontrivial normal solvable subgroups, then F˚pGq “ EpGq is a
direct product of nonabelian simple groups. Moreover, if F˚pGq is a nonabelian simple
group, then G is an almost simple group with socle F˚pGq.

Lemma 2.1. Let G be a finite nonsolvable group with a trivial solvable radical. If
|EpGq| ď 5, then G is an almost simple group.
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Proof. As the solvable radical of G is trivial, we see that F˚pGq “ EpGq “
śr

i“1 Si is a
direct product of nonabelian simple groups Si p1 ď i ď rq, for some integer r ě 1. It
suffices to show that r “ 1.

Suppose by contradiction that r ě 2. Let M “ S1 ˆ S2. Since EpMq Ď EpF˚pGqq Ď
EpGq, we deduce that |EpMq| ď 5. Observe that if xi P RepSiq for i “ 1, 2, then
x1x2 P RepMq and thus if x1 and x2 have coprime orders, then

opx1x2q “ opx1qopx2q P EpMq.

We consider the following cases.

(i): S1 or S2 has no real element of order 4. Without loss, assume that S1 has no
real element of order 4. Then by [23, Proposition 3.2], S1 is isomorphic to one of the
following groups:

SL2p2
f qpf ě 3q,PSU3p2

f qpf ě 2q, 2B2p2
2f`1qpf ě 1q;

PSL2pqqp5 ď q ” 3, 5 pmod 8qq, J1,
2G2p3

2f`1qpf ě 1q.

By [18, Theorem 3.1], S1 contains real elements z1 and z2 of order p1 and p2, where
p1 ‰ p2 are odd primes. Since S2 has a real element of order 2, we see that M has real
elements of order 1, 2, p1, p2, 2p1, 2p2, which is impossible.

(ii): Both S1 and S2 have real elements of order 4. By [7, Proposition 6.4], S1 contains
a real element of order p, where p is an odd prime. Since S2 has real elements of order 2
and 4, M has real elements of order 1, 2, 4, p, 2p and 4p, which is impossible again. �

Next, we classify all finite nonabelian simple groups S with |EpSq| ď 5. Recall that
a finite group G is called a pCq-group if the centralizer of every involution of G has a
normal Sylow 2-subgroup. By [6, Lemma 2.7], G is a pCq-group if and only if G has no
real element of order 2m with m ą 1 being odd.

Lemma 2.2. Let S be a nonabelian simple group. Then |EpSq| ď 5 if and only if S is
isomorphic to one of the following simple groups:

p1q A5 – PSL2p4q, SL3p2q, PSL3p3q, or PSU3p3q;
p2q PSL2p8q, A6 – PSL2p9q,PSL2p11q,PSL2p27q,PSU3p4q,PSL3p4q,

2B2p8q;
p3q PSL2p3

f q, where f ě 7 is an odd prime, 3f ` 1 “ 4r, 3f ´ 1 “ 2s, and r, s are
distinct odd primes.

Proof. By [23, Theorem B], we have 4 ď |EpSq| ď 5. If S – PSL3p3q, PSU3p3q or SL3p2q,
then |EpSq| “ 5 and these groups appear in part p1q. Assume that S is not isomorphic
to one of these groups. By [18, Theorem 3.1], EpSq contains at least two distinct odd
primes, say p1 and p2.

Assume first that |EpSq| “ 4. Then EpSq “ t1, 2, p1, p2u. It follows that S is a
pCq-group and thus S – A5 by [23, Theorem 3.1].

Assume next that |EpSq| “ 5. Assume that 4 P EpSq. Then EpSq “ t1, 2, 4, p1, p2u.
In particular, S has no real element of order 2m with m ą 1 odd. By [20, Theo-
rem 1], S is isomorphic to PSL2ppq where p is a Fermat or a Mersenne prime; A6;
or PSL2pqq,

2B2pqq,PSU3pqq, or PSL3pqq where q ą 2 is a power of 2. Assume that
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4 R EpSq. By [23, Proposition 3.2] S is isomorphic to one of the following simple
groups:

SL2p2
f qpf ě 3q,PSU3p2

f qpf ě 2q, 2B2p2
2f`1qpf ě 1q;

PSL2pqqp5 ď q ” 3, 5pmod 8qq, J1,
2G2p3

2f`1qpf ě 1q.

We can check that A6 has five distinct real element orders but J1 has more than five
distinct real element order. So we may assume that S is not one of these two groups.
We now consider the following cases.

Case 1: S – SL2p2
f q, f ě 3. If 3 ď f ď 6, then we can check that only SL2p8q has

exactly five distinct real element orders. So, assume f ą 6. Since SL2p2
f q contains real

elements x and y of order 2f ´ 1 and 2f ` 1, respectively, together with real elements
of order 1 and 2, we deduce that one of the numbers 2f ˘ 1 is an odd prime and the
other is a square of an odd prime. Since f ě 6, we can check that this cannot occur.

Case 2: S – PSL2pqq, q “ pf , where f ě 1 and p ą 2 is a prime. Using [9], if
q ď 37, then q P t9, 11, 27u. Assume that q ” ε mod 4, ε “ ˘1. In this case, S has real
elements of order order pq´ εq{2 and pq` εq{2, respectively. Note that pq´ εq{2 is even.

Assume that pq ´ εq{2 “ 2a for some integer a ě 1. Since q ą 37, 2a ě 16 and thus
S has real elements of order 1, 2, 4, 8, 16 and pq ` εq{2, which is a contradiction. Thus
pq ´ εq{2 is divisible by 2r for some odd prime r. Let s be a prime divisor of pq ` εq{2.
Then t1, 2, r, s, 2ru Ď EpSq and since |EpSq| “ 5, pq´εq{2 “ 2r and pq`εq{2 “ s, where
r, s are distinct odd primes. If p ą 3, then since 3 | q2´1, we must have r “ 3 or s “ 3,
which is not the case as q ą 37. Therefore p “ 3 and q “ 3f ą 37 so f ě 4. If f is even,
then q ” 1 mod 8 and thus pq ´ 1q{2 is divisible by 4 which is impossible. Thus f ě 5
is odd and so ε “ ´1. Hence p3f ` 1q{2 “ 2r and p3f ´ 1q{2 “ s. The latter equation
forces f to be a prime. This is part p3q of the lemma. Direct calculation shows that
f ě 7.

Case 3: S – PSU3p2
f q, f ě 2. In this case, S has a subgroup T – SL2p2

f q. From
Case 1, we must have f “ 2 or 3. However |EpPSU3p8qq| “ 6 so S – PSU3p4q.

Case 4: S – 2B2p2
2f`1q, f ě 1. If f “ 1, then we can check that S satisfies the

hypothesis of the lemma. Assume f ě 2. By [21, Theorem 9 and Proposition 16],
S has three nontrivial real elements of odd distinct orders, which are 22f`1 ´ 1 and
22f`1 ˘ 2f`1 ` 1. As |EpSq| “ 5, all of these numbers must be primes. Hence

42f`1
` 1 “ p22f`1

` 2f`1
` 1qp22f`1

´ 2f`1
` 1q

is a product of two distinct primes. Since 5 divides 42f`1 ` 1, we deduce that

22f`1
´ 2f`1

` 1 “ 5

which is impossible as f ě 2.

Case 5: S – PSL3p2
f q, f ě 2. As S contains a subgroup isomorphic to SL2p2

f q, we
deduce that f “ 2 or 3. Using [9], only PSL3p4q satisfies the hypothesis of the lemma.

Case 6: S – 2G2p3
2f`1q, f ě 1. In this case, S contains subgroups isomorphic to

PSL2p3
2f`1q and PSL2p8q. Since |EpPSL2p8qq| “ 5, we deduce that

EpPSL2p3
2f`1

qq Ď EpPSL2p8qq “ t1, 2, 3, 7, 9u.
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Thus p32f`1 ` 1q{2 ď 9 as PSL2p3
2f`1q has a real element of order p32f`1 ` 1q{2.

Therefore, 32f`1 ď 17 which is impossible as f ě 1.

Conversely, if S is one of the simple groups in p1q-p3q, then we can check that S has
at most 5 distinct real element orders. �

Lemma 2.3. Let G be an almost simple group with a nonabelian simple socle S. Then

p1q G has exactly four real-valued irreducible characters if and only if G – SL3p2q.
p2q G has exactly five real-valued irreducible characters if and only if G is isomor-

phic to A5,PSL2p8q ¨ 3 or 2B2p8q ¨ 3.

Proof. Part (1) follows from [23, Theorem 3.3]. Assume thatG is an almost simple group
with a nonabelian simple socle S and that G has exactly five real-valued irreducible
characters. By Brauer’s Lemma on character tables, G has exactly five conjugacy classes
of real elements and thus |EpGq| ď 5. Hence |EpSq| ď 5 as EpSq Ď EpGq. Therefore S
is one of the simple groups appear in the conclusion of Lemma 2.2. If S is one of the
groups in p1q ´ p2q of Lemma 2.2, then by using [9], G is isomorphic to A5,PSL2p8q ¨ 3
or 2B2p8q ¨ 3.

Now assume that S – PSL2pqq with q “ 3f , where f ě 7 is a prime, 3f ` 1 “ 4r and
3f ´ 1 “ 2s, where r, s are distinct odd primes. Let x P S be a real element of order
s. Then xxy is a Sylow s-subgroup of S and its normalizer in S is a dihedral group of
order 2s. It follows that S has ps ´ 1q{2 conjugacy classes of real elements of order s.
Since |OutpSq| “ 2f , we see that G has at least ps ´ 1q{p4fq conjugacy classes of real
elements of order s. Since G already has 4 conjugacy classes of real elements of orders
1, 2, r, 2r, we deduce that G must have exactly one conjugacy class of real element of
order s. Since ps ´ 1q{p4fq “ p3f ´ 3q{p8fq and f ě 7 is a prime, we can check that
p3f ´ 3q{p8fq ą 1. Thus this case cannot occur. �

The next theorem proves Theorem A, and provides additional information.

Theorem 2.4. Let G be a finite group. Assume that G has at most five real-valued
irreducible characters. Then G is either solvable or G{ SolpGq – SL3p2q,A5,PSL2p8q ¨3,
2B2p8q ¨ 3. Moreover, if | IrrRpG{ SolpGqq| “ 5, then one of the following holds.

p1q G – A5 ˆK, where K is of odd order.
p2q G – pLˆKq ¨ 3, where L – PSL2p8q or 2B2p8q and K is of odd order.

Proof. We may assume thatG is nonsolvable and | IrrRpGq| ď 5. Then | IrrRpG{ SolpGqq| ď
5 and thus |EpG{ SolpGqq| ď 5. By Lemma 2.1, G{ SolpGq is an almost simple group.
It follows from [23, Theorem B] that G{ SolpGq has at least four real-valued irreducible
characters; hence 4 ď | IrrRpG{ SolpGqq| ď 5. Now Lemma 2.3 yields the first part of
the theorem.

Assume that | IrrRpG{ SolpGqq| “ 5. By Lemma 2.3, G{ SolpGq – A5,PSL2p8q ¨ 3 or
2B2p8q ¨ 3. In all cases, G{ SolpGq has 3 conjugacy classes of nontrivial real elements
of odd orders. As real elements of odd order of G{ SolpGq lift to real elements of odd
order of G by [13, Lemma 2.2], G has three conjugacy classes of nontrivial real elements
of odd orders. It follows that SolpGq has no nontrivial real element of odd order and
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thus SolpGq has a normal Sylow 2-subgroup by [7, Proposition 6.4]. Moreover, as
| IrrRpGq| ď 5, the above argument shows that G has no real element of order 2m with
m ą 1 being odd, so G is a pCq-group and has no real element of order 4. By [23,
Theorem 2.3],

L “ O21
pGq – SL2p2

f
qpf ě 2q or 2B2p2

2f`1
qpf ě 1q.

It follows that L – A5,PSL2p8q or 2B2p8q as these are the only possible nonabelian
composition factors of G.

Let K :“ CGpLq. Then KXL “ 1 and KˆL�G. Since G is a pCq-group, we deduce
that |K| is odd. Now G{K is isomorphic to a subgroup of AutpLq and | IrrRpG{Kq| ď 5,
we conclude that either G “ K ˆA5 or G “ pLˆKq ¨ 3, where L – PSL2p8q or 2B2p8q,
as claimed. �

3. Real-valued characters of almost simple groups

In this section we prove Theorem C. We begin with the following observation:

Lemma 3.1. Keep the notation as in Theorem C. Then kRpG|Sq “ kRpGq ´ kRpG{Sq,
kRpGq ě kRpSq{|OutpSq|, and kRpG{Sq ď |OutpSq|. In particular, we have

kRpG|Sq ě kRpSq{|OutpSq| ´ |OutpSq|.

For S a finite nonabelian simple group, we will write

KpSq :“ kRpSq{|OutpSq| ´ |OutpSq|.

Hence, to prove Theorem C, it suffices to show that KpSq Ñ 8 as |S| Ñ 8. We remark
that due to the nature of the statement of Theorem C, we may disregard a finite number
of simple groups. Recall that we may view kRpSq as either the number of real-valued
irreducible characters or the number of real conjugacy classes of S.

3.1. Initial Considerations. Throughout, when q is a power of a prime p, we will
write νpqq for the positive integer such that q “ pνpqq.

Lemma 3.2. Let S be a simple group isomorphic to the alternating group An for n ě 5,
or a simple group of Lie type 2B2pqq,

2G2pqq, G2pqq,
3D4pqq, D4pqq,

2F4pqq, F4pqq, or
2D2npqq with n ě 2 for q a power of a prime. Or assume q ı 3 pmod 4q and that S is
a simple group of Lie type Bnpqq with n ě 3, Cnpqq with n ě 1, or D2npqq with n ě 3.
Then KpSq Ñ 8 as |S| Ñ 8.

Proof. Note that every conjugacy class of the symmetric group Sn is real, and that a
class in Sn yields exactly one class in An if and only if the cycle type of the elements in
the classes contain an even cycle or two cycles of the same length. Since the number of
cycle types of this form is increasing with n and |OutpAnq| “ 2 for n ě 7, we see that
the statement holds if S “ An.

If S is G2pqq,
2G2pqq,

2B2pqq, or 2F4pqq, then observing the generic character tables
available in CHEVIE [10], we see that all except two, six, two, or twelve, respectively,
of the characters are real-valued. If S is F4pqq, then all except four of the characters
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are real-valued, using [24, Theorem 4.1]. If S is one of the remaining simple groups of
Lie type listed, then [22, Theorem 1.2] yields that every element of S is real.

Further, OutpSq ď 24νpqq where q “ pνpqq for a prime p. Hence since the number of
classes in S can be written as a polynomial in p whose exponents are in terms of n and
νpqq, the statement also holds in these cases. �

3.2. Fixed Parameters and Classical Groups.

Proposition 3.3. Let S be a family of simple groups of Lie type with the same type and
rank. That is, there is some generic reductive group G as in [2, Section 2.1] of simply
connected type such that for each S P S, S is of the form G{ZpGq where G “ Gpqq for
some prime power q. Then for S P S, we have KpSq Ñ 8 as q Ñ 8.

Proof. Let q be a power of a prime p and let G “ Gpqq be the fixed points GF of a
simple simply connected algebraic group G over Fq under a Frobenius morphism F .
Let T be a rational maximal torus of G and let Φ and ∆ be a root system and set of
simple roots, respectively, for G with respect to T. Let |∆| “ n. We use the notation
as in [12] for the Chevalley generators. In particular, note that T is generated by hαptq

for t P Fˆq and α P Φ, and NGpTq is generated by T and the nαp1q for α P Φ.

Note that we may assume that S is not one of the families considered in Lemma 3.2.
Hence if F is twisted, we may assume that F “ τFq where |τ | “ 2 and either G is type
An or n ą 4. Here Fq denotes the standard Frobenius morphism induced from the map

x ÞÑ xq on Fq, and τ denotes a graph automorphism of G.

First assume F is not twisted, so τ “ 1. Fix some α P ∆. Then for t P Fˆq , we know
s :“ hαptq is real in G, with reversing element nαp1q. Further, s lies in the maximally
split torus T :“ TF . By [5, Cor. 0.12], we know that NGpTq controls fusion in T, so
if s “ hαptq and s1 :“ hαpt

1q for t, t1 P Fˆq are conjugate, then they are conjugate in
NGpTq. In particular, this means there is some product x :“

ś

βPJ nβp1q with J Ď Φ
that conjugates s to s1.

Then by the properties of the Chevalley generators from [12, 1.12.1], we see this is
impossible unless t1 “ ˘t˘1. Indeed, hαptq

nβp1q “ hrβpαqp˘tq, so we may write hαptq
x “

hrpαqp˘tq where r :“
ś

βPJ rβ is the corresponding composition of reflections. Then if

hαptq
x “ hαpt

1q, we have hrpαqp˘tq “ hαpt
1q. But if }rpαq “

řn
i“1 ci qαi, then hrpαqp˘tq “

śn
i“1 hαip˘t

ciq. Here ∆ :“ tα1, . . . , αnu and for any β P Φ we write qβ “ 2β{pβ, βq.

Further, since G is simply connected, there is an isomorphism pFˆq qn Ñ T given by
pt1, . . . tnq ÞÑ hα1pt1q ¨ ¨ ¨hαnptnq (see [12, 1.12.5]). Then this yields ci “ 0 for αi ‰ α,

and hence }rpαq “ cqα for some integer c and t1 “ ˘tc. Then since prpαq, rpαqq “ pα, αq,
we have rpαq “ cα and c “ ˘1.

Now by [12, 1.12.6], we see s R ZpGq for δ ‰ ˘1. This yields that kRpGq ě pq´ 3q{2,
and since (except for a finite number of exceptions) |ZpGq| ď n ` 1 and |OutpSq| ď

2pn` 1qνpqq, we see KpSq ě pq´3q
8pn`1q2νpqq

´ 2pn` 1qνpqq Ñ 8 as q Ñ 8.

If τ ‰ 1, we may argue similarly, taking α P ∆ to be fixed by τ , unless G is type An

with n even. In the latter case, we may instead take hα1ptqhαnpt
qq with t P Fˆq2 . Then
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in each case, the element being considered lies in T “ TF (see [12, 2.4.7]) and similar
arguments to above show that we still have KpSq Ñ 8 as nÑ 8. �

Corollary 3.4. Let Spqq be a simple group E6pqq,
2E6pqq, E7pqq, E8pqq, Anpqq, or

2Anpqq, with n a fixed positive integer. Then KpSpqqq Ñ 8 as q Ñ 8.

Lemma 3.5. Let q be a fixed power of a prime and let Sn be a simple group of Lie type
of classical type: Anpqq,

2Anpqq, Bnpqq, Cnpqq, Dnpqq, or 2Dnpqq. Then KpSnq Ñ 8 as
nÑ 8.

Proof. Consider the unipotent characters of Sn. By [16], these characters are real-
valued. For Sn of the form Anpqq or 2Anpqq, these characters are indexed by partitions of

n`1 (see [3, 13.8]). Since the number of these behaves asymptotically like
exppπ

?
2pn`1q{3q

4pn`1q
?

3

as n Ñ 8 (see [1, (5.1.2)]), and |OutpSq| ď 2pq ` 1qνpqq, we have KpSnpqqq Ñ 8 as
nÑ 8.

For Snpqq of the form Bnpqq, Cnpqq, Dnpqq, or 2Dnpqq, the unipotent characters are
indexed by symbols as in [3, 13.8], the number of which is at least the number of
partitions of n´ 1. Then since |OutpSnq| ď 8νpqq for n ě 5, we have KpSnpqqq Ñ 8 as
nÑ 8 again in this case. �

Proposition 3.6. Let Snpqq :“ Ω2n`1pqq, PSp2npqq, or PΩ˘2npqq, with n ě 5. Then
KpSnpqqq Ñ 8 as nq Ñ 8.

Proof. Write S “ Snpqq as G{ZpGq, where G “ GF is the set of fixed points of a simple,
simply connected algebraic group G over Fq under a Frobenius morphism F . Notice
that |ZpGq| ď 4.

Let T be a rational maximal torus of G and let Φ and ∆ be a root system and set of
simple roots, respectively, for G with respect to T. Here we have |∆| “ n and Φ is of
type Bn, Cn, or Dn. We use the notation as in [12, 1.12.1] for the Chevalley generators.

Recall that T is generated by hαptq for t P Fˆq and α P Φ and that NGpTq is generated
by T and the nαp1q for α P Φ.

We will use the standard model as in [12, Remark 1.8.8] for the members of ∆.
Namely, let te1, . . . enu be an orthonormal basis for the n-dimensional Euclidean space
and let ∆ “ tα1, . . . , αnu. Note that for 1 ď i ď n ´ 1, we have αi :“ ei ´ ei`1.

Further, since G is simply connected, there is an isomorphism pFˆq qn Ñ T given by
pt1, . . . tnq ÞÑ hα1pt1q ¨ ¨ ¨hαnptnq (see [12, 1.12.5]).

Using Lemmas 3.2 and 3.5, we may suppose q ě 3. For each 1 ‰ δ P Fˆq , we

let s0pδq :“ hα1pδq, s1pδq :“ hα1pδqhα3pδq, and in general for 0 ď m ď rn´4
2

s, let
smpδq :“

śm
k“0 hα2k`1

pδq. Our choices of m ensure that smpδq P G is fixed by F ,
since in the case of 2Dnpqq “ PΩ´2npqq, smpδq is fixed by the graph automorphism and
Frobenius Fq. Hence smpδq P G “ GF . Further, since pαi, αjq “ 0 for |j ´ i| ą 1, we
see that each sm is real in G, with reversing element

śm
k“0 nα2k`1

p´1q.

Recall that NGpTq controls fusion in T. Hence if smpδq and sm1pδ
1q are conjugate in

G, then there is some w P W :“ NGpTq{T such that smpδq
w “ sm1pδ

1q. But W ď C2 oSn
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(with C2 the group of order 2) where the generators of the base subgroup Cn
2 act via

ei ÞÑ ´ei and the copy of Sn permutes the ei’s. Then by the properties of the Chevalley
generators from [12, 1.12.1], we see this is impossible unless m “ m1 and δ “ δ1.

Note that we have pq ´ 3q{2 choices for δ ‰ ˘1, since smpδq is conjugate to smpδ
´1q,

giving pq´3q{2`1 “ pq´1q{2 elements in this form for a fixed m. Further, since δ ‰ 1
and smpδq has no factor hαnpδq nor hαn´1pδq, we see by [12, 1.12.6] that smpδq R ZpGq,

so we have kRpSq ą
1
4
rn´4

2
s
`

q´1
2

˘

. Further, |OutpSq| ď 8νpqq, so

KpSnpqqq ą
pn´ 4qpq ´ 1q

16 ¨ 8νpqq
´ 8νpqq

which tends to 8 as nq Ñ 8. �

3.3. Linear and Unitary Groups. We write SLεnpqq with ε P t˘1u to denote SLnpqq
for ε “ 1 and SUnpqq for ε “ ´1, and similarly for GLεnpqq and PSLεnpqq. Throughout this

section, we also write rG “ GLεnpqq, G “ SLεnpqq “ r rG, rGs, and S “ G{ZpGq “ PSLεnpqq.

Note that rG – rG˚ in this case, where rG˚ denotes the dual group, and we make this
identification.

If s is a semisimple element of rG, there exists a unique semisimple character rχs
associated to the rG-conjugacy class of s, and rχs´1 is the complex conjugate character of

rχs. Hence rχs is real if s is. If further s P G “ r rG, rGs, then rχs is trivial on Zp rGq, using
[19, Lemma 4.4]. Furthermore, the number of irreducible constituents of χ :“ rχs|G is

exactly the number of irreducible characters θ P Irrp rG{Gq satisfying rχsθ “ rχs, and we

have Irrp rG{Gq “ trχz | z P Zp rGqu. Also, for such z P Zp rGq, if we take the product

with rχz of each character in the Lusztig series for rG indexed by s, we obtain the
Lusztig series indexed by sz, by [5, 13.30]. Then χ is irreducible if and only if s is

not rG-conjugate to sz for any nontrivial z P Zp rGq. Further, if s and s1 are two such
elements, an application of Gallagher’s theorem [14, Corollary 6.17] together with the

above reasoning yields that if rχs|G “ rχs1 |G, then s is conjugate to s1z for some z P Zp rGq.

Hence we aim to construct a collection X of real semisimple elements of G such that

two elements s, s1 P X satisfy that s and s1z for z P Zp rGq are rG-conjugate if and only
if s1 “ s and z “ 1 and such that |X|{|OutpSq| ´ |OutpSq| tends to 8 as nq Ñ 8.

Proposition 3.7. Let Snpqq :“ PSL˘n pqq. Then KpSnpqqq Ñ 8 as nq Ñ 8.

Proof. By Corollary 3.4 and Lemma 3.5, we may assume that q and n are sufficiently
large. Write n̄ :“ tn{4u.

Recall that the semisimple elements of rG are completely determined by their eigen-
values. Consider a semisimple element

s “ spλ1, . . . , λn̄q :“ diagpλ1, λ
´1
1 , λ2, λ

´1
2 , . . . , λn̄, λ

´1
n̄ , In´2n̄q

in G, where each λi is an element of the cyclic subgroup Cq´ε of Fˆq2 and not all of the

λi are in t˘1u.

We see by the dimension of kerps´ 1q that s is not conjugate to sz for any 1 ‰ z “

µIn P Zp rGq, since otherwise 1 “ λiµ “ λ´1
i µ for each i, implying that λ2

i “ 1 for each
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i, contradicting our assumption that not all λi are in t˘1u. Similarly, if s1 is another
semisimple element of this form, defined by λ1i for 1 ď i ď n̄, such that s1 is conjugate

to sz with z “ µIn P Zp rGq, then it must be that µ “ 1 and s is conjugate to s1.

Then by considering the elements of the form

spλ1, 1, . . . , 1q, spλ1, λ1, 1, . . . , 1q, ..., spλ1, . . . , λ1q,

together with those of the form

spλ1, λ2, 1, . . . , 1q, spλ1, λ2, λ2, 1, . . . , 1q, . . . , spλ1, λ2, . . . , λ2q

and

spλ1, λ2, λ3, 1, . . . , 1q, spλ1, λ2, λ3, λ3, 1, . . . , 1q, . . . , spλ1, λ2, λ3 . . . , λ3q

with λ1, λ2, λ3 and their inverses all distinct, we see

kRpSnpqqq ě n̄pq ´ 3q{2` pn̄´ 1qpq ´ 3qpq ´ 5q{4` pn̄´ 2qpq ´ 3qpq ´ 5qpq ´ 7q{8

ą n̄pq ´ 5q3{8´ pq ´ 5qpq ´ 3qpq ´ 6q{4

ą n̄pq ´ 5q3{8´ 2pq ´ 3q3{8

“
pn̄´ 2qpq ´ 5q3 ´ 12pq ´ 5q2 ´ 24pq ´ 5q ´ 16

8
.

So

KpSnpqqq ě
pn̄´ 2qpq ´ 5q3 ´ 12pq ´ 5q2 ´ 24pq ´ 5q ´ 16

16pq ` 1qνpqq
´ 2pq ` 1qνpqq

“
pn̄´ 2qppνpqq ´ 5q3 ´ 12ppνpqq ´ 5q2 ´ 24ppνpqq ´ 5q ´ 16´ 4ppνpqq ` 1q2νpqq2

16ppνpqq ` 1qνpqq
,

which tends toward 8 as nq Ñ 8. �

Theorem C now follows by combining Lemmas 3.2 and 3.5 with Propositions 3.3, 3.6,
and 3.7.

4. Proof of Theorem B

We start with a well-known observation.

Lemma 4.1. Let S be a finite nonabelian simple group. Then there exists a non-
principal irreducible character of S that is extendible to a rational-valued character of
AutpSq.

Proof. For each n ě 5, consider the irreducible character of the symmetric group Sn
labeled by the partition pn´1, 1q. This character restricts irreducibly to the alternating
group An. As it is well known that every character of Sn is rational-valued, the lemma
is proved for the alternating groups. For the sporadic simple groups and the Tits group,
one can check the statement directly by using [4]. Finally, when S is a simple group of
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Lie type, the Steinberg character of S extends to a rational-valued character of AutpSq,
see [8] for instance. �

Proposition 4.2. Assume that N “ S1 ˆ S2 ˆ ¨ ¨ ¨ ˆ Sn, a direct product of copies of a
finite nonabelian simple group S – Si, is a normal subgroup of G. Then the number of
rational-valued irreducible characters of G is at least n.

Proof. Modding out CGpNq if necessary, we may assume that CGpNq “ 1 so that
N � G ď AutpNq. By Lemma 4.1, there exists θ P IrrpSq that is extendible to a
rational-valued character, say λ, of AutpSq. For each 1 ď j ď n, set

ψj :“ θ b ¨ ¨ ¨ b θ b 1Sj`1
b ¨ ¨ ¨ b 1Sn P IrrpNq.

Since AutpNq acts transitively on the direct factors Si’s of N , the AutpNq-orbit of
ψj consists of characters of the form α1 b α2 b ¨ ¨ ¨ b αn where αi P t1Si , θu for every
1 ď i ď n and the number of times that θ appears in the tensor product is precisely
equal to j. This means that the size of the AutpNq-orbit containing ψj is n!{j!pn´ jq!.
On the other hand, we see that ψj is invariant under

pAutpSq o Sjq ˆ pAutpSq o Sn´jq,

and

|AutpNq : pAutpSq o Sjq ˆ pAutpSq o Sn´jq| “ n!{j!pn´ jq!.

We therefore deduce that AutpSq o Sj ˆ AutpSq o Sn´j is the inertia subgroup of ψj in
AutpNq.

Recall that θ extends to the rational-valued character λ P IrrpAutpSqq. Let V be a
CAutpSq-module affording λ. Then AutpSqj acts naturally on V bj, with the character
λ b ¨ ¨ ¨ b λ, and Sj permutes the j tensor factors of V bj. So V bj becomes a tensor-
induced module for AutpSjq “ AutpSq o Sj. Let µ be the character afforded by this
module. Then, as λ is rational-valued, the formula for the tensor-induced character
(see [11] for instance) implies that µ is also rational-valued. We have seen that θj

extends to the rational-valued character µ P IrrpAutpSjqq. It follows that ψj extends
to a rational-valued character of IAutpNqpψjq. In particular, ψj extends to a rational-
valued character, say νj, of IGpψjq “ GX IAutpNqpψjq. The Clifford correspondence now
produces n different rational-valued irreducible characters, namely νGj , for 1 ď j ď n,
of G, and the proposition is proved. �

We are now ready to prove Theorem B.

Proof of Theorem B. Since kRpG{ SolpGqq ď kRpGq and SolpG{ SolpGqq is trivial, we
may assume with no loss that SolpGq is trivial. The generalized Fitting subgroup of
G, denoted by F˚pGq, is then the direct product of the minimal normal subgroups
of G, each of which is a product of copies of a nonabelian simple group. Therefore
CGpF

˚pGqq “ 1 and G ď AutpF˚pGqq.

Let S be a simple direct factor of F˚pGq and assume that the number of times that S
appears in F˚pGq is n. By Proposition 4.2, we know that n is bounded by k. It remains
to prove that |S| is bounded in terms of k. Notice that if |S| is bounded in terms of k,
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then the number of choices for S appearing in F˚pGq is bounded, and therefore F˚pGq
is bounded, which in turn implies that |G| is bounded in terms of k.

Let N :“ S1 ˆ S2 ˆ ¨ ¨ ¨ ˆ Sn where each Si is isomorphic to S.

We have CNGpS1q{CGpS1qpNCGpS1q{CGpS1qq “ 1, and hence

S1 – NCGpS1q{CGpS1q�NGpS1q{CGpS1q ď AutpS1q.

Assume, to the contrary, that |S| “ |S1| can be arbitrarily large while k is fixed. Using
Theorem C, we then can choose S1 so that NGpS1q{CGpS1q has at least k2 ` 1 real-
valued irreducible characters whose kernels do not contain S1. Let λ be one of these
characters.

Let θ be an irreducible constituent of λÓS1 , and set ψ :“ θ b 1S2 b ¨ ¨ ¨ b 1Sn . Since
S1 Ę Kerpλq, we see that θ is nontrivial, and hence the inertia subgroup IGpψq is
contained in NGpS1q. The Clifford correspondence then implies that, as λ (considered
as a character of NGpS1q) lies over ψ, λG is an irreducible character of G. Moreover,
λG is real-valued since λ is.

We have shown that, for each λ among k2 ` 1 real-valued irreducible characters of
NGpS1q whose kernels do not contain S1, there corresponds the real-valued irreducible
character λG of G. On the other hand, as

|G : NGpS1q| ď |AutpF˚pGqq : NAutpF˚pGqqpS1q| “ n ď k,

each real-valued irreducible character of G lies above at most k irreducible characters
of NGpS1q. We therefore deduce that G has at least k ` 1 real-valued irreducible
characters, and this is contradiction. Thus we conclude that |S| is bounded in terms of
k, as desired. �
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