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Abstract. Let V be a vector space over the field F such that char(F ) 6=
2, and let V have a skew-symmetric nondegenerate bilinear form. Wo-
nenburger proved that any element g of Sp(V ) is the product of two
skew-symplectic involutions. Let GSp(V ) be the group of general simil-
itudes with similitude character µ. We give a generalization of Wonen-
burger’s result in the following form. Let g ∈ GSp(V ) with µ(g) = β.
Then g = t1t2 such that t1 is a skew-symplectic involution, and t2 is such
that t22 = βI and µ(t2) = −β. One application that follows from this
result is a necessary and sufficient condition for an element of GL(V ) to
be conjugate to a scalar multiple of its inverse. Another result is that
we find an extension of the group Sp(2n,Fq), for q ≡ 3(mod 4), all of
whose complex representations have real-valued characters.
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1. Introduction

It was proven by Wonenburger [10] and Djoković [1] that an invertible
matrix is conjugate to its inverse if and only if it is the product of two
involutions. This brought about the question, if a matrix has determinant
±1, can it be factorized as a product of involutions, and if so, what is
the fewest number of involutions needed in a factorization? This question
was answered by Gustafson, Halmos, and Radjavi [7], who showed that any
matrix with determinant ±1 can be written as a product of 4 involutions,
and that not all matrices of determinant ±1 are a product of 3 involutions.

Wonenburger proved that in the case of the orthogonal group, every el-
ement is the product of two orthogonal involutions. In the case of the
symplectic group, however, the two involutions in a factorization are not
necessarily symplectic, but rather the following result is obtained [10, The-
orem 2].

Theorem 1. Let G = Sp(2n, F ) where char(F ) 6= 2. Then every element
of g ∈ G may be written g = h1h2, where h1 and h2 are skew-symplectic
involutions.

Now consider the group of similitudes of an F -vector space, GSp(2n, F ),
with similitude character µ. Our main result is the following, which gener-
alizes Theorem 1.
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Theorem 2. Let g ∈ GSp(2n, F ) and µ(g) = β, and suppose char(F ) 6= 2.
Then g = t1t2, where t1 is a skew-symplectic involution, and where t2 is
such that µ(t2) = −β with t22 = βI.

We note that Theorem 2 follows from Theorem 1 directly if β is a square
in F , but the nonsquare case is not immediate.

One application of Theorem 2 is a necessary and sufficient condition
for a linear transformation to be conjugate to a scalar multiple of its in-
verse. Specifically, the result in Theorem 3 is that an element of GL(n, F ),
char(F ) 6= 2, is conjugate to λ times its inverse for some λ ∈ F×, if and only
if it is the product of an involution and an element whose square is λI.

Another application of Theorem 2 is motivated by a result of a factor-
ization of matrices given by R. Gow [3]. Gow proved that any invertible
matrix is the product of an involution with a symmetric matrix. He then
observed [5, Theorem 1] that it follows that every element of the split ex-
tension of GL(n,Fq) by the transpose-inverse automorphism is conjugate to
its inverse. That is, if G = GL(n,Fq), then all of the irreducible complex
representations of the group

G+ = 〈G, τ | τ2 = I, τ−1gτ = tg−1 for every g ∈ G〉
have real-valued characters.

In our situation, we consider the groupG = Sp(2n,Fq) with q ≡ 3(mod 4),
and the order 2 automorphism ι of G defined by

ιg =
(
−In

In

)
g

(
−In

In

)
.

The result we give in Theorem 4 is that every element of the group

Gι,−I = 〈G, τ | τ2 = −I, τ−1gτ = ιg for every g ∈ G〉,
is conjugate to its inverse.

The author would like to thank Daniel Bump, David Ginzburg, and the
referee for helpful comments and suggestions.

2. Initial Reduction

Throughout, we assume that V is a 2n-dimensional F -vector space and
char(F ) 6= 2. Suppose V has a fixed nondegenerate skew-symmetric form,
〈·, ·〉 : V × V → F . The general symplectic group, (or group of similitudes
of 〈·, ·〉) is defined as GSp(2n, F ) = {g ∈ GL(2n, F ) : 〈gv, gw〉 = µ(g)〈v, w〉
for some µ(g) ∈ F× for all v, w ∈ V }. The function µ : GSp(2n, F ) →
F× is a multiplicative character called the similitude character. Then the
symplectic group Sp(2n, F ) is the subgroup of GSp(2n, F ) which is the kernel
of µ, leaving the inner product invariant. We will also write GSp(V ) =
GSp(2n, F ) and Sp(V ) = Sp(2n, F ).

Suppose g ∈ GSp(V ), µ(g) = β, and β is a square in F , say γ2 = β.
Then µ(γI) = β, and so γ−1g ∈ Sp(2n, F ). Then we can write γ−1g = h1h2,
where h1 and h2 are both skew-symplectic involutions, applying Theorem
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1. Multiplying both sides by γ, we have g = h1(γh2), where t1 = h1 is
a skew-symplectic involution and t2 = γh2 is such that µ(t2) = −β and
t22 = βI. So in this case, Theorem 2 follows directly from Theorem 1. We
may therefore assume that the g we start with in Theorem 2 is such that
µ(g) is not a square in F . If g ∈ GSp(2n, F ) is such that µ(g) = β, then we
call g β-symplectic, and from now on we fix a β which is not a square in F .

Let V be a 2n-dimensional F -vector space with nondegenerate skew-
symmetric bilinear form 〈·, ·〉. If J is the matrix representing this form,
we have, for a β-symplectic g, tgJg = βJ . Then JgJ−1 = β tg

−1, and since
tg and g are conjugate in GL(2n, F ), we have g is conjugate to βg−1 over
GL(2n, F ). Therefore, for a β-symplectic g, we have g and βg−1 have the
same minimal polynomial. We thus introduce the β-adjoint of a polynomial
in F [x]. The development in this section will follow parts of [10] and [8].

If f(x) ∈ F [x] is such that f(0) 6= 0, and deg(f) = d, define the β-adjoint
of f(x), written f̂(x), to be

f̂(x) = f(0)−1xdf(β/x).

Then deg(f̂) = d, and the roots of f̂ are β times the reciprocals of the roots
of f . The relevance of the definition to our situation is made clear in the
following proposition.

Proposition 1. Let g ∈ GL(V ) and suppose m(x) is the monic minimal
polynomial of g. Then the element βg−1 has monic minimal polynomial
m̂(x).

Proof. For any monic f(x), we have ˆ̂
f(x) = f(x). Also, if f(x) factors

as f(x) = f1(x)f2(x) and f(x) is monic, then we also have the factorization
f̂(x) = f̂1(x)f̂2(x). So, a monic polynomial f(x) is irreducible if and only
if f̂(x) is irreducible. Now, for g with monic minimal polynomial m(x),
we have m̂(βg−1) = m(0)−1βdg−dm(g) = 0, where deg(m) = d. So βg−1

satisfies m̂(x), and m̂(x) is irreducible, so m̂(x) must be the monic minimal
polynomial of βg−1.

So when g is β-symplectic, since g and βg−1 have the same monic minimal
polynomial f(x), we have f(x) = f̂(x) by Proposition 1. We will call such
a monic polynomial self-β-adjoint. Then if f(x) is self-β-adjoint, for every
root γ of f(x) in an algebraic closure F of F , f(x) also has βγ−1 as a root. If
p(x) is the minimal polynomial of γ in F [x], then by the same argument as in
the proof of Proposition 1, p̂(x) is the minimal polynomial of βγ−1 in F [x].
Since both are irreducible in F [x], then either they are relatively prime and
both are divisors of f(x), or they are equal to the same polynomial, which is
also a divisor of f(x). We have the following factorization of a self-β-adjoint
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polynomial f(x) into irreducibles:

(1) f(x) =
k∏
i=1

(pi(x)p̂i(x))ni

l∏
j=1

qj(x)mj =
k+l∏
i=1

ri(x)si ,

where the pi(x) and qj(x) are irreducible, qj(x) are self-β-adjoint but pi(x)
are not, and ri(x) = pi(x)p̂i(x) for i = 1, . . . , k, rk+j(x) = qj(x) for j =
1, . . . , l, and the ri(x) are all distinct.

For a β-symplectic g, we have for any v, w ∈ V ,

〈gv, gw〉 = β〈v, w〉

and so

(2) 〈βg−1v, w〉 = 〈v, gw〉.

Furthermore, we have the following.

Lemma 1. Let g be β-symplectic and let r(x) be any polynomial in F [x].
Then for any v, w ∈ V , we have

〈v, r(g)w〉 = 〈r(βg−1)v, w〉.

Proof. Let r(x) =
∑d

i=1 aix
d. Then

〈v, r(g)w〉 =
d∑
i=1

ai〈v, giw〉 =
d∑
i=1

ai〈(βg−1)iv, w〉 = 〈r(βg−1)v, w〉,

the second equality coming from Equation 2.

Lemma 2. Let g be β-symplectic and r(x) any polynomial in F [x] satis-
fying r(0) 6= 0. Then the subspaces im(r(g)) and ker(r̂(g)) are mutually
orthogonal.

Proof. Let u ∈ im(r(g)), where u = r(g)w, and let v ∈ ker(r̂(g)). Then,
if d = deg(r),

〈v, u〉 = 〈v, r(g)w〉 = 〈r(βg−1)v, w〉 = β−d〈gdr(βg−1)v, gdw〉

= β−dr(0)〈r̂(g)v, gdw〉 = β−dr(0)〈0, gdw〉 = 0,

where we have applied, respectively, Lemma 1, the definition of β-symplectic,
the definition of r̂(x), and the fact that v ∈ ker(r̂(g)).

Proposition 2. Let g be a β-symplectic transformation of V with minimal
polynomial m(x). Let m(x) =

∏
i ri(x)si be the factorization of m(x) into

self-β-adjoint polynomials as in Equation (1). Then the direct sum

V =
⊕
i

ker(ri(g)si)

is a decomposition into nondegenerate mutually orthogonal g-invariant sub-
spaces.
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Proof. Since the ri(x)si are pairwise relatively prime, we may write V
as the direct sum V =

⊕
i ker(ri(g)si), and these subspaces are g-invariant.

We have im(rj(g)sj ) ⊆
⊕

i 6=j ker(ri(g)si), since if v = (rj(g)sj )w, we have
(
∏
i 6=j ri(g)si)v = m(g)w = 0. But the dimensions of im(rj(g)sj ) and⊕
i 6=j ker(ri(g)si) are both equal to dim(V )−dim(ker(rj(g)sj ), and so we

have

(*) im(rj(g)sj ) =
⊕
i 6=j

ker(ri(g)si).

Now ri(x) = r̂i(x), so ker(r̂i(x)si) = ker(ri(x)si). From Lemma 2, we then
have ker(ri(x)si) and im(ri(x)si) are mutually orthogonal. By (*), we have
that the subspaces Vi = ker(ri(g)si) are mutually orthogonal. Mutual or-
thogonality then implies that the inner product restricted to Vi is nonde-
generate.

So, by Proposition 2, given any β-symplectic transformation g of V , we
may write g =

⊕
i gi, where each gi is g restricted to Vi = ker(ri(g)si), and

gi is β-symplectic on the space Vi. Then gi has minimal polynomial ri(x)si .
If each gi then satisfies Theorem 2, that is, if gi = ti1ti2, where ti1 is skew-
symplectic with t2i1 = I, and ti2 is such that µ(ti2) = −β with t2i2 = βI,
then g will satisfy Theorem 2 by taking t1 =

⊕
i ti1 and t2 =

⊕
i ti2. From

the factorization in Equation (1), each ri(x) is either of the form p(x)p̂(x),
where p(x) is irreducible, or is an irreducible polynomial q(x) satisfying
q(x) = q̂(x).

3. Technical Lemmas

The proofs of the lemmas in this section are almost exactly the same as
in Wonenburger, [10, Lemmas 1,3, and 4], respectively.

Recall that a vector space V is cyclic with respect to a transformation g if
there exists a vector v ∈ V such that V is spanned by vectors of the form giv,
and call g a cyclic transformation if V is cyclic with respect to g. The first
lemma reduces the case of a g with minimal polynomial (p(x)p̂(x))s to cyclic
transformations. We will say a vector v has order r(g)k when r(g)kv = 0,
but r(g)k−1v 6= 0, where r(x) ∈ F [x].

Lemma 3. Let g be a β-symplectic transformation for V such that the min-
imal polynomial of g is (p(x)p̂(x))s, where p(x) and p̂(x) are distinct irre-
ducible polynomials. Then V can be decomposed as a direct sum of mutually
orthogonal subspaces which are cyclic with respect to g.

Proof. First, we have V = ker(p(g)s)⊕ ker(p̂(g)s), since p(x) and p̂(x) are
relatively prime. Then ker(p(g)s) = im(p̂(g)s), which is mutually orthogonal
with ker(p(g)s) by Lemma 2, so each subspace is totally isotropic. Consider
an element u ∈ ker(p(g)s) of order p(g)s, which exists since the minimal
polynomial of g restricted to ker(p(g)s) is p(x)s. Then p(g)s−1u 6= 0, and
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so there exists an element v ∈ ker(p̂(g)s) such that 〈p(g)s−1u, v〉 6= 0, since
ker(p(g)s) is totally isotropic. Then, if deg(p) = d, we have

(**)
0 6= 〈p(g)s−1u, v〉 = 〈u, p(βg−1)s−1v〉

= β−d(s−1)p(0)s−1〈gd(s−1)u, p̂(g)s−1v〉.
Therefore v has order p̂(g)s. This means u+ v has order (p(g)p̂(g))s.

Let W be the cyclic subspace generated by u+ v, spanned by vectors of
the form gi(u + v). We will show that W is a nondegenerate subspace of
V . Let w ∈ W be a nonzero element of W . Then there is some polynomial
f(x) ∈ F [x] such that w = f(g)(u + v). We factor f(x) in two different
ways: factor out all powers of p(x), and factor out all powers of p̂(x). Then
we write

w = gmq1(g)p(g)ku+ gmq2(g)p̂(g)lv,
where q1(0) 6= 0, q2(0) 6= 0, p(x) is relatively prime to q1(x), and p̂(x)
is relatively prime to q2(x). One of these terms is nonzero, so suppose
gmq1(g)p(g)ku 6= 0. Since q1(x) and p(x) are relatively prime, then we must
have q̂1(x) is relatively prime to p̂(x), and thus to p̂(x)s. We may then find
polynomials a(x) and b(x) such that

a(x)q̂1(x) + b(x)p̂(x)s = 1.

Then we have a(g)q̂1(g)v = v, since v ∈ ker(p̂(g)s).
Now let y = gρa(g)p̂(g)s−k−1v, where ρ = m+ deg(q1(x)) + d(k − s+ 1)

(recall that d = deg(p(x))). Since v ∈ ker(p̂(g)s), which is a g-invariant
subspace, then we have y ∈ ker(p̂(g)s) and gmq2(g)p̂(g)lv ∈ ker(p̂(g)s). Then
since ker(p̂(g)s) is totally isotropic, we have 〈gmq2(g)p̂(g)lv, y〉 = 0. Now we
compute 〈w, y〉:

〈w, y〉 = 〈gmq1(g)p(g)ku, gρa(g)p̂(g)s−k−1v〉
= 〈u, βmgρ−mq1(βg−1)a(g)p(βg−1)kp̂(g)s−k−1v〉.

We now apply to both sides of the bilinear form a factor of gdk+deg(q1(x))−ρ+m =
gd(s−1), which will put a factor of β−d(s−1) in front. The goal of this is to
get a q̂1(g) and a p̂(g)k on the right-hand side of the bilinear form, for which
we also need a factor of q1(0)−1 and a p(0)−k. We can then apply the fact
that a(g)q̂1(g)v = v. Doing this, we have

〈w, y〉 = q1(0)p(0)kβm−d(s−1)〈gd(s−1)u, p̂(g)s−1a(g)q̂1(g)v〉
= q1(0)p(0)kβm−d(s−1)〈gd(s−1)u, p̂(g)s−1v〉 6= 0.

The last expression is not zero because of (**). We therefore have 〈w, y〉 6=
0. If instead we had gmq1(g)p(g)ku = 0, and w = gmq2(g)p̂(g)lv, we go
through a similar computation, and let y′ = gρ

′
a′(g)p(g)s−l−1u, where ρ′ =

m + deg(q2(x)) + dl, and a′(g)q2(g)u = u. Then 〈p(g)s−lu, v〉 6= 0 implies
that 〈w, y′〉 6= 0.

In any case, we have that W is a nondegenerate cyclic subspace of V .
Then we can write V = W ⊕ W⊥. Then g restricted to W⊥ is again a
β-symplectic transformation with minimal polynomial a power of p(x)p̂(x),
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and we can continue with this process. Doing this, we have decomposed V
as a direct sum of cyclic mutually orthogonal subspaces.

The next two lemmas deal with the case that the minimal polynomial of
g is of the form q(x)s.

Lemma 4. Let g be a β-symplectic transformation for V such that the
minimal polynomial of g is of the form q(x)s, where q(x) is an irreducible
self-β-adjoint polynomial. Let u ∈ V have order q(g)s. Then the subspace U
cyclically generated by u and g is nondegenerate if and only if there exists a
v ∈ U such that 〈q(g)s−1u, v〉 6= 0.

Proof. The “only if” statement follows directly from the definition of
nondegenerate. So suppose there is a v ∈ U such that 〈q(g)s−1u, v〉 6= 0.
Then v = h(g)u for some polynomial h(x) ∈ F [x]. Let w be any nonzero
vector in U , then w = gmf(g)q(g)ku, where f(x) and q(x) are relatively
prime, f(0) 6= 0, and k < s, which is obtained by factoring the polynomial
in g when expressing w in terms of u.

Since q(x) and f(x) are relatively prime, then q̂(x) = q(x) and f̂(x) are
relatively prime. So we may find polynomials a(x) and b(x) such that

a(x)f̂(x) + b(x)q(x)s = 1.

This implies that a(g)f̂(g)u = u.
Now let y = gρa(g)h(g)q(g)s−k−1u, where

ρ = deg(f(x))− (s− k − 1)deg(q(x)) +m,

and recall that v = h(g)u. We compute 〈w, y〉:
〈w, y〉 = 〈gmf(g)q(g)ku, gρa(g)h(g)q(g)s−k−1u〉

= 〈gmq(g)kq(βg−1)s−k−1u, gρh(g)f(βg−1)a(g)u〉
= βρ−deg(f(x))q(0)s−k−1f(0)〈q(g)s−1u, h(g)a(g)f̂(g)u〉
= βρ−deg(f(x))q(0)s−k−1f(0)〈q(g)s−1u, v〉 6= 0.

So for any w ∈ U , we have found a y ∈ U such that 〈w, y〉 6= 0, and so U is
nondegenerate.

Lemma 5. Let g be a β-symplectic transformation for V such that the
minimal polynomial for g is q(x)s, where q(x) is an irreducible self-β-adjoint
polynomial. Then either

(a) there exists a vector u of order q(g)s which generates a nondegenerate
cyclic subspace U , or

(b) there exist vectors u and v of order q(g)s which generate cyclic sub-
spaces U and U ′ respectively, such that U ∩ U ′ = {0} and such that U ⊕ U ′
is nondegenerate.

Proof. Let u ∈ V have order q(g)s, and suppose that the cyclic subspace
U generated by u is degenerate. By applying Lemma 4, for a v ∈ V such
that

〈q(g)s−1u, v〉 6= 0,
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we must have v 6∈ U . This also implies that v has order q(g)s, since

〈q(g)s−1u, v〉 = 〈u, q(βg−1)s−1v〉
= q(0)s−1β−(s−1)deg(q(x))〈g(s−1)deg(q(x))u, q(g)s−1v〉 6= 0.

Let U ′ be the cyclic subspace generated by v, and suppose that U∩U ′ 6= {0}.
So let y be a nonzero element of U ∩U ′. Then y may be written in terms of
u and v:

y = f(g)q(g)ku = f ′(g)q(g)k
′
v,

where f(x) and f ′(x) are relatively prime to q(x). Note that from these
expressions for y, we have that y has order q(g)s−k and q(g)s−k

′
, and so k =

k′. Since f(x) and q(x)s are relatively prime, we find polynomials a(x) and
b(x) such that a(x)f(x) + b(x)q(x)s = 1. This implies that a(g)f(g)y = y.
Using the expression for y in terms of u, we compute

q(g)s−k−1a(g)y = q(g)s−k−1a(g)f(g)q(g)ku = q(g)s−1u.

Using the expression for y in terms of v, we have

q(g)s−k−1a(g)y = q(g)s−k−1a(g)f ′(g)q(g)kv = a(g)f ′(g)q(g)s−1v.

So now q(g)s−1u = a(g)f ′(g)q(g)s−1v. We know 〈q(g)s−1u, v〉 6= 0, and so

〈q(g)s−1u, v〉 = 〈a(g)f ′(g)q(g)s−1v, v〉
= 〈q(g)s−1v, a(βg−1)f(βg−1)v〉 6= 0

Since w = a(βg−1)f(βg−1)v ∈ U ′, and 〈q(g)s−1v, w〉 6= 0, we have by
Lemma 4 that the cyclic subspace U ′ generated by v is nondegenerate.

Now suppose that U ∩ U ′ = {0}. Take any w ∈ U ⊕ U ′, and write w in
terms of u and v:

w = gmf1(g)q(g)ku+ gm
′
f2(g)q(g)lv,

where, as usual, f1(0), f2(0) 6= 0, and f1(x), f2(x) are relatively prime to
q(x). Also suppose that k ≥ l. Since f2(x) is relatively prime to q(x),
then f̂2(x) is relatively prime to q(x)s. Let a(x), b(x) ∈ F [x] be such that
a(x)f̂2(x) + b(x)q(x)s = 1, which implies that a(g)f̂2(g)u = u. Now let

z = gρa(g)q(g)s−l−1u,

where ρ = l · deg(q(x)) + deg(f2(x)) +m′. Then we have

〈z, gm′f2(g)q(g)lv〉 = 〈gρa(g)q(g)s−l−1u, gm
′
f2(g)q(g)lv〉

= f2(0)q(0)lβm
′〈q(g)s−1a(g)f̂2(g)u, v〉

= f2(0)q(0)lβm
′〈q(g)s−1u, v〉 6= 0,

from our assumption on v at the beginning of the proof. On the other hand,

〈z, gmf1(g)q(g)ku〉 = 〈gρa(g)q(g)s−l−1u, gmf1(g)q(g)ku〉

= 〈q(g)s−1+k−lu, q(0)k(βg−1)ρ−k·deg(q(x))gma(βg−1)f1(g)u〉 = 0,
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which, when k > l, follows immediately since u has order q(g)s, and when
k = l, follows from Lemma 4, since U is assumed degenerate. So now we
have

〈z, w〉 6= 0,
which implies in this case that U ⊕ U ′ is nondegenerate.

In the case that k < l, first choose a′(x), b′(x) such that a′(x)f̂1(x) +
b′(x)q(x)s = 1 and a′(0), b′(0) 6= 0. Then let

z = gρ
′
a′(g)q(q)s−k−1v,

where ρ′ = m− (s− k− 1)deg(q(x))− deg(a′(x)). A computation similar to
the previous one again gives 〈z, w〉 6= 0. So now U ⊕ U ′ is nondegenerate.

4. Proof of the Main Theorem

The remaining cases required to obtain Theorem 2 are given in the fol-
lowing proposition.

Proposition 3. (i) Let g be a cyclic transformation for V (ignoring any
inner product structure) such that the minimal polynomial for g is self-β-
adjoint. Then g = t1t2, where t21 = I and t22 = βI.

(ii) If g is taken to be β-symplectic in (i), then t1 can be taken to be
skew-symplectic and t2 can be taken to satisfy µ(t2) = −β.

(iii) Let g be a β-symplectic transformation for V such that the minimal
polynomial of g is q(x)s, where q(x) is an irreducible self-β-adjoint poly-
nomial. Then g = t1t2, where t1 is a skew-symplectic involution, and t2
satisfies µ(t2) = −β and t22 = βI.

Proof. (i): The minimal polynomial of g, f(x), is self-β-adjoint, and
we first factor f(x) = r(x)(x2 − β)s, where r(x) is relatively prime to the
irreducible x2 − β, where we are assuming β is not a square in F . Then
r(x) is a self-β-adjoint polynomial of even degree 2m. We may write V =
ker(r(x))⊕ker((x2−β)s), and consider the cases for the minimal polynomial
of g being of the form r(x) as above or (x2 − β)s separately.

Case I. The transformation g is cyclic (for a space V ), and has minimal
polynomial r(x) which is self-β-adjoint, where r(x) is either relatively prime
to x2 − β and has degree 2m, or is of the form (x2 − β)s, where s is even.
For simplicity, we will write s = m, although m is not necessarily even in
the first case. Let r(x) =

∑2m
i=0 aix

i, where a2m = 1 and a0 = βm, which
also holds for r(x) = (x2 − β)s since in this case a0 = (−β)s = βs, since s is
even. Then since r(x) = r̂(x) = r(0)−1x2mr(β/x), we have∑2m

i=0 aix
i = β−mx2m

∑2m
i=0 aiβ

ix−i

=
∑2m

i=0 aiβ
i−mx2m−i

=
∑2m

i=0 a2m−iβ
m−ixi

and so we have
a2m−i = βi−mai.
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Since g is cyclic, there is a vector w ∈ V such that the vectors

w, gw, g2w, . . . , g2m−1w

form a basis of V . Then also the vectors

g−mv, g−(m−1)v, g−(m−2)v, . . . , v, gv, . . . , gm−1v

form a basis for V , where v = gmw. Consider the basis consisting of the
vectors v, (g+βg−1)v, . . . , (gm−1 +βm−1g−(m−1))v, (g−βg−1)v, . . . , (gm−1−
βm−1g−(m−1))v, (gm − βmg−m)v, where linear independence boils down to
the fact that a2m = 1 and a0 = βm in the minimal polynomial for g.

Let P be the subspace of V generated by vectors of the form (gi+βig−i)v
for 0 ≤ i < m, and let Q be the subspace of V generated by vectors of the
form (gi − βig−i)v for 0 < i ≤ m. Then V = P ⊕Q.

First we observe that the transformation g − βg−1 maps the space P to
Q. If i is such that 0 ≤ i < m, we see that

(g − βg−1)(gi + βig−i)v = (gi+1 − βi+1g−(i+1))v − β(gi−1 − βi−1g−(i−1))v.

Since i + 1 and i − 1 are both no bigger than m, then the image above is
always in Q. These image vectors in Q are linearly independent, and so we
have (g − βg−1)P = Q.

Next we see that g + βg−1 maps P to P . Let i be such that 0 ≤ i < m.
Then

(g + βg−1)(gi + βig−i)v = (gi+1 + βi+1g−(i+1))v + β(gi−1 + βi−1g−(i−1))v,

and the image is immediately seen to be in P , except for the case i = m−1,
where we need for (gm+βmg−m)v to be in P also. The minimal polynomial
of g is r(x) =

∑2m
i=0 aix

i, and it was observed above that a2m = 1, a0 = βm,
and a2m−i = βi−mai. We have

∑2m
i=0 aig

iv = 0, and multiplying by g−m

gives
∑2m

i=0 aig
i−mv = 0. So now

(gm + βmg−m)v = −
2m−1∑
i=1

aig
i−mv = −amv −

m−1∑
i=1

aig
i−mv −

2m−1∑
i=m+1

aig
i−mv

= −amv −
m−1∑
i=1

am−ig
−iv −

m−1∑
i=1

ai+mg
iv,

where the last equality is obtained by shifting the indices for each sum.
In the first sum we now apply a2m−j = βj−maj to j = i + m to see that
am−i = βiai+m, and we finally obtain

(gm + βmg−m)v = −amv −
m−1∑
i=1

am+i(gi + βig−i)v ∈ P,

as desired. So (g + βg−1)P ⊂ P .
We now have (g − βg−1)P = Q and (g + βg−1)P ⊂ P , and so

(g − βg−1)Q = (g − βg−1)2P = [(g + βg−1)2 − 4βI]P ⊂ P,
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and
(g + βg−1)Q = (g + βg−1)(g − βg−1)P

= (g − βg−1)(g + βg−1)P ⊂ (g − βg−1)P ⊂ Q,
the last equality coming from the fact that g−βg−1 and g+βg−1 commute.
Now let t1 be the involution acting on V with P as its +1 eigenspace andQ as
its −1 eigenspace. Since V = P⊕Q, (g−βg−1)P = Q, and (g−βg−1)Q ⊂ P ,
we have t1(g − βg−1) = −(g − βg−1)t1. Also, since (g + βg−1)Q ⊂ Q and
(g + βg−1)P ⊂ P , we have t1(g + βg−1) = (g + βg−1)t1. Adding these two
equations together, we obtain 2t1g = 2βg−1t1, and since char(F ) 6= 2, we
have t1g = βg−1t1, or (t1g)2 = βI. So letting t2 = t1g, we have g = t1t2
with t21 = I and t22 = βI.

Case II. The cyclic transformation g acting on V has minimal polynomial
(x2−β)s, where s = 2k+1 is odd. Letting (x2−β)s =

∑2s
i=1 aix

i, we observe
that a0 = −βs and a2s−i = −βi−sai, and in particular as = 0.

We may take the following as a basis for V :

v, (g + βg−1)v, . . . , (gs + βsg−s)v, (g − βg−1)v, . . . , (gs−1 − βs−1g−(s−1))v,

where linear independence essentially comes from the observation above that
a0 = −βs and a2s = 1 in the minimal polynomial for g. We must define
bases for P and Q slightly differently from the previous case, because of the
slight change in basis for V . Let P be the subspace of V with basis vectors
of the form (gi +βig−i)v for 0 ≤ i ≤ s, and let Q be the subspace of V with
basis vectors of the form (gi − βig−i)v for 0 < i < s.

We first show that (g − βg−1)P = Q. We calculate, as in the previous
case, that for 0 ≤ i ≤ s,

(g − βg−1)(gi + βig−i)v = (gi+1 − βi+1g−(i+1))v − β(gi−1 − βi−1g−(i−1))v,

which can be seen to be in Q immediately unless i = s − 1 or i = s. For
i = s − 1, we need to show that (gs − βsg−s)v is an element of Q. By
plugging g into its minimal polynomial and multiplying by g−s, we have∑2s

i=0 aig
i−s = 0. Now, a0 = 1, a2s = −βs, as = 0, and as−i = −βias+i,

which in the end gives

(gs − βsg−s)v = −
s−1∑
i=1

as+i(gi − βig−i)v ∈ Q,

as desired. For the case i = s, it needs to be shown now that (gs+1 −
βs+1g−(s+1))v ∈ Q. Observe that since (g2−β)sv = (g2−β)(g2−β)2kv = 0,
multiplying by g−(2k+2)(g2 + β) yields

g−(2k+2)(g4 − β2)(g2 − β)2kv
= g−2k(g2 − β2g−2)(g4 − 2βg2 + β2)kv

= (g2 − β2g−2)(g2 + β2g−2 − 2β)kv = 0.

If we exchange the terms g2 and β2g−2 in the expression (g2 − β2g−2)(g2 +
β2g−2 − 2β)kv, it is negated. So in the expansion, the powers of g2 and
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β2g−2 will have coefficients that are negatives of each other. So we have

(g2 − β2g−2)(g2 + β2g−2 − 2β)kv =
k+1∑
i=1

ci(g2i − β2ig−2i)v = 0,

with ck+1 = 1, and so

(gs+1 − βs+1g−(s+1))v = −
k∑
i=1

ci(g2i − β2ig−2i)v ∈ Q.

So we finally have (g − βg−1)P = Q, equality coming from the fact that
the images of (gi + βig−i)v for 0 ≤ i ≤ s − 2 are linearly independent, and
dim(Q) = s− 1.

We next show that (g+βg−1)P ⊂ P , and we calculate that for 0 ≤ i ≤ s,

(g + βg−1)(gi + βig−i)v = (gi+1 + βi+1g−(i+1))v + β(gi−1 + βi−1g−(i−1))v,

which is readily seen to be in P , except when i = s. For this case, we need to
show that (gs+1 + βs+1g−(s+1))v ∈ P . Since (g2 − β)2k+1v = 0, multiplying
by g−(2k+2)(g2 − β) gives

g−(2k+2)(g2 − β)2k+2v = (g2 + β2g−2 − 2β)k+1v = 0.

Since (g2 + β2g−2 − 2β)k+1v is invariant if we exchange g2 and β2g−2, then
powers of these will have the same coefficients in the expansion. So we have

(g2 + β2g−2 − 2β)k+1v =
k+1∑
i=0

di(g2i + β2ig−2i)v = 0,

with dk+1 = 1, and so

(gs+1 + βs+1g−(s+1))v = −
k∑
i=0

di(g2i + β2ig−2i)v ∈ P.

So now (g + βg−1)P ⊂ P .
As in the previous case, it follows that (g−βg−1)Q ⊂ P and (g+βg−1)Q ⊂

Q. If we define, as before, t1 to be the involution having +1 eigenspace P
and −1 eigenspace Q, it follows from the earlier computation that g = t1t2
with t21 = I and t22 = βI.

We note that in both cases above, we may prove by induction, and making
use of the fact that (g − βg−1)P = Q and (g + βg−1)P ⊂ P , that we have
for any i, (gi + βig−i)v ∈ P and (gi − βig−i)v ∈ Q.

(ii): If g is β-symplectic, we must show that t1 is skew-symplectic and t2
satisfies µ(t2) = −β. As we have just shown, we may take t1 to be an involu-
tion with +1 eigenspace P , spanned by vectors of the form (gi+βig−i)v, and
−1 eigenspace Q, spanned by vectors of the form (gi−βig−i)v. We first show
that P and Q are totally isotropic. For P , take (gi+βig−i)v, (gj+βjg−j)v ∈
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P , and we have:

〈(gi + βig−i)v, (gj + βjg−j)v〉
= 〈(gi + βig−i)v, gjv〉+ 〈giv, βjg−jv〉+ 〈βig−iv, βjg−jv〉
= 〈(gi + βig−i)v, gjv〉+ 〈gjv, βig−iv〉+ 〈gjv, giv〉
= 〈(gi + βig−i)v, gjv〉+ 〈gjv, (gi + βig−i)v〉
= 0.

And similarly for Q, we may show that for (gi−βig−i)v, (gj −βjg−j)v ∈ Q,
we have:

〈(gi − βig−i)v, (gj − βjg−j)v〉 = 0.

So for every pair of vectors in a set that spans P or Q, the inner product is
zero, and so P ⊂ P⊥ and Q ⊂ Q⊥. Now let u and u′ be any two vectors in
V = P ⊕Q. Write u = w + y, u′ = w′ + y′, where w,w′ ∈ P and y, y′ ∈ Q.
We compute 〈t1u, t1u′〉:

〈t1u, t1u′〉 = 〈t1(w + y), t1(w′ + y′)〉 = 〈w − y, w′ − y′〉
= 〈w,w′〉+ 〈y, y′〉 − 〈y, w′〉 − 〈w, y′〉
= −〈y, w′〉 − 〈w, y′〉.

While computing 〈u, u′〉 gives us:

〈u, u′〉 = 〈w + y, w′ + y′〉
= 〈w,w′〉+ 〈y, y′〉+ 〈y, w′〉+ 〈w, y′〉
= 〈y, w′〉+ 〈w, y′〉.

Therefore we have 〈t1u, t1u′〉 = −〈u, u′〉, and t1 is skew-symplectic. Since g
satisfies µ(g) = β, then t2 = t1g satisfies µ(t2) = −β.

(iii): From Lemma 5, we may write V as an orthogonal sum of subspaces
that are either cyclic, or the direct sum of two cyclic subspaces. The case
for the nondegenerate cyclic pieces is covered in (i) and (ii), and so we
may assume that V is the sum of two cyclic subspaces. We may further
assume, from Lemmas 4 and 5, that for any u1 ∈ V of order q(g)s, the cyclic
space U1 generated by u1 is degenerate, and if u2 is any vector satisfying
〈q(g)s−1u1, u2〉 6= 0, then V = U1⊕U2, where U2 is the cyclic space generated
by u2.

From part (i) above, we may write U1 = P1⊕Q1, where P1 is spanned by
vectors of the form (gk+βkg−k)u1, and Q1 is spanned by vectors of the form
(gk−βkg−k)u1. If q(x) is relatively prime to x2−β and deg(q(x)) = 2m, let
w = g−m(s−1)q(g)s−1u1. If q(x) = x2− β and s is odd, let w = g−(s−1)(x2−
β)s−1u1. Then in either case we have w 6= 0 and w ∈ P1, and in particular,
w 6∈ Q1. The case where q(x) = x2 − β and s is even is taken care of
below. Since (Q⊥1 )⊥ = Q1, and w 6∈ Q1, we can find a vector u2 ∈ Q⊥1
such that 〈w, u2〉 6= 0. Since U1 is cyclically generated by u1, and so also by
g−m(s−1)u1, and U1 is degenerate, we have by Lemma 4 that u2 6∈ U1, and
is of order q(g)s. Then V = U1 ⊕ U2, where U2 is cyclically generated by
u2 ∈ Q⊥1 .
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Now let U2 = P2⊕Q2, where P2 is spanned by the vectors (gk+βkg−k)u2,
and Q2 is spanned by the vectors (gk − βkg−k)u2. Let P = P1 ⊕ Q2 and
Q = P2 ⊕Q1. From part (i), we know that for i = 1, 2, (g − βg−1)Pi = Qi,
(g − βg−1)Qi ⊂ Pi, (g + βg−1)Pi ⊂ Pi, and (g + βg−1)Qi ⊂ Qi. These
together give us (g−βg−1)P ⊂ Q, (g−βg−1)Q ⊂ P , (g+βg−1)P ⊂ P , and
(g+ βg−1)Q ⊂ Q. So if we define t1 to be the involution on V with P as its
+1 eigenspace and Q its −1 eigenspace, we duplicate the argument in (i) to
obtain (t1g)2 = βI, so letting t2 = t1g gives t22 = βI.

We have shown in (ii) above that Pi ⊂ P⊥i and Qi ⊂ Q⊥i for i = 1, 2.
Now we show that Pi ⊥ Qj for i 6= j. We have

〈(gk ± βkg−k)u1, (gl ∓ βlg−l)u2〉
= 〈(gk ± βkg−ku1, g

lu2〉 ∓ 〈(gk ± βkg−k)u1, β
lg−lu2〉

= 〈βlg−l(gk ± βkg−k)u1, u2〉 ∓ 〈gl(gk ± βkg−k)u1, u2〉
= ∓〈(gl ∓ βlg−l)(gk ± βkg−k)u1, u2〉
= 0,

since
(gl ∓ βlg−l)(gk ± βkg−k)u1

= (gl+k − βl+kg−(l+k))u1 ± βk(gl−k − βl−kg−(l−k))u1 ∈ Q1

and u2 ∈ Q⊥1 . So Pi ⊥ Qj for i 6= j. Now P ⊂ P⊥ and Q ⊂ Q⊥. From the
argument in (ii), it follows that µ(t1) = −1 and µ(t2) = −β.

If q(x) = x2−β and s is even, then we again let w = g−(s−1)(x2−β)s−1u1,
but now we have w 6= 0 and w ∈ Q1, so w 6∈ P1. Now we find a u2 ∈ P⊥1
such that 〈w, u2〉 6= 0, and by Lemma 4, u2 6∈ U1 and is of order q(g)s.
Now V = U1 ⊕ U2, where U2 is cyclically generated by u2 ∈ P⊥1 . We have
U2 = P2 ⊕ Q2, where P2 is spanned by the vectors (gk + βkg−k)u2 and Q2

is spanned by the vectors (gk − βkg−k)u2.
In this case, we let P = P1⊕P2 and Q = Q1⊕Q2. Applying the method

in part (i) to the Pi and Qi, we obtain (g− βg−1)P ⊂ Q, (g− βg−1)Q ⊂ P ,
(g + βg−1)P ⊂ P , and (g + βg−1)Q ⊂ Q. Define t1 to be the involution on
V = P ⊕Q to have +1 eigenspace P and −1 eigenspace Q, and by part (i),
we have (t1g)2 = βI, and t2 = t1g satisfies t22 = βI.

As in the previous case, we may show that Pi ⊥ Pj and Qi ⊥ Qj for i 6= j.
Since also Pi ⊂ P⊥i and Qi ⊂ Q⊥i from part (ii), we finally have for this case
that P ⊂ P⊥ and Q ⊂ Q⊥. From part (ii), it follows that µ(t1) = −1 and
µ(t2) = −β.

Proof of Theorem 2. From Proposition 2, it is sufficient to prove
the theorem for g whose minimal polynomial is a power of a polynomial of
either the form p(x)p̂(x), where p(x) is an irreducible polynomial which is
not self-β-adjoint, or q(x), an irreducible polynomial which is self-β-adjoint.
For the first case, Lemma 3 reduces the task to proving the theorem for
cyclic transformations, which is proven in Proposition 3 (i) and (ii). The
second case is taken care of in Proposition 3 (iii).
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5. A Type of Conjugacy Class in GSp(V)

In this section we prove a proposition about a specific type of conjugacy
class of GSp(V ). The proof is adapted from unpublished notes of D. Bump
and D. Ginzburg. The proposition is a generalization of a result of R. Gow
[6, Lemma 1], and the proof of part (i) is essentially the same as Gow’s
proof.

Proposition 4. Let V be an F -vector space such that char(F ) 6= 2, equipped
with a nondegenerate skew-symmetric bilinear form 〈·, ·〉.

(i) If −β ∈ F is a square in F , there exists a unique conjugacy class of
GSp(V ) whose elements g satisfy g2 = −βI, µ(g) = β.

(ii) Suppose that −β ∈ F is not a square in F , and let K be a quadratic
extension of F containing the square roots of −β. Let ϕ : λ 7→ λ be the
nontrivial element of Gal(K/F ). If the norm map N : K → F , N(λ) = λλ
is surjective, then there exists a unique conjugacy class of GSp(V ) whose
elements g satisfy g2 = −βI, µ(g) = β.

Proof. Since char(F ) 6= 2, g has the two square roots of −µ(g) = −β as
distinct eigenvalues, and so g is semisimple. Let γ and −γ be the two square
roots of −β, so if γ 6∈ F , γ = −γ. Let V (γ) and V (−γ) be the eigenspaces
for γ and −γ respectively. In the case that γ 6∈ F , these eigenspaces are
defined over K, and are subspaces of VK = V ⊗F K. We may extend the
bilinear form 〈·, ·〉 to VK × VK → K by linearity. We define the action
of GSp(V ) on VK as g(v ⊗ λ) = gv ⊗ λ, where g ∈ GSp(V ) and λ ∈ K.
Now note that V (γ) and V (−γ) are totally isotropic spaces, since for any
v, w ∈ V (±γ), we have, using µ(g) = β,

β〈v, w〉 = 〈gv, gw〉 = 〈±γv,±γw〉 = (±γ)2〈v, w〉 = −β〈v, w〉.

So 〈v, w〉 = 0. If the dimension of V is 2n, then the maximum dimension of
a totally isotropic subspace of V (or VK) is n, and since V (γ)⊕V (−γ) = V
(or VK), then V (γ) and V (−γ) are each dimension n.

For part (i), we suppose that −β is a square in F , so that γ ∈ F . Then
V (γ) and V (−γ) are F -subspaces of V , each of dimension n. Take a basis
v1, . . . , vn of V (γ). Now, V (−γ) is isomorphic to V (γ)∗, the dual of V (γ),
as it acts on V (γ) through the inner product. So we may choose a basis
w1, . . . , wn of V (−γ) dual to v1, . . . , vn, so that 〈vi, wj〉 = δij . Now we have
found a symplectic basis v1, . . . , vn, w1, . . . , wn, with respect to which the
element g acts by the matrix(

γIn
−γIn

)
,

and so the conjugacy class of g is uniquely determined.
In (ii), if −β is not a square in F , then V (γ) and V (−γ) are K-subspaces

of VK . We may extend the action of ϕ to VK , by letting ϕ(v ⊗ λ) = v ⊗ λ.
Then for any g ∈ GSp(V ), the action of ϕ and g on VK commute. It follows
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we have the map ϕ : V (γ)→ V (−γ). Now define [·, ·] on V (γ)× V (γ) by

[v, w] = −2γ〈v, w〉.
Then [v, w] = [w, v], that is [·, ·] is Hermitian, and is nondegenerate, since
〈·, ·〉 is nondegenerate. It will follow from the surjectivity of the norm
map that there is an orthonormal basis of V (γ) with respect to [·, ·], call
it u1, . . . , un. Then 〈ui, uj〉 = −δij/2γ. Now define

vi = γ(ui − ui), wi = ui + ui.

Then vi, wi ∈ V , since they are invariant under ϕ, and also 〈vi, vj〉 =
〈wi, wj〉 = 0 and 〈vi, wj〉 = δij . Now with respect to the symplectic ba-
sis v1, . . . , vn, w1, . . . , wn of V , the element g acts by the matrix(

In
−βIn

)
,

and so again the conjugacy class of g is uniquely determined.
We finish the proof of (ii) by showing that there is an orthonormal basis

for V (γ) with respect to the nondegenerate Hermitian form [·, ·]. The proof
is by induction on the dimension of V (γ). For the one-dimensional case, we
may first find a v such that [v, v] 6= 0 since the form is nondegenerate. Now
for any λ ∈ K, we have [λv, λv] = N(λ)[v, v], and we are assuming that the
norm map is surjective. So we let λ be such that N(λ) = [v, v]−1, and then
u1 = λv satisfies [u1, u1] = 1.

For the n-dimensional case, if we can find any vector such that [v, v] 6= 0,
we may normalize as above, from the surjectivity of the norm map, to find
a u1 such that [u1, u1] = 1. The orthogonal complement of the span of u1

is then of smaller dimension, and by an induction hypothesis we may find
an orthonormal basis. If [v, v] = 0 for all v, then we would have T ([v, w]) =
[v + w, v + w] − [v, v] − [w,w] = 0 for all v, w, where T : λ 7→ λ + λ is the
trace map from K down to F . Now, a basis for K over F is {1, γ}, where
γ is a square root of −β, and γ = −γ. So an element of K with trace zero
must be of the form λγ, where λ ∈ F . Now [v, w] must be of this form for all
v, w, but then [γv, w] = γ[v, w] must also be of this form, which implies we
must have [v, w] = 0. This contradicts the fact that [·, ·] is nondegenerate.
We therefore have an orthonormal basis and the proof is complete.

6. Applications

First, we have the following immediate consequence of Theorem 2.

Corollary 1. Let g ∈ GSp(V ), where V is an F -vector space and char(F ) 6=
2. Then g is conjugate to µ(g)g−1 by a skew-symplectic involution.

The statement that g is conjugate to µ(g)g−1 by some element of GSp(V )
is stated by Prasad [9, Proposition 1], but a very different proof is suggested
there.

In [6, Theorem 1], Gow proves that if F is a field in which −1 is a square,
then Sp(2n, F ) is the square of a conjugacy class, which is a special case of
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Thompson’s conjecture. Gow’s proof uses Wonenburger’s Theorem 1 and a
version of Proposition 4 for the symplectic group. We obtain the following
similar result for GSp(V ), which says that under certain conditions on the
field, we may write GSp(V ) as the product of one conjugacy class with the
union of conjugacy classes indexed by the multiplicative group of the field.

Corollary 2. Let V be an F -vector space such that char(F ) 6= 2, and such
that the norm map of any quadratic extension of F is surjective. Let Cβ be
the unique conjugacy class corresponding to β ∈ F× as described in Propo-
sition 4,

Cβ = {g ∈ GSp(V ) | g2 = −βI, µ(g) = β},
and let C be the union of these conjugacy classes,

C =
⋃

β∈F×
Cβ.

Then GSp(V ) = C1 · C.

Proof. This follows directly from Theorem 2 and Proposition 4.

One of the main results of Wonenburger [10, Theorem 1] is that an ele-
ment of GL(V ) is conjugate to its inverse if and only if it is the product of
two involutions. Wonenburger proves this under the assumption that V is
an F -vector space such that char(F ) 6= 2, but Djoković [1] proved the result
for general characteristic. We are able to prove the following generalization.

Theorem 3. Let V be an F -vector space with char(F ) 6= 2, and g ∈ GL(V ).
Then g is conjugate to βg−1 for some β ∈ F× if and only if g has a factor-
ization g = t1t2 such that t21 = I and t22 = βI.

Proof. If g has such a factorization, then βg−1 = t2t1, and so g is conjugate
to βg−1 since t−1

2 gt2 = βg−1.
Now assume that g is conjugate to βg−1 for some β ∈ F×. Then g and

βg−1 have the same invariant factors and minimal polynomial, and so from
Proposition 1, the minimal polynomial of g is self-β-adjoint. In general,
if g has invariant factors δ1(x), . . . , δν(x), then βg−1 has invariant factors
δ̂1(x), . . . , δ̂ν(x), where δ̂i(x) is the β-adjoint of δi(x). Since g and βg−1

have the same invariant factors in this case, then each δi(x) is self-β-adjoint.
We may write V as the direct sum of subspaces, V = ⊕νi=1Vi, where g

restricted to Vi, call it gi, has minimal polynomial δi(x), and Vi is a cyclic
space with respect to gi. Now gi is a cyclic transformation which is self-
β-adjoint, and so it follows from Proposition 3(i) that gi has the desired
factorization. Since g = ⊕νi=1gi, the theorem follows.

We now consider the case when V is an Fq-vector space. If q ≡ 1(mod 4),
then −1 is a square, and it follows immediately from Wonenburger’s Theo-
rem 1 that every element of Sp(2n,Fq) is conjugate to its inverse. This is not
true, however, if q ≡ 3(mod 4), as there are unipotent elements which are
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not conjugate to their inverses in Sp(2n,Fq), as given by Feit and Zuckerman
[2, Lemma 5.3]. It follows from the results of Wonenburger and of Feit and
Zuckerman that if we throw a skew-symplectic involution into Sp(2n,Fq) for
q ≡ 3(mod 4), then every element of Sp(2n,Fq) is conjugate to its inverse
by an element of this larger group. However, there are elements in the other
coset which are not conjugate to their inverses by elements of this group.
The following result gives a group in which Sp(2n,Fq), q ≡ 3(mod 4), is an
index 2 subgroup, such that every element is conjugate to its inverse.

Theorem 4. Let G = Sp(2n,Fq), where q ≡ 3(mod 4). Let ι be the order 2
automorphism of G defined by the following conjugation by a skew-symplectic
element:

ιg =
(
−In

In

)
g

(
−In

In

)
.

Now define Gι,−I as the following group containing G as an index 2 subgroup:

Gι,−I = 〈G, τ | τ2 = −I, τ−1gτ = ιg for every g ∈ G〉.
Then every element of Gι,−I is conjugate to its inverse, and so every complex
character of Gι,−I is real-valued.

Proof. Let α ∈ Fq2 be a square root of −1. Note that conjugation by the
element

τ =
(
αIn

−αIn

)
also gives the order 2 automorphism ι of G, and τ2 = −I, so the group Gι,−I

is isomorphic to 〈G, τ〉, which is a subgroup of Sp(2n,Fq2).
Let g ∈ G. From Wonenburger’s Theorem 1, there is a skew-symplectic

involution h such that h−1gh = g−1. The element

κ =
(
−In

In

)
is also a skew-symplectic involution, and so κh is symplectic, and then
(κh)−1g(κh) = ιg−1. Conjugating both sides by τ , we have (κhτ)−1g(κhτ) =
g−1, and κhτ ∈ Gι,−I .

Now let k ∈ τG = Gι,−I \ G. Then αk = ατg for some g ∈ G. We have
ατ = κ, and so αk = κg. So now αk ∈ GSp(2n,Fq) with µ(αk) = −1. We
now apply Corollary 1 to say that there exists a skew-symplectic involution
t ∈ GSp(2n,Fq) such that t−1(αk)t = −(αk)−1. Multiplying both sides of
this by −α, we obtain k−1 = (αt)−1k(αt).

Now αt = −τκt. Since −κ and t are skew-symplectic, their product is in
G, so we have αt ∈ τG. So k is conjugate to its inverse in Gι,−I .

Remarks. Gow proved [4] that if V is an F -vector space and char(F ) = 2,
then every element of Sp(V ) is the product of two symplectic involutions. If
F is any algebraic extension of F2, then every element of F is a square, and
so a result for GSp(V ) is immediate. We do not have results for GSp(V ),
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however, when F is a characteristic 2 field which is not an algebraic extension
of F2.
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