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ABSTRACT. Let V be a vector space over the field F' such that char(F) #
2, and let V have a skew-symmetric nondegenerate bilinear form. Wo-
nenburger proved that any element g of Sp(V') is the product of two
skew-symplectic involutions. Let GSp(V) be the group of general simil-
itudes with similitude character u. We give a generalization of Wonen-
burger’s result in the following form. Let g € GSp(V) with u(g) = .
Then g = t1t2 such that ¢; is a skew-symplectic involution, and ¢z is such
that t3 = BI and u(t2) = —B. One application that follows from this
result is a necessary and sufficient condition for an element of GL(V') to
be conjugate to a scalar multiple of its inverse. Another result is that
we find an extension of the group Sp(2n,Fy), for ¢ = 3(mod 4), all of
whose complex representations have real-valued characters.
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1. INTRODUCTION

It was proven by Wonenburger [10] and Djokovié [1] that an invertible
matrix is conjugate to its inverse if and only if it is the product of two
involutions. This brought about the question, if a matrix has determinant
41, can it be factorized as a product of involutions, and if so, what is
the fewest number of involutions needed in a factorization? This question
was answered by Gustafson, Halmos, and Radjavi [7], who showed that any
matrix with determinant 1 can be written as a product of 4 involutions,
and that not all matrices of determinant £1 are a product of 3 involutions.

Wonenburger proved that in the case of the orthogonal group, every el-
ement is the product of two orthogonal involutions. In the case of the
symplectic group, however, the two involutions in a factorization are not
necessarily symplectic, but rather the following result is obtained [10, The-
orem 2.

Theorem 1. Let G = Sp(2n, F') where char(F) # 2. Then every element
of g € G may be written g = hiha, where hy and hy are skew-symplectic
involutions.

Now consider the group of similitudes of an F-vector space, GSp(2n, F),
with similitude character u. Our main result is the following, which gener-
alizes Theorem 1.
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Theorem 2. Let g € GSp(2n, F) and u(g) = B, and suppose char(F') # 2.
Then g = tity, where t1 is a skew-symplectic involution, and where to is
such that u(tz) = —3 with t3 = BI.

We note that Theorem 2 follows from Theorem 1 directly if § is a square
in F', but the nonsquare case is not immediate.

One application of Theorem 2 is a necessary and sufficient condition
for a linear transformation to be conjugate to a scalar multiple of its in-
verse. Specifically, the result in Theorem 3 is that an element of GL(n, F),
char(F') # 2, is conjugate to A times its inverse for some A\ € F*| if and only
if it is the product of an involution and an element whose square is AI.

Another application of Theorem 2 is motivated by a result of a factor-
ization of matrices given by R. Gow [3]. Gow proved that any invertible
matrix is the product of an involution with a symmetric matrix. He then
observed [5, Theorem 1] that it follows that every element of the split ex-
tension of GL(n,F,) by the transpose-inverse automorphism is conjugate to
its inverse. That is, if G = GL(n,F,), then all of the irreducible complex
representations of the group

Gt =(G,7 | =1,7"1gr =g for every g € G)

have real-valued characters.
In our situation, we consider the group G = Sp(2n,F,) with ¢ = 3(mod 4),
and the order 2 automorphism ¢ of G defined by

=(h ()

The result we give in Theorem 4 is that every element of the group
Gl =(G, 7|2 =—I,7" gt =g for every g € G),

is conjugate to its inverse.
The author would like to thank Daniel Bump, David Ginzburg, and the
referee for helpful comments and suggestions.

2. INITIAL REDUCTION

Throughout, we assume that V is a 2n-dimensional F'-vector space and
char(F') # 2. Suppose V has a fixed nondegenerate skew-symmetric form,
(,-) : V. xV — F. The general symplectic group, (or group of similitudes
of (-,-)) is defined as GSp(2n, F) = {g € GL(2n, F) : (gv, gw) = u(g) (v, w)
for some u(g) € F* for all v,w € V}. The function u : GSp(2n,F) —
F* is a multiplicative character called the similitude character. Then the
symplectic group Sp(2n, F) is the subgroup of GSp(2n, F') which is the kernel
of pu, leaving the inner product invariant. We will also write GSp(V) =
GSp(2n, F) and Sp(V) = Sp(2n, F).

Suppose g € GSp(V), u(g) = B, and 3 is a square in F, say 72 = .
Then p(yI) = 3, and so y~'g € Sp(2n, F). Then we can write 7~ 'g = hiha,
where h; and hy are both skew-symplectic involutions, applying Theorem
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1. Multiplying both sides by =, we have g = hi(vhs), where t; = h; is
a skew-symplectic involution and t; = ~hgy is such that u(te) = —f and
t3 = BI. So in this case, Theorem 2 follows directly from Theorem 1. We
may therefore assume that the g we start with in Theorem 2 is such that
u(g) is not a square in F. If g € GSp(2n, F) is such that u(g) = 3, then we
call g B-symplectic, and from now on we fix a 3 which is not a square in F.

Let V be a 2n-dimensional F-vector space with nondegenerate skew-
symmetric bilinear form (-,-). If J is the matrix representing this form,

we have, for a B-symplectic g, ‘gJg = 3J. Then JgJ ' =3 tgfl, and since
tg and g are conjugate in GL(2n, F), we have g is conjugate to 3g~! over
GL(2n, F). Therefore, for a 3-symplectic g, we have g and Bg~! have the
same minimal polynomial. We thus introduce the G-adjoint of a polynomial
in F[z]. The development in this section will follow parts of [10] and [8].

If f(z) € F[z] is such that f(0) # 0, and deg(f) = d, define the -adjoint

of f(z), written f(z), to be

A~

f(z) = f(0) "'z f(8/x).

Then deg(f) = d, and the roots of f are 3 times the reciprocals of the roots
of f. The relevance of the definition to our situation is made clear in the
following proposition.

Proposition 1. Let g € GL(V') and suppose m(z) is the monic minimal
polynomial of g. Then the element B¢~ has monic minimal polynomial

Proof. For any monic f(z), we have f(z) = f(z). Also, if f(z) factors
as f(z) = fi(z)f2(x) and f(x) is monic, then we also have the factorization
f(x) = fi(x)fa(z). So, a monic polynomial f(z) is irreducible if and only
if f (x) is irreducible. Now, for g with monic minimal polynomial m(x),
we have m(Bg~") = m(0)~!3%9m(g) = 0, where deg(m) = d. So Bg~!
satisfies (), and m(z) is irreducible, so m(x) must be the monic minimal
polynomial of Bg~!. [J

So when g is #-symplectic, since g and g~! have the same monic minimal
polynomial f(z), we have f(x) = f(x) by Proposition 1. We will call such
a monic polynomial self-3-adjoint. Then if f(x) is self-B-adjoint, for every
root v of f(z) in an algebraic closure F of F, f(z) also has 3y~! as a root. If
p(z) is the minimal polynomial of v in F'[x], then by the same argument as in
the proof of Proposition 1, p(z) is the minimal polynomial of 3y~! in Fl[z].
Since both are irreducible in F[x], then either they are relatively prime and
both are divisors of f(x), or they are equal to the same polynomial, which is
also a divisor of f(z). We have the following factorization of a self-3-adjoint
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polynomial f(z) into irreducibles:

k ! K+l
(1) f@) = [ [wi@)pi)™ [ (@)™ =[] ri(x)*,
i=1 j=1 i=1

where the p;(z) and ¢j(z) are irreducible, g;(x) are self-3-adjoint but p;(z)
are not, and 7;(x) = pi(x)pi(x) for i = 1,...,k, riqj(z) = gj(x) for j =
1,...,l, and the r;(x) are all distinct.

For a B-symplectic g, we have for any v,w € V,

{gv, gw) = B(v, w)
and so
(2) (Bg~ v, w) = (v, gw).
Furthermore, we have the following.

Lemma 1. Let g be B-symplectic and let r(x) be any polynomial in Fx].
Then for any v,w € V, we have

(v, 7(g)w) = (r(Bg~ v, w).
Proof. Let r(z) = Zle a;z?. Then

d d
wr(gw) = 3 asfv, g'w) = 3 ai((Bg~ v, w) = (r(Bg~ v, w,
i=1 1=1

the second equality coming from Equation 2. [

Lemma 2. Let g be B-symplectic and r(xz) any polynomial in Flx| satis-
fying 7(0) # 0. Then the subspaces im(r(g)) and ker(7(g)) are mutually
orthogonal.

Proof. Let u € im(r(g)), where u = r(g)w, and let v € ker(#(g)). Then,
if d = deg(r),

(v,u) = (v,r(g)w) = (r(Bg~ v, w) = B~ Hg"r(Bg™ v, g7w)
= B8 r(0)(7(g)v, g"w) = B~ (0)(0, g%w) =0,

where we have applied, respectively, Lemma 1, the definition of S-symplectic,
the definition of #(x), and the fact that v € ker(#(g)). [

Proposition 2. Let g be a (B-symplectic transformation of V' with minimal
polynomial m(x). Let m(x) = [[;ri(x)* be the factorization of m(x) into
self-B-adjoint polynomials as in Equation (1). Then the direct sum

V= @ker(ri(g)si)

is a decomposition into nondegenerate mutually orthogonal g-invariant sub-
spaces.
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Proof. Since the r;(x)% are pairwise relatively prime, we may write V'
as the direct sum V = @, ker(r;(¢)®), and these subspaces are g-invariant.
We have im(r;(g9)*) C €D,,; ker(ri(g)*), since if v = (r;(g)*)w, we have
(ITiz;ri(9)*)v = m(g)w = 0. But the dimensions of im(r;(g)*) and
@D, ker(ri(g)*) are both equal to dim(V)—dim(ker(r;(g)*), and so we
have

(*) im(rj(9)*) = P ker(ri(9)*).

i#]
Now r;(x) = 7;(x), so ker(7;(x)%) = ker(r;(x)®). From Lemma 2, we then
have ker(r;(z)®) and im(r;(x)®) are mutually orthogonal. By (*), we have
that the subspaces V; = ker(r;(g)®) are mutually orthogonal. Mutual or-
thogonality then implies that the inner product restricted to V; is nonde-
generate. []

So, by Proposition 2, given any (-symplectic transformation g of V', we
may write g = €, g;, where each g; is g restricted to V; = ker(r;(g)**), and
gi is B-symplectic on the space V;. Then g; has minimal polynomial r;(x)®%.
If each g; then satisfies Theorem 2, that is, if g; = t;1t;2, where t;;1 is skew-
symplectic with % = I, and t;2 is such that u(t;2) = —3 with t, = I,
then g will satisfy Theorem 2 by taking t; = @, t;1 and to = €, ti2. From
the factorization in Equation (1), each r;(z) is either of the form p(z)p(x),
where p(z) is irreducible, or is an irreducible polynomial ¢(x) satisfying

q(z) = q(x).

3. TECHNICAL LEMMAS

The proofs of the lemmas in this section are almost exactly the same as
in Wonenburger, [10, Lemmas 1,3, and 4], respectively.

Recall that a vector space V' is cyclic with respect to a transformation g if
there exists a vector v € V such that V is spanned by vectors of the form gv,
and call g a cyclic transformation if V' is cyclic with respect to g. The first
lemma reduces the case of a g with minimal polynomial (p(z)p(z))® to cyclic
transformations. We will say a vector v has order r(g)¥ when r(g)kv = 0,
but 7(g)* v # 0, where r(z) € F|x].

Lemma 3. Let g be a G-symplectic transformation for V such that the min-
imal polynomial of g is (p(x)p(x))®, where p(x) and p(x) are distinct irre-
ducible polynomials. Then V' can be decomposed as a direct sum of mutually

orthogonal subspaces which are cyclic with respect to g.

Proof. First, we have V' = ker(p(g)*) ® ker(p(g)?®), since p(z) and p(z) are
relatively prime. Then ker(p(g)®) = im(p(g)®), which is mutually orthogonal
with ker(p(g)®) by Lemma 2, so each subspace is totally isotropic. Consider
an element u € ker(p(g)®) of order p(g)®, which exists since the minimal
polynomial of g restricted to ker(p(g)®) is p(x)®. Then p(g)*~'u # 0, and
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so there exists an element v € ker(p(g)*) such that (p(¢g)* 'u,v) # 0, since
ker(p(g)®) is totally isotropic. Then, if deg(p) = d, we have

*k O%(p(g)silu,'l» = <uﬂp(ﬁgil)87lv>
( ) — ﬁ_d(s_l)p(O)s_l(gd(s_l)u, ﬁ(g)s—lw.

Therefore v has order p(g)®. This means u + v has order (p(g)p(g))°.

Let W be the cyclic subspace generated by u + v, spanned by vectors of
the form g¢*(u + v). We will show that W is a nondegenerate subspace of
V. Let w € W be a nonzero element of W. Then there is some polynomial
f(z) € F[z] such that w = f(g)(u + v). We factor f(z) in two different
ways: factor out all powers of p(z), and factor out all powers of p(x). Then
we write

w = g"q1(9)p(9)"u + g™ a2(9)D(9)"v,
where ¢1(0) # 0, ¢2(0) # 0, p(z) is relatively prime to ¢i1(z), and p(z)
is relatively prime to ga(z). One of these terms is nonzero, so suppose
d™q1(9)p(g)Fu # 0. Since ¢;(x) and p(z) are relatively prime, then we must
have ¢ (x) is relatively prime to p(x), and thus to p(x)®. We may then find
polynomials a(z) and b(z) such that

a(x)qi(z) + b(x)p(x)® =

Then we have a(g)gi(g)v = v, since v € ker(p(g)

Now let y = g”a(g)p(g9)*~* v, where p = m + deg(q1(z)) + d(k — s+ 1)

(recall that d = deg(p(x))). Since v € ker(p(g)®), which is a g-invariant

subspace, then we have y € ker(p(g)*) and g™ q2(9)p(g)'v € ker(p(g)*). Then

since ker(p(g)*) is totally isotropic, we have (¢™q2(9)p(g)'v,y) = 0. Now we
compute (w,y):

1.
5).

(w,y) = (g™q1(9)p(g)*u, gPalg)p(g) " 'v)
= (u, 879" " q(Bg Ha(g)p(Bg~") p(g)*F1v).

We now apply to both sides of the bilinear form a factor of g¢k+deg(ai(z))—p+m —
g%~ which will put a factor of 3~45~1) in front. The goal of this is to
get a G1(g) and a p(g)* on the right-hand side of the bilinear form, for which
we also need a factor of ¢;(0)~! and a p(0)~*. We can then apply the fact
that a(g)gi(g)v = v. Doing this, we have

(w,y) = @ (0)p(0)* == Vu, p(g)*~ a(g)di(g)v)
= q(0)p(0)*am =4 (gD, j(g)* ) # 0.

The last expression is not zero because of (**). We therefore have (w,y) #
0. If instead we had ¢g™q1(g)p(9)*u = 0, and w = ¢™q2(9)p(g)'v, we go
through a similar computation, and let ¢/ = ¢’ a’(9)p(g)* " 'u, where p/ =
m + deg(qz(z)) + dl, and a’(9)q2(g)u = u. Then (p(g)*'u,v) # 0 implies
that (w,y’) # 0.

In any case, we have that W is a nondegenerate cyclic subspace of V.
Then we can write V.= W @ W=. Then g restricted to W+ is again a
[-symplectic transformation with minimal polynomial a power of p(z)p(z),
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and we can continue with this process. Doing this, we have decomposed V'
as a direct sum of cyclic mutually orthogonal subspaces. []

The next two lemmas deal with the case that the minimal polynomial of
g is of the form gq(x)*.

Lemma 4. Let g be a B-symplectic transformation for V such that the
minimal polynomial of g is of the form q(x)®, where q(x) is an irreducible
self-B-adjoint polynomial. Let w € V' have order q(g)°. Then the subspace U
cyclically generated by u and g is nondegenerate if and only if there exists a
v € U such that (g(g)* tu,v) # 0.

Proof. The “only if” statement follows directly from the definition of
nondegenerate. So suppose there is a v € U such that (g(g)*1u, v) # 0.
Then v = h(g)u for some polynomial h(xz) € F[z]. Let w be any nonzero
vector in U, then w = g™ f(g)q(g)¥u, where f(z) and q(x) are relatively
prime, f(0) # 0, and k < s, which is obtained by factoring the polynomial
in g when expressing w in terms of u.

Since g(z) and f(x) are relatively prime, then (z) = ¢(z) and f(z) are
relatively prime. So we may find polynomials a(x) and b(x) such that

a(z)f(z) + b(x)q(z)* = 1.
This implies that a(g)f(g)u = u.
Now let y = ga(g)h(g)q(g9)**1u, where
p =deg(f(x)) — (s — k — 1)deg(q(x)) + m,
and recall that v = h(g)u. We compute (w,y):
(w.y) = (g"f(9)a(9)*u, galg)h(g)alg)™*"
= (g™a(9)"a(Bg~")*"""u, g°h(9)f(Bg~")alg)u)
= el @g(0)>+1f(0)(g ( )*” 1% h(g)a(g)f(g)u)
— po-dest)g(0) 11 (0){g(g) u, v) £ 0.

So for any w € U, we have found a y € U such that (w,y) # 0, and so U is
nondegenerate. []

1

“

Lemma 5. Let g be a B-symplectic transformation for V such that the
minimal polynomial for g is q(x)*®, where q(x) is an irreducible self-B-adjoint
polynomial. Then either

(a) there exists a vector u of order q(g)® which generates a nondegenerate
cyclic subspace U, or

(b) there exist vectors w and v of order q(g)® which generate cyclic sub-
spaces U and U’ respectively, such that UNU' = {0} and such that U & U’
s nondegenerate.

Proof. Let u € V have order ¢(g)°, and suppose that the cyclic subspace
U generated by u is degenerate. By applying Lemma 4, for a v € V such

that
(q(g)*tu,v) #0,



8 C. RYAN VINROOT

we must have v € U. This also implies that v has order ¢(g)*, since

(a9 tu,v) = (u, q(Bg™")* )
= q(O)S_l/B_(S_l)deg(q(x)) <g(5_1)deg(Q(x))u’ q(g)s_lfu> 7é 0

Let U’ be the cyclic subspace generated by v, and suppose that UNU’ # {0}.
So let y be a nonzero element of U NU’. Then y may be written in terms of
u and v:

y = f(9)al9) u= f(9)a(9)"v,
where f(x) and f'(z) are relatively prime to ¢(z). Note that from these
expressions for i, we have that y has order ¢(g)** and ¢(g)* ¥, and so k =
K. Since f(z) and ¢(x)*® are relatively prime, we find polynomials a(x) and
b(x) such that a(x)f(z) + b(x)g(xz)® = 1. This implies that a(g)f(9)y = y.
Using the expression for y in terms of u, we compute

a(9)* *alg)y = qalg)* *alg) f(9)a(9) u = q(g)* 'u.

Using the expression for y in terms of v, we have

9(9)* " alg)y = a(9)* * alg) f'(9)a(9) v = ag) f (9)a(g)* v
So now q(g)*"tu = a(g)f'(g)q(g9)*tv. We know {(q(g)*1u,v) # 0, and so
(g(9)*u,v) = (a(9)f'(9)alg)* 'v, v)
(g(9)* v, a(Bg™ ") f(Bg~Hv) # 0

Since w = a(Bg ) f(Bg~Hv € U, and {(q(g9)* ‘v, w) # 0, we have by
Lemma 4 that the cyclic subspace U’ generated by v is nondegenerate.

Now suppose that U N U’ = {0}. Take any w € U & U’, and write w in
terms of v and v:

w = g"f1(9)q(9)*u + g™ f2(9)q(9)",

where, as usual, f1(0), f2(0) # 0, and fi(x), fo(z) are relatively prime to
q(x). Also suppose that k& > [. Since fa(x) is relatively prime to ¢(z),
then f(z) is relatively prime to g(z)5. Let a(z),b(z) € F[z] be such that
a(z) f2(x) + b(x)q(x)® = 1, which implies that a(g)f2(g)u = u. Now let

z=g’a(g)q(9)* " u

where p =1 - deg(q(z)) + deg(f2(x)) + m'. Then we have
(z, g™ Fa(g)a(g)'v) = (gPalg)al9)* " u, g™ fa(g)a(g)'v)

= [2(0)q(0)'5™ (a(9)* al9) fa(9)u, v)
= f2(0)g(0)'3™ (q(g)*tu, v) #0,

from our assumption on v at the beginning of the proof. On the other hand,

(z, g" fr(9)alg)*u) = (g”a(g)alg)* " u, g™ fi(g)a(g)" u)

= (g(9)°" """, q(0)F(pg~ ") IEID g a(5g7) fi(g)u) = O,

)
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which, when k > [, follows immediately since u has order ¢(g)®, and when
k = [, follows from Lemma 4, since U is assumed degenerate. So now we
have
(z,w) #0,
which implies in this case that U @ U’ is nondegenerate.
In the case that k < [, first choose a'(z),b'(z) such that a/(z)fi(z) +
b'(z)g(z)® =1 and d’(0),4'(0) # 0. Then let

z = g”/a'(g)q(q)sfkflv

where p) = m — (s —k —1)deg(q(z)) — deg(a’(z)). A computation similar to
the previous one again gives (z,w) # 0. So now U @ U’ is nondegenerate.

O

)

4. PROOF OF THE MAIN THEOREM

The remaining cases required to obtain Theorem 2 are given in the fol-
lowing proposition.

Proposition 3. (i) Let g be a cyclic transformation for V' (ignoring any
inner product structure) such that the minimal polynomial for g is self-3-
adjoint. Then g = tits, where t2 = I and t3 = G1.

(i) If g is taken to be (B-symplectic in (i), then t1 can be taken to be
skew-symplectic and ty can be taken to satisfy u(te) = —f.

(iii) Let g be a B-symplectic transformation for V' such that the minimal
polynomial of g is q(x)°, where q(x) is an irreducible self-B-adjoint poly-
nomial. Then g = tita, where t1 is a skew-symplectic involution, and to
satisfies pu(to) = —3 and t3 = BI.

Proof. (i): The minimal polynomial of g, f(z), is self-g-adjoint, and
we first factor f(x) = r(z)(2? — 8)*, where r(z) is relatively prime to the
irreducible 2 — 3, where we are assuming 3 is not a square in F. Then
r(x) is a self-B-adjoint polynomial of even degree 2m. We may write V =
ker(r(x)) @ker((z%—3)%), and consider the cases for the minimal polynomial
of g being of the form r(x) as above or (2 — 3)° separately.

Case I. The transformation g is cyclic (for a space V'), and has minimal
polynomial r(z) which is self-3-adjoint, where 7(z) is either relatively prime
to 22 — 3 and has degree 2m, or is of the form (22 — 3)%, where s is even.
For simplicity, we will write s = m, although m is not necessarily even in
the first case. Let r(z) = Z?;no a;x', where as,, = 1 and ay = ™, which
also holds for r(x) = (2% — 3)® since in this case ag = (—3)* = 3%, since s is
even. Then since r(z) = #(z) = r(0)~'2?™r(3/x), we have

Syl = B S i
Z’L;TLO aiﬂz—mem—z

5 o
= Y.l aam_if

and so we have

agm—i = ' "a;.
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Since g is cyclic, there is a vector w € V such that the vectors

2 2m—1
w,guw,qg w,...,g w

form a basis of V. Then also the vectors

1

m—2 m—
)v,...,v,gv,...,g v

T

form a basis for V, where v = g™w. Consider the basis consisting of the
vectors v, (g-+89~1)u, .-, (" + 8™ Lg~ "Dy, (g~ Bg~ VYo, ..., (g1 —
Bm_lg_(m_l))v, (g™ — [™g~")v, where linear independence boils down to
the fact that ag,, = 1 and ap = ™ in the minimal polynomial for g.

Let P be the subspace of V generated by vectors of the form (g + 8'g~%)v
for 0 < i < m, and let ) be the subspace of V' generated by vectors of the
form (¢° — Bg~)v for 0 <i <m. Then V =P & Q.

First we observe that the transformation g — B¢~
Q. If i is such that 0 < i < m, we see that

(9= B9 g + B9 = (g = H g o = B(g" " = 5o

Since i + 1 and ¢ — 1 are both no bigger than m, then the image above is
always in ). These image vectors in () are linearly independent, and so we
have (g — fg~")P = Q.

Next we see that g + 8¢~ ! maps P to P. Let i be such that 0 < i < m.
Then

(g+ B89 g + B9 o= (g + 5T g o+ B + 57 g D)o,
and the image is immediately seen to be in P, except for the case i = m —1,
where we need for (g™ + "¢~ )v to be in P also. The minimal polynomial
of gisr(x) = Z?ﬂ) a;x*, and it was observed above that as, = 1,aq = /™,
and ag,,_; = 3 ™a;. We have 22226 a;g'v = 0, and multiplying by ¢g~™
gives Z?ZLO a;g""™v = 0. So now

I maps the space P to

2m—1 m—1 2m—1
m m _—m i—m i—m i—m
(g™ +B"g M=~ E aig U:—amv—g aig- v — E ag v
i=1 i=1 i=m-+1

m—1 m—1
—i 7
= —QmU — g Om—ig U — E Gitmg v,
i=1 =1

where the last equality is obtained by shifting the indices for each sum.
In the first sum we now apply as;,m—; = £7""a; to j = i +m to see that
Gm—i = ("Gi+m, and we finally obtain
m—1
(g™ + 8" " = —amv— Y amyilg' + B¢ v € P,
=1
as desired. So (g + 3¢g~1)P C P.
We now have (g — 39 )P = Q and (g + 3¢~ ')P C P, and so

(9-Bg Q= 1(9—Bg ")’P=[(g+Bg ") —4BI|P C P,
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and
(9+ B9 Q= (9+ 89 )g—Bg P
=(9- B9 )g+Bg P C(9-Bg )P CQ,

the last equality coming from the fact that ¢ — 3¢~ and g+ Sg~' commute.
Now let t1 be the involution acting on V' with P asits +1 eigenspace and () as
its —1 eigenspace. Since V = P®Q, (9—B¢g )P = Q, and (9—Bg~1)Q C P,
we have t1(g — B9~ ') = —(g — Bg~1)t1. Also, since (g + Bg~1)Q C Q and
(g + Bg~HP C P, we have t1(g + B9~ ") = (g + Bg~)t1. Adding these two
equations together, we obtain 2¢t;g = 23¢~'t;, and since char(F) # 2, we
have t1g = Bg~'t1, or (t19)?> = BI. So letting to = t1g, we have g = t1ts
with 2 = I and t3 = B3I,

Case II. The cyclic transformation g acting on V' has minimal polynomial
(x2—B3)*, where s = 2k+1is odd. Letting (22 —f3)* = Zfil a;x", we observe
that ag = —(3° and ass_; = —3%a;, and in particular a, = 0.

We may take the following as a basis for V:

v, (9+ B9 v, (68 + 579", (9 = Bg v, (g7 = B g ),

where linear independence essentially comes from the observation above that
ag = —(° and ags = 1 in the minimal polynomial for g. We must define
bases for P and @) slightly differently from the previous case, because of the
slight change in basis for V. Let P be the subspace of V' with basis vectors
of the form (g* + B¢g~%)v for 0 < i < s, and let @ be the subspace of V with
basis vectors of the form (g* — Big~")v for 0 < i < s.

We first show that (¢ — Bg~1)P = Q. We calculate, as in the previous
case, that for 0 <i <s,

(9= Bg )" +Bg = (g = g ) - B(g" ! = g~ ")y,

which can be seen to be in ) immediately unless ¢ = s — 1 or ¢ = s. For
i = s — 1, we need to show that (¢° — 3°¢~%)v is an element of ). By
plugging ¢ into its minimal polynomial and multiplying by ¢g—*, we have
Z?io a;g"=° = 0. Now, ag = 1, ags = —3°, as = 0, and as_; = —Basii,
which in the end gives

s—1
(¢° = B9 w=—> asilg’—Big " weQ,
=1

as desired. For the case i = s, it needs to be shown now that (g°T! —

5t g+ € Q. Observe that since (g2 — 3)*v = (g2 — 3) (g% — 5)%v = 0,
multiplying by ¢~ (%*+2) (g% + j3) yields
g—(2k+2)(g4 _ ,32)(92 _ B)ka
=g M(g* = B9 ?)(g! — 289% + B*)*v
= (9> = 297 (g* + 5297 — 2B)Fv = 0.
If we exchange the terms g and 32¢g~2 in the expression (g% — 8%972)(g% +
(%972 — 20)Fv, it is negated. So in the expansion, the powers of ¢ and
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(%2972 will have coefficients that are negatives of each other. So we have

k+1
(9° = B9 ) (> + By > —28)" v =D cilg” — B¥g v =0,

i=1

with cxy1 =1, and so

s+1 6s+1 - s+1

ci(g® — ﬁZig*%)v €qQ.

Mw

(9
=1
So we finally have (g — B¢~ )P = @, equality coming from the fact that
the images of (¢* + 3'g~%)v for 0 < i < s — 2 are linearly independent, and
dim(Q) = s — 1.
We next show that (g+8g~1)P C P, and we calculate that for 0 < i < s,

(g‘l-ﬂg*l)(gi_’_ﬁigfi)v:( i+1 Berl (i+1))v+ﬂ(gi 1 6Z 1 (i— 1)) v,

which is readily seen to be in P, except when ¢ = s. For this case, we need to
show that (g5t1 + 35t1g~ S+1))U € P. Since (g2 — 3)**1v = 0, multiplying
by g~ k¥2)(g% — ) gives

g—(2k+2) (g% — 5)2k+2v — (P + 22— 25)’““@ —0.

Since (g2 + %2972 — 28)**1v is invariant if we exchange g2 and $%g~2, then
powers of these will have the same coefficients in the expansion. So we have

k+1
(g% + 5977 =280 =) " di(g” + g ) =0,
1=0
with diy1 =1, and so
k . . .
(g" + 57 g e = =3 " di(g* + 829 H v e P,
=0

So now (g + B3¢9~ 1)P C P.

As in the previous case, it follows that (¢g—3¢g~1)Q C P and (g+89~1)Q C
Q. If we define, as before, t; to be the involution having +1 eigenspace P
and —1 eigenspace @, it follows from the earlier computation that g = ¢t
with t2 = I and t3 = 1.

We note that in both cases above, we may prove by induction, and making
use of the fact that (g — B¢~ ")P = - Q and (g + Bg~1)P C P, that we have
for any i, (¢° + B'g~")v € P and (¢' — g ")v € Q.

(ii): If g is B-symplectic, we must show that ¢; is skew-symplectic and ¢y
satisfies pu(t2) = —(3. As we have just shown, we may take ¢; to be an involu-
tion with +1 eigenspace P, spanned by vectors of the form (g +B'g~")v, and
—1 eigenspace (), spanned by vectors of the form (g —B'g~")v. We first show
that P and Q are totally isotropic. For P, take (¢°+3'g~")v, (¢ + 3797 )v €
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P, and we have:

((g"+ B9 v, (¢7 + g7 )v)
= ((¢" + By "‘) gv) + (g'v, Fg~Iv) + (B9 v, Flg~Iv)
((g"+B'g "), gjv>+<g]v Blg~v) + (¢7v, g'v)

= ((¢" + B9~ )v, g7v) + (¢7v, (¢" + B'g~")v)

= 0.

And similarly for @, we may show that for (¢* — 8'g~")v, (¢’ — /g7 )v € Q,
we have:

((g"=B'9 "), (¢ =B g7)v) =0.
So for every pair of vectors in a set that spans P or (), the inner product is
zero, and so P C Pt and Q € Q+. Now let v and  be any two vectors in
V=P&Q. Writeu=w+y, v =w +1v, where w,w’ € P and v,y € Q.
We compute (tiu,t;u’):

(tru, t1u) = (ti(w+y), ilw' +¢)) = (w -y, v’ —y)
= (w,w') +{y,y) — (y,w') — (w,y)
= —(y, " —(w,y’).

While computing (u, u’) gives us:

(u,/y = (w+y, W +7v)
= (w,w') +(y,y) + (y,w') + (w,y’)
= (y,w') + (w,y’).

Therefore we have (tiu, t1u') = —(u,u’), and t; is skew-symplectic. Since g
satisfies u(g) = (3, then ty = t1g satisfies u(t2) = —f.

(iii): From Lemma 5, we may write V as an orthogonal sum of subspaces
that are either cyclic, or the direct sum of two cyclic subspaces. The case
for the nondegenerate cyclic pieces is covered in (i) and (ii), and so we
may assume that V is the sum of two cyclic subspaces. We may further
assume, from Lemmas 4 and 5, that for any u; € V of order ¢(g)*®, the cyclic
space Uy generated by wu; is degenerate, and if ug is any vector satisfying
(q(g)*tuy, ug) # 0, then V = U;®Us, where Us is the cyclic space generated
by us.

From part (i) above, we may write U; = P; @ @1, where P is spanned by
vectors of the form (g* + 3*g~*)uy, and Q1 is spanned by vectors of the form
(g* — BFg=*)uy. If ¢(z) is relatively prime to 22 — 3 and deg(q(x)) = 2m, let

=g "6 Vg(g)*tuy. If g(x) = 22 — B and s is odd, let w = g~ =D (22 —
B)*~luy. Then in either case we have w # 0 and w € P;, and in particular,
w ¢ Q1. The case where q(z) = 22 — 3 and s is even is taken care of
below. Since (Q1)* = Q1, and w ¢ Q1, we can find a vector uy € Qi
such that (w,ug) # 0. Since Uj is cyclically generated by up, and so also by
gDy and U; is degenerate, we have by Lemma 4 that ug ¢ Uy, and
is of order ¢(g)°. Then V = U; & Uy, where U, is cyclically generated by

UQGQ%.
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Now let Us = P, @®Q2, where P; is spanned by the vectors (g* 4+ 35 g~*)us,
and @y is spanned by the vectors (¢* — B¢ F)uy. Let P = P; @ Q2 and
Q = P, ® Q1. From part (i), we know that for i = 1,2, (g — B9~ 1) P; = Q;,
(9—Bg1Qi C P, (9+ Bg )P, C P, and (g + B9 1)Q; C Q;. These
together give us (¢ —Bg )P C Q, (9—Bg 1)Q C P, (9+Bg )P C P, and
(g4 B9~ HQ C Q. So if we define t; to be the involution on V with P as its
+1 eigenspace and @ its —1 eigenspace, we duplicate the argument in (i) to
obtain (t19)% = 31, so letting to = t1g gives t3 = 1.

We have shown in (ii) above that P, C P and Q; C Q; for i = 1,2.

(2

Now we show that P; 1 Q; for ¢ # j. We have

((g" £ 8% F)ur, (9" F B9~ ua)

= ((¢" £ B9 Fu1, glug) F ((¢* + BFg7F)ur, B'g ug)
= (Blg7(g" £ BEg ™ ur, u2) F (' (9" £ BFg w1, uz)
F(g' F B9 (" £ B9 F)ur, ug)

07

since

(¢' F 8'97)(g" £ B9 F)u

= (gith — Btk g=(k) Yy £+ g (gl—F — Bl g==R))yy € @y
and up € Q1. So P; L Qj fori # j. Now P C P+ and Q ¢ Qt. From the
argument in (ii), it follows that wu(t1) = —1 and u(t2) = —f.

If g(x) = 22— 3 and s is even, then we again let w = g~V (22— §)5~ Ly,
but now we have w # 0 and w € @1, so w € P;. Now we find a ug € PlL
such that (w,u2) # 0, and by Lemma 4, us ¢ U; and is of order ¢(g)°.
Now V = Uj @ Us, where Us is cyclically generated by ug € Pf‘. We have
Uy = Py @ Qo, where P, is spanned by the vectors (¢ 4+ ¢ %)us and Qo
is spanned by the vectors (¢* — BFg~*)us.

In this case, we let P = P & P and Q = Q1 © Q2. Applying the method
in part (i) to the P; and Q;, we obtain (¢ — 8¢~ )P C Q, (9 —Bg~1)Q C P,
(g+Bg P C P,and (g + B9~ 1)Q C Q. Define t; to be the involution on
V = P®Q to have +1 eigenspace P and —1 eigenspace @, and by part (i),
we have (t19)? = I, and ty = t1g satisfies t2 = 31.

As in the previous case, we may show that P; 1 P; and Q; L Q; for i # j.
Since also P; C P+ and Q; C Qi from part (ii), we finally have for this case
that P ¢ P and Q C Q*. From part (ii), it follows that pu(t;) = —1 and
plte) = —p. U

Proof of Theorem 2. From Proposition 2, it is sufficient to prove
the theorem for g whose minimal polynomial is a power of a polynomial of
either the form p(x)p(x), where p(x) is an irreducible polynomial which is
not self-3-adjoint, or ¢(x), an irreducible polynomial which is self-3-adjoint.
For the first case, Lemma 3 reduces the task to proving the theorem for
cyclic transformations, which is proven in Proposition 3 (i) and (ii). The
second case is taken care of in Proposition 3 (iii). [J



A FACTORIZATION IN GSp(V) 15

5. A TYpE OF CONJUGACY CLASs IN GSp(V)

In this section we prove a proposition about a specific type of conjugacy
class of GSp(V'). The proof is adapted from unpublished notes of D. Bump
and D. Ginzburg. The proposition is a generalization of a result of R. Gow
[6, Lemma 1], and the proof of part (i) is essentially the same as Gow’s
proof.

Proposition 4. Let V' be an F-vector space such that char(F') # 2, equipped
with a nondegenerate skew-symmetric bilinear form (-,-).

(i) If = € F is a square in F, there exists a unique conjugacy class of
GSp(V) whose elements g satisfy g> = —BI, u(g) = B.

(ii) Suppose that —f3 € F' is not a square in F', and let K be a quadratic
extension of F containing the square roots of —3. Let ¢ : X\ + X be the
nontrivial element of Gal(K/F). If the norm map N : K — F, N(\) = A\
is surjective, then there exists a unique conjugacy class of GSp(V') whose
elements g satisfy g> = —BI, u(g) = B.

Proof. Since char(F) # 2, g has the two square roots of —u(g) = —f as
distinct eigenvalues, and so g is semisimple. Let v and —~ be the two square
roots of —(3, soif vy & F, 5 = —~. Let V(v) and V(—7) be the eigenspaces
for v and —~ respectively. In the case that v ¢ F, these eigenspaces are
defined over K, and are subspaces of Vx = V ®p K. We may extend the
bilinear form (-,-) to Vx x Vx — K by linearity. We define the action
of GSp(V) on Vi as g(v ® \) = gv ® A, where g € GSp(V) and X € K.
Now note that V() and V(—~) are totally isotropic spaces, since for any
v,w € V(x7), we have, using u(g) = 3,

Blv,w) = (gv, gw) = (v, Tyw) = (£7)*(v,w) = —B{v, w).

So (v,w) = 0. If the dimension of V' is 2n, then the maximum dimension of
a totally isotropic subspace of V' (or V) is n, and since V(y) @ V(—v) =V
(or Vi), then V() and V(—7) are each dimension n.

For part (i), we suppose that —f is a square in F', so that v € F. Then
V(y) and V(—) are F-subspaces of V, each of dimension n. Take a basis
V1,...,0, of V(). Now, V(—7) is isomorphic to V' (v)*, the dual of V (),
as it acts on V(7) through the inner product. So we may choose a basis
wi, ..., wy of V(—y) dual to vi,..., vy, so that (v;,w;) = 6;;. Now we have
found a symplectic basis v1,...,v,, w1, ...,w,, with respect to which the
element g acts by the matrix

v
_f}/In ’

and so the conjugacy class of g is uniquely determined.

In (ii), if —( is not a square in F', then V() and V (—~) are K-subspaces
of V. We may extend the action of ¢ to Vi, by letting p(v ® \) = v ® .
Then for any g € GSp(V'), the action of ¢ and g on Vi commute. It follows
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we have the map ¢ : V(v) — V(—v). Now define [-,:] on V(y) x V(v) by
[v, w] = =2y{v, w).

Then [v,w] = [w,v], that is [, -] is Hermitian, and is nondegenerate, since
(-,-) is nondegenerate. It will follow from the surjectivity of the norm
map that there is an orthonormal basis of V() with respect to [-,:], call
it ui,...,u,. Then (u;, @j) = —d;;/2y. Now define
vp =y (wi — W), w; =u; + ;.

Then v;,w; € V, since they are invariant under ¢, and also (v;,v;) =
(wi,wj) = 0 and (vs,w;) = 6;;. Now with respect to the symplectic ba-
sis v1,...,Upn, W1, ..., wy, of V, the element ¢ acts by the matrix

I,
(-on ™)

and so again the conjugacy class of g is uniquely determined.

We finish the proof of (ii) by showing that there is an orthonormal basis
for V(v) with respect to the nondegenerate Hermitian form [-,-]. The proof
is by induction on the dimension of V' (y). For the one-dimensional case, we
may first find a v such that [v,v] # 0 since the form is nondegenerate. Now
for any A € K, we have [Av, \v] = N(A)[v,v], and we are assuming that the
norm map is surjective. So we let A be such that N()\) = [v,v]~!, and then
uy = v satisfies [ug,u;] = 1.

For the n-dimensional case, if we can find any vector such that [v,v] # 0,
we may normalize as above, from the surjectivity of the norm map, to find
a uy such that [uj,u1] = 1. The orthogonal complement of the span of u;
is then of smaller dimension, and by an induction hypothesis we may find
an orthonormal basis. If [v,v] = 0 for all v, then we would have T'([v, w]) =
[v +w, v+ w] — [v,v] — [w,w] = 0 for all v,w, where T': X\ — X + X is the
trace map from K down to F. Now, a basis for K over F'is {1,v}, where
v is a square root of —3, and 7 = —v. So an element of K with trace zero
must be of the form Ay, where A € F'. Now [v, w] must be of this form for all
v, w, but then [yv, w] = y[v, w] must also be of this form, which implies we
must have [v,w] = 0. This contradicts the fact that [-,-] is nondegenerate.
We therefore have an orthonormal basis and the proof is complete. [

6. APPLICATIONS

First, we have the following immediate consequence of Theorem 2.

Corollary 1. Let g € GSp(V'), where V is an F-vector space and char(F) #
2. Then g is conjugate to ji(g)g—" by a skew-symplectic involution.

The statement that g is conjugate to p(g)g~' by some element of GSp(V)
is stated by Prasad [9, Proposition 1], but a very different proof is suggested
there.

In [6, Theorem 1], Gow proves that if F'is a field in which —1 is a square,
then Sp(2n, F') is the square of a conjugacy class, which is a special case of
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Thompson’s conjecture. Gow’s proof uses Wonenburger’s Theorem 1 and a
version of Proposition 4 for the symplectic group. We obtain the following
similar result for GSp(V'), which says that under certain conditions on the
field, we may write GSp(V') as the product of one conjugacy class with the
union of conjugacy classes indexed by the multiplicative group of the field.

Corollary 2. Let V' be an F-vector space such that char(F') # 2, and such
that the norm map of any quadratic extension of F' is surjective. Let Cg be
the unique conjugacy class corresponding to 3 € F* as described in Propo-
sition 4,

Cs={9 € GSp(V) | ¢* = =B, ulg) = B},
and let C be the union of these conjugacy classes,

c=J ¢cs

peFx
Then GSp(V)=C, - C.

Proof. This follows directly from Theorem 2 and Proposition 4. []

One of the main results of Wonenburger [10, Theorem 1] is that an ele-
ment of GL(V') is conjugate to its inverse if and only if it is the product of
two involutions. Wonenburger proves this under the assumption that V' is
an F-vector space such that char(F) # 2, but Djokovié [1] proved the result
for general characteristic. We are able to prove the following generalization.

Theorem 3. Let V be an F-vector space with char(F') # 2, and g € GL(V).
Then g is conjugate to g~ for some 3 € F* if and only if g has a factor-
ization g = tity such that t? = I and t3 = BI.

Proof. If g has such a factorization, then 3g~*

to Bg~! since t;lgtg = pBg~ L

Now assume that g is conjugate to 3¢g~! for some 3 € F*. Then g and
Bg~! have the same invariant factors and minimal polynomial, and so from
Proposition 1, the minimal polynomial of g is self-B-adjoint. In general,
if g has invariant factors d;(z),...,d,(z), then Bg~! has invariant factors
o1(z),...,6,(x), where 6;(x) is the B-adjoint of §;(x). Since g and Bg~*
have the same invariant factors in this case, then each ¢;(x) is self-S-adjoint.

We may write V' as the direct sum of subspaces, V = ®_,V;, where g
restricted to V;, call it g;, has minimal polynomial ¢;(x), and V; is a cyclic
space with respect to g;. Now g; is a cyclic transformation which is self-
(-adjoint, and so it follows from Proposition 3(i) that g; has the desired
factorization. Since g = &7_,¢;, the theorem follows. [J

= tot1, and so g is conjugate

We now consider the case when V' is an Fy-vector space. If ¢ = 1(mod 4),
then —1 is a square, and it follows immediately from Wonenburger’s Theo-
rem 1 that every element of Sp(2n,F,) is conjugate to its inverse. This is not
true, however, if ¢ = 3(mod 4), as there are unipotent elements which are
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not conjugate to their inverses in Sp(2n,F,), as given by Feit and Zuckerman
[2, Lemma 5.3]. It follows from the results of Wonenburger and of Feit and
Zuckerman that if we throw a skew-symplectic involution into Sp(2n,F,) for
g = 3(mod 4), then every element of Sp(2n,F,) is conjugate to its inverse
by an element of this larger group. However, there are elements in the other
coset which are not conjugate to their inverses by elements of this group.
The following result gives a group in which Sp(2n,F,), ¢ = 3(mod 4), is an
index 2 subgroup, such that every element is conjugate to its inverse.

Theorem 4. Let G = Sp(2n,F,), where ¢ = 3(mod 4). Let ¢ be the order 2
automorphism of G defined by the following conjugation by a skew-symplectic

element:
—I —1I
L n n
o= () (M)

Now define G4~ as the following group containing G as an index 2 subgroup:
Gl =G, 7|2 = 1,77 gr =g for every g € G).

Then every element of Gv~1 is conjugate to its inverse, and so every complex
character of G4~ is real-valued.

Proof. Let a € Fy2 be a square root of —1. Note that conjugation by the

element
S ol,
o —al,

also gives the order 2 automorphism ¢ of G, and 72 = —1I, so the group G~ !
is isomorphic to (G, 7), which is a subgroup of Sp(2n,F ).

Let ¢ € G. From Wonenburger’s Theorem 1, there is a skew-symplectic
involution A such that A~ 'gh = g—'. The element

=)

is also a skew-symplectic involution, and so xh is symplectic, and then
(kh)~'g(kh) = *g~!. Conjugating both sides by 7, we have (kh7)~tg(khT) =
g1, and khr € G471,

Now let k € 7G = G“~ 1\ G. Then ak = arg for some g € G. We have
at = K, and so ak = kg. So now ak € GSp(2n,F,) with p(ak) = —1. We
now apply Corollary 1 to say that there exists a skew-symplectic involution
t € GSp(2n,F,) such that t~(ak)t = —(ak)~!. Multiplying both sides of
this by —a, we obtain k7! = (at)"'k(at).

Now at = —7kt. Since —k and t are skew-symplectic, their product is in
G, so we have at € 7G. So k is conjugate to its inverse in G4, [J

Remarks. Gow proved [4] that if V' is an F-vector space and char(F') = 2,
then every element of Sp(V') is the product of two symplectic involutions. If
F' is any algebraic extension of Fy, then every element of F' is a square, and
so a result for GSp(V) is immediate. We do not have results for GSp(V),
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however, when F' is a characteristic 2 field which is not an algebraic extension
of FQ .

10.
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