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Abstract. Building on ideas of Tupan, we give an elementary proof of a result of Mœglin, Vignéras

and Waldspurger on the existence of automorphisms of many p-adic classical groups that take each

irreducible smooth representation to its dual. Our proof also applies to the corresponding similitude

groups.

Introduction

Let F be a non-archimedean local field and let G be the group of F -points of a reductive F -

group. Let ι be an automorphism of G of order at most two. We call ι a dualizing involution if it

takes each irreducible smooth representation of G to its smooth dual or contragredient. An early

example comes from a paper of Gelfand and Kazhdan [3]. This shows, via a geometric method, that

transpose-inverse is a dualizing involution of GLn(F ). By adapting Gelfand and Kazhdan’s approach,

Mœglin, Vignéras and Waldspurger proved the existence of dualizing involutions for many classical

p-adic groups [7] Chap. IV § II.

The impetus for this paper stems from more recent work of Tupan [10] that rederives Gelfand and

Kazhdan’s result by entirely elementary means. We adapt Tupan’s method so that it applies to the

classical groups of [7] as well as the corresponding similitude groups. The paper [9] contains another

approach to these results via existence of characters [4, 1].

Let oF denote the valuation ring of F and fix a uniformizer $ in F . The basis of Tupan’s method

has two parts: (i) the observation that if L is an oF -order in Mn(F ) then the family {1 + $kL}k≥1
forms a neighborhood basis of the identity in GLn(F ) consisting of compact open subgroups and (ii)

a classical result in linear algebra that any square matrix is conjugate to its transpose by a symmetric

matrix (see, for example, [6] page 76).

For the classical and similitude groups G that we consider, Theorem A of [9] provides a natural

analogue of (ii). More precisely, it gives an anti-involution θ of G (i.e., θ(ab) = θb θa for all a, b ∈ G
and θ2 = 1) with the following property: for any x ∈ G there is a g ∈ G with θg = g such that

gxg−1 = θx. The dualizing involution ι of G is then given by ιg = θg−1 for g ∈ G. In place of (i), we

use a suitable oF -lattice L in the Lie algebra g of G. For a certain dense open subset g1 of g, there is

a Cayley map c : g1 → G such that g1 contains $L. The family {c($kL)}k≥1 is then a neighborhood

basis of the identity in G that again consists of compact open subgroups.

In this way, our setting and Tupan’s fit into a common framework. After a more precise statement

of results in §1, we introduce this framework in §2. It allows us to present an axiomatic version and

slight simplification of Tupan’s original method. We show in §4 that our family of groups fits inside

the framework. This relies on properties of Cayley maps, in particular a Cayley map for similitude

groups, that we study in §3. Our use of Cayley maps means that we have to exclude the case of even

residual characteristic.
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1. Preliminaries and statement of results

1.1. As above, let F be a non-archimedean local field and let G be the F -points of a reductive F -group.

Via the topology on F , the group G is naturally a locally profinite unimodular topological group. For

any irreducible smooth representation π of G, we write π∨ for the smooth dual or contragredient of

π.

Definition. Let ι be a continuous automorphism of G of order at most two. We say that ι is a

dualizing involution of G if πι ∼= π∨ for all irreducible smooth representations π of G where πι = π ◦ ι.

1.2. To introduce the family of classical and similitude groups that we work with, let E/F be a field

extension with [E : F ] ≤ 2. We assume also that the residual characteristic of F is odd. In particular,

the characteristic of F cannot be even. This assumption is necessitated by our use of Cayley maps in

§3.

We write τ for the generator of Gal(E/F ). Thus τ has order two when [E : F ] = 2 and τ = 1 when

E = F . Let V be a finite dimensional vector space over E with a non-degenerate ε-hermitian form

〈 , 〉 for ε = ±1. We take 〈 , 〉 to be linear in the first variable:

〈αu+ βv,w〉 = α〈u,w〉+ β〈v, w〉 and 〈v, w〉 = ε τ(〈w, v〉)

for all α, β ∈ E and u, v, w ∈ V . It follows that 〈 , 〉 is τ -linear in the second variable:

〈u, αv + βw〉 = τ(α)〈u, v〉+ τ(β)〈u,w〉.

Let U(V ) denote the group of isometries of 〈 , 〉 and GU(V ) the corresponding similitude group:

U(V ) = {g ∈ AutE(V ) : 〈gv, gv′〉 = 〈v, v′〉, ∀ v, v′ ∈ V },
GU(V ) = {g ∈ AutE(V ) : 〈gv, gv′〉 = β〈v, v′〉, for some scalar β, ∀ v, v′ ∈ V }.

For g ∈ GU(V ) with associated scalar β we often write µ(g) = β. This is the multiplier of g. Note

β ∈ F×. Indeed, applying τ to 〈gv, gv′〉 = β〈v, v′〉 gives τ(β) = β.

1.3. We recall a definition from [9].

Definition. Let h ∈ AutF (V ).

(1) We say that h is anti-unitary if

〈hv, hv′〉 = 〈v′, v〉, ∀ v, v′ ∈ V.

(2) We say also that h is an anti-unitary similitude if, for some scalar β,

〈hv, hv′〉 = β〈v′, v〉, ∀ v, v′ ∈ V.

We can now state the main technical result of [9]. In the form of the corollary below, this plays a

crucial role in our adaptation of Tupan’s method.

Theorem A. Let g ∈ GU(V ) with µ(g) = β. Then there is an anti-unitary involution h1 and an

anti-unitary similitude h2 with h22 = β such that g = h1h2.

Once and for all we fix an anti-unitary involution h ∈ AutF (V ) and set ιg = µ(g)−1hgh−1 for

g ∈ GU(V ). Thus ι is a continuous automorphism of GU(V ) of order two. Further ι restricts to the

automorphism g 7→ hgh−1 : U(V )→ U(V ) which by obtuseness we again denote by ι.

For a ∈ GU(V ), we set θa = ιa−1, so that θ (resp. θ |U(V )) is an involutary anti-isomorphism of

GU(V ) (resp. U(V )).

Corollary. For each a ∈ GU(V ), there is an x ∈ U(V ) with θx = x such that xax−1 = θa.
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Proof. Let a ∈ GU(V ) and put µ(a) = β. By Theorem A, we have a = h1h2 for an anti-unitary

involution h1 and an anti-unitary similitude h2 such that h22 = β. Hence h−12 = β−1h2 and

θa = β hh−12 h−11 h−1

= β hβ−1h2 h
−1
1 h−1

= (hh1) (h1h2) (hh1)−1

= (hh1) a (hh1)−1.

Now hh1 ∈ U(V ) and

θhh1 = h(hh1)−1h−1

= hh1hh
−1

= hh1,

and thus we can take x = hh1. �

Our main goal is to prove the following.

Theorem B. The maps ι : U(V )→ U(V ) and ι : GU(V )→ GU(V ) are dualizing involutions.

2. Framework for proof of Theorem B

Again let G be the group of F -points of a reductive F -group. Under the hypotheses in §2.1 below,

we show that the essential thread of Tupan’s line of argument carries over to G. In particular, subject

to these hypotheses, G admits a dualizing involution.

2.1. Let θ : G → G be an involutary anti-automorphism (i.e., θ(xy) = θ(y)θ(x) for all x, y ∈ G

and θ2 = 1). Writing g for the Lie algebra of G, the differential dθ : g → g is an involutary anti-

automorphism of g which we often denote simply by θ. In situations where we need to consider both

maps, we sometimes write θG for the map on the group and θg for the induced map on the Lie algebra.

As before, we set

(2.1.1) ιg = θg−1, g ∈ G,

so that ι : G → G is an involutary automorphism of G. For x ∈ G, let Int(x) denote the inner

automorphism g 7→ xgx−1 : G → G. As usual, we write Ad(x) for the induced automorphism of g,

that is, Ad(x) = d Int(x) for x ∈ G.

We impose the following hypotheses for the remainder of the section.

Hypotheses.

(1) There is an oF -lattice L ⊂ g and a map c : g1 → G for g1 ⊂ g such that the following hold.

(a) θg1 = g1 and θG ◦ c = c ◦ θg.

(b) Ad(x)g1 = g1 and Int(x)c(X) = c(Ad(x)X) for all x ∈ G and X ∈ g.

(c) θL = L and $L ⊂ g1.

(d) For each k ≥ 1, the restriction c | $kL is a homeomorphism onto a compact open subgroup

of G. In particular, the family {c($kL)}k≥1 consists of compact open subgroups and forms a

neighborhood basis of the identity in G.

(2) For each a ∈ G, there is an x ∈ G with θx = x such that xax−1 = θa

The Corollary to Theorem A shows that Hypothesis (2) holds for the classical and similitude groups

U(V ) and GU(V ). We will verify the various parts of Hypothesis (1) for these groups in §4.
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Remark. To obtain Tupan’s setting [10], we take G = GLn(F ) and g = Mn(F ). The map θ is simply

the transpose on G and g. Further, L = Mn(oF ), g1 = {X ∈ Mn(F ) : det(1 +X) 6= 0} and c : g1 → G

is given by c(X) = 1 + X. It is immediate that Hypothesis (1) holds. As noted in the introduction,

that hypothesis (2) holds is a classical result in linear algebra.

It is convenient to introduce the following terminology.

Definition. A subset S of G is conjugate-θ-stable if there is a g ∈ G such that θS = gSg−1.

We state a key technical result, our generalization of [10] Theorem 1.

Proposition. Any compact open subset of G can be decomposed as a disjoint union of finitely many

conjugate-θ-stable compact open subsets.

2.2. Granting the proposition, we show that it leads quickly to the main result.

Theorem. The map ι : G→ G is a dualizing involution.

Before the proof, we recall some background and set up some notation. Let C∞c (G) denote the space

of locally constant compactly supported functions f : G→ C. Let (π, V ) be a smooth representation

of G and let f ∈ C∞c (G). The operator π(f) : V → V is given by

π(f)v =

∫
G

f(g)π(g)v dg, v ∈ V,

where the integral is with respect to a fixed Haar measure on G. Suppose now that (π, V ) is irreducible.

It follows that (π, V ) is admissible, that is, the space V K of K-fixed vectors has finite dimension for

any open subgroup K of G [5]. Thus the image of π(f) has finite dimension and so π(f) has a well-

defined trace. The resulting linear functional f 7→ trπ(f) : C∞c (G)→ C is the distribution character

of π. It determines π up to equivalence ([2] 2.20). With f∨(g) = f(g−1) for f ∈ C∞c (G) and g ∈ G,

it is straightforward to check that trπ∨(f) = trπ(f∨).

Proof. For any compact open subset C of G, we write χC for the characteristic function of C. If
θC = gCg−1 for g ∈ G then

(2.2.1) π(χθC) = π(g)π(χC)π(g)−1.

By Proposition 2.1, any element of C∞c (G) can be written as a linear combination of characteristic

functions of conjugate-θ-stable compact open subsets of G. We set fθ(g) = f(θg) for f ∈ C∞c (G) and

g ∈ G. Using (2.2.1), it follows that

trπ(f) = trπ(fθ), ∀ f ∈ C∞c (G).

Now πι(f) = π((f∨)θ) and thus

trπι(f) = trπ((f∨)θ))

= trπ(f∨)

= trπ∨(f), ∀ f ∈ C∞c (G).

Therefore πι ∼= π∨. �

2.3. We now begin to work towards a proof of Proposition 2.1. For x ∈ G, let

L(x) = Ad(x−1)L ∩ L.

Lemma. Suppose θx = x for x ∈ G. Then θL(x) = Ad(x)L(x).
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Proof. For any x ∈ G and X ∈ g,

(2.3.1) θ(Ad(x)X) = Ad(θx−1)(θX).

To check this, note that the left side is

(dθG ◦ d Int(x))(X) = d(θG ◦ Int(x))(X)

= d(Int( θGx−1) ◦ θG)(X)

= Ad(θGx−1)(θgX).

Thus

θL(x) = θ(Ad(x−1)L) ∩ θL

= Ad(θx)(θL) ∩ θL (by (2.3.1))

= Ad(θx)L ∩ L (using θL = L)

= Ad(θx) (L ∩Ad(θx−1)L)

= Ad(θx)L(θx).

In particular, if θx = x then θL(x) = Ad(x)L(x). �

2.4. Our next observation is central to the proof of Proposition 2.1.

Lemma. Let a, x ∈ G with θx = x and xax−1 = θa.

(1) The set c($kL(x)) is a compact open subgroup of G (for k ≥ 1).

(2) The set ac($kL(x)) is a conjugate-θ-stable compact open neighborhood of a (for k ≥ 1).

Proof. By hypotheses (1)(b) and (1)(d),

c($kL(x)) = x−1c($kL)x ∩ c($kL).

This proves part (1). To prove part (2), note that

θ(ac($kL(x)) = θc($kL(x)) θa

= c($k · θL(x))xax−1 (by hypothesis (1)(a))

= xc($k L(x))x−1 xax−1 (by hypothesis (1)(b) and Lemma 2.3)

= (xa−1) ac($kL(x)) (xa−1)−1,

so that ac($kL(x)) is conjugate-θ-stable. �

2.5. Let K0 be any compact open subgroup of G. The group K0 acts on g via the (restriction of the)

adjoint action. We set

K = StabK0 L ⊂ K0.

Thus K is a compact open subgroup of G that stabilizes L. The coset space K\G is countable and

so the collection of cosets that contain some θ-fixed element is also countable. We label these cosets

as {Kdi : i ≥ 1} where θdi = di (i.e., each representative di is θ-fixed).

Note that if θx = x and x ∈ Kdi, then

(2.5.1) L(x) = L(di).

Indeed, if x = kdi with k ∈ K, then

L(x) = Ad(d−1i )Ad(k−1)L ∩ L

= Ad(d−1i )L ∩ L
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= L(di).

2.6. We can now prove Proposition 2.1 which for convenience we restate as follows.

Proposition. For any compact open subset C of G, there exist finitely many conjugate-θ-stable com-

pact open subsets C1, . . . , Cs of C such that C =
⊔s
i=1 Ci.

Proof. By hypothesis, the family {c($kL)}k≥1 is a neighborhood basis of 1 ∈ G consisting of compact

open subgroups. It follows that it suffices to prove the result for C = bc($l0L) for any b ∈ G and any

l0 ≥ 1

For each a ∈ C, we choose an xa ∈ G with θxa = xa such that xaax
−1
a = θa. In the special case

θa = a, we always take xa = 1. For each i ≥ 1, let

Ci = {a ∈ C : xa ∈ Kdi},

so that C =
⊔
i≥1 Ci.

Assume first that there is some θ-fixed element a in C. Then xa = 1 and L(xa) = L, so that

C = ac($l0L) = ac($l0L(xa)).

Thus C is itself conjugate-θ-stable by Lemma 2.4 (2).

Suppose now that C contains no θ-fixed element. In this case we use the following inductive

construction. We first choose l1 ≥ 1 such that c($l1L(d1)) ⊂ c($l0L). By induction, for i ≥ 2 we can

choose li ≥ 1 such that

c($liL(di)) ⊂ c($li−1L(di−1)) ⊂ · · · ⊂ c($l1L(d1)) ⊂ c($l0L).

Now if a ∈ Ci, then a belongs to the open set ac($liL(di)) ⊂ C = ac($l0L). Further, by (2.5.1),

ac($liL(di)) = ac($liL(xa)) and thus ac($liL(di)) is conjugate-θ-stable by Lemma 2.4 (2). In this

way, we associate a conjugate-θ-stable open neighborhood of a to each a ∈ C. By construction, any

two of these neighborhoods are either disjoint or nested (i.e., one is contained in the other). As C is

compact, it can be covered by finitely many such neighborhoods. Taking the maximal elements (with

respect to inclusion) in any such cover, we obtain the desired decomposition of C. �

3. Cayley maps

We introduce a Cayley map for similitude groups and collect some of its properties. We use these

and corresponding properties of the classical Cayley map to verify in §4 that the groups U(V ) and

GU(V ) satisfy Hypothesis (1) of §2.1. In this way, Cayley maps underpin our proof of Theorem B.

As noted above, our use of such maps means that we have to exclude the case of even residual

characteristic. We note also that there are more refined treatments of the classical Cayley map in the

literature. For example, Lemma 3.5 (2) below is a special case of [8] Theorem 2.13 (c).

3.1. Let a ∈ EndE(V ). By non-degeneracy of 〈 , 〉, there is a unique a∗ ∈ EndE(V ) such that

〈av, v′〉 = 〈v, a∗v′〉, ∀ v, v′ ∈ V.

The resulting map a 7→ a∗ : EndE(V ) → EndE(V ) is a τ -linear anti-involution. Explicitly, for all

λ ∈ E and a, b ∈ EndE(V ),

(1) (λa)∗ = τ(λ)a∗ and (a+ b)∗ = a∗ + b∗;

(2) (a∗)∗ = a and (ab)∗ = b∗a∗.
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We use these properties without comment below. Note a ∈ U(V ) if and only if a a∗ = 1. Similarly

a ∈ GU(V ) if and only if a a∗ = β for some scalar β in which case µ(a) = β.

We write u(V ) and gu(V ) for the Lie algebras of U(V ) and GU(V ) respectively. Thus

u(V ) = {X ∈ EndE(V ) : 〈Xv, v′〉+ 〈v,Xv′〉 = 0, ∀ v, v′ ∈ V },
gu(V ) = {X ∈ EndE(V ) : 〈Xv, v′〉+ 〈v,Xv′〉 = α 〈v, v′〉, for some scalar α = α(X), ∀ v, v′ ∈ V }.

That is, X ∈ u(V ) if and only if X +X∗ = 0 and X ∈ gu(V ) if and only if X +X∗ = α(X).

3.2. Consider the dense open subset of gu(V ) given by

(3.2.1) gu(V )1 = {X ∈ gu(V ) : 1 + α(X) 6= 0, det(1 +X) 6= 0}.

The similitude Cayley map c is defined by

(3.2.2) X
c7−→
(

1− X

1 + α

)
(1 +X)−1 : gu(V )1 → GU(V )

where α = α(X).

To see that c(X) ∈ GU(V ), note that

c(X)c(X)∗ =

(
1− X

1 + α

)
(1 +X)−1

(
1− X∗

1 + α

)
(1 +X∗)−1

=

(
1− X

1 + α

)
(1 +X)−1

(
1− α−X

1 + α

)
(1 + α−X)−1

=

(
1− X

1 + α

)
(1 +X)−1(1 +X)

(
1− X

1 + α

)−1
(1 + α)−2

= (1 + α)−2.

Thus c(X) indeed belongs to GU(V ) and

(3.2.3) µ(c(X)) =
1

(1 + α)2
.

Let

u(V )1 = gu(V )1 ∩ u(V ) = {X ∈ u(V ) : det(1 +X) 6= 0}.
Then (3.2.2) restricts to the classical Cayley map

X
c7−→ (1−X)(1 +X)−1 : u(V )1 → U(V ).

3.3. In contrast to its classical version, the similitude Cayley map is not injective. For later use, we

describe its image and fibers (in more detail than we strictly require).

For g ∈ GU(V ), we write µ = µ(g). For X ∈ gu(V )1, we set λ =
1

1 + α
where α = α(X), so that

c(X) =
1− λX
1 +X

.

For λ ∈ F such that λ+ g is invertible, we also set

Xλ = Xλ(g) =
1− g
λ+ g

.

Note that solving c(X) = g for X gives X = Xλ provided λ+ g is invertible.

Proposition. The image of the similitude Cayley map (3.2.2) consists of all g ∈ GU(V ) such that

(a) µ = λ2 for some λ ∈ F× and (b) either µ 6= 1 and at least one of ±λ + g is invertible or µ = 1

and 1 + g is invertible.

Let g ∈ GU(V ) belong to this image with µ = λ2.
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(1) If µ 6= 1 and λ+ g is invertible but not −λ+ g, then Xλ(g) is the unique preimage of g.

(2) If µ 6= 1 with ±λ+ g both invertible, then g has precisely two preimages, Xλ(g) and X−λ(g).

(3) If µ = 1 and g 6= 1 with 1 + g invertible, then X1(g) is the unique preimage of g.

(4) The preimage of 1 ∈ GU(V ) is infinite. It consists of 0 and the elements X ∈ gu(V )1 such that

α(X) = −2.

Proof. Suppose g = c(X) for some X ∈ gu(V )1. We have µ = λ2 by (3.2.3). Assume first that

λ 6= −1, equivalently α 6= −2. Then

λ+ g = λ+
1− λX
1 +X

=
λ+ 1

1 +X

and thus λ+ g is invertible. In the case λ = −1, we have c(X) = 1. It follows that the image of the

similitude Cayley map is as stated.

We can reverse this reasoning to determine the map’s fibers. Indeed, suppose g ∈ GU(V ) and

λ2 = µ. If λ+ g is invertible, then

1 +Xλ = 1 +
1− g
λ+ g

=
λ+ 1

λ+ g
.

Hence 1 +Xλ is invertible if and only if λ 6= −1. Moreover, using gg∗ = λ2,

Xλ +X∗λ =
1− g
λ+ g

+
1− g∗

λ+ g∗

=
1− g
λ+ g

+
1− λ2g−1

λ+ λ2g−1

=
1− g
λ+ g

+
(λ−1g − λ)λg−1

(λ+ g)λg−1

=
1− g + λ−1g − λ

λ+ g

=
(λ+ g)(λ−1 − 1)

λ+ g

= λ−1 − 1.

Thus Xλ ∈ gu(V )1 provided λ 6= −1 and c(Xλ) = g (by construction of Xλ). Statements (1) through

(4) all follow. �

3.4. Let L be an oE-lattice in V . (That is, L is an oE-submodule of V such that L ⊗oE E = V .

Equivalently, L is a compact open oE-submodule of V .) For later purposes, we assume also that

h(L) = L where h is our fixed anti-unitary involution. It is immediate that such lattices exist. Indeed,

for any oE-lattice L0 in V , we may take L = L0 ∩ h(L0). We set

L̂ = {a ∈ EndE(V ) : a(L) ⊂ L}.

This is an oE-order in EndE(V ) (i.e., an oE-lattice in EndE(V ) that is also a subring) and hence also

an oF -order in EndE(V ). We put

(3.4.1) L̇ = L̂ ∩ gu(V ), L̈ = L̂ ∩ u(V ).

It follows that L̇ and L̈ are oF -lattices in gu(V ) and u(V ) respectively.
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Lemma. Let X ∈ L̇ and g ∈ ( 1 +$kL̂ ) ∩GU(V ) for k ≥ 1. Then

(1) α(X) ∈ oF ,

(2) µ(g) ∈ 1 + pkF .

Proof. Let oL denote the fractional ideal of F generated by the elements 〈u, v〉 for u, v ∈ L. For any

such u and v, we have 〈Xu, v〉+ 〈u,Xv〉 ∈ oL where α = α(X), whence α〈u, v〉 ∈ oL. It follows that

αoL ⊂ oL and so α ∈ oF .

Write g = 1 +$kX for X ∈ L̂. With β = µ(g), we then have

〈(1 +$kX)u, (1 +$kX)v〉 = β 〈u, v〉, ∀ u, v ∈ L.

Expanding and rearranging gives

$k〈Xu, v〉+$k〈u,Xv〉 = (β − 1) 〈u, v〉, ∀ u, v ∈ L.

Thus (β − 1)oL ⊂ pkF oL and β − 1 ∈ pkF . �

3.5. The family of compact open subgroups {1 +$kL̂}k≥1 is a neighborhood basis of the identity in

AutE(V ). Thus { (1+$kL̂ )∩GU(V ))}k≥1 and { (1+$kL̂ )∩U(V ))}k≥1 form neighborhood bases of

the identity in GU(V ) and U(V ) (respectively) that consist again of compact open subgroups. These

families have a simple description in terms of the Cayley map.

Lemma. For any integer k ≥ 1,

(1) c($kL̇) = ( 1 +$kL̂ ) ∩GU(V ),

(2) c($kL̈) = ( 1 +$kL̂ ) ∩U(V ).

Moreover, each restriction c | $kL̇ and c | $kL̈ is a homeomorphism onto its image.

Proof. Suppose X ∈ $kL̇. By Lemma 3.4 (1), α = α(X) ∈ pkF and thus (1+α)−1 ∈ 1+pkF . It follows

that

c(X) =

(
1− X

1 + α

)
(1 +X)−1 ∈ 1 +$kL̂.

Hence c($kL̇) ⊂ ( 1 +$kL̂ ) ∩GU(V ). Taking α = 0, we see also that c($kL̈) ⊂ ( 1 +$kL̂ ) ∩U(V ).

To prove the opposite containments, let g ∈ ( 1+$kL̂ )∩GU(V ) and set µ = µ(g). Then µ ∈ 1+pkF
by Lemma 3.4 (2). Since the residual characteristic is odd, there is a unique λ ∈ 1 + pkF such that

µ = λ2. Writing g = 1 +$kX for X ∈ L̂, we have

λ+ g = 1 + λ+$kX

= (1 + λ)

(
1 +

$kX

1 + λ

)
.

Note 1 + λ ∈ o×F (again since the residual characteristic is odd). Thus 1 +
$kX

1 + λ
∈ 1 + $kL̂. In

particular, λ+ g is invertible. By Proposition 3.3, c(Xλ) = g where

Xλ = −$
kX

1 + λ

(
1 +

$kX

1 + λ

)−1
.

It follows that Xλ ∈ $kL̇. This proves (1). To complete the proof of (2), we have only to note that

µ = 1 implies λ = 1 in which case X1 ∈ $kL̇ ∩ u(V ) = $kL̈.

Finally, each restriction c | $kL̇ and c | $kL̈ is a continuous map on a compact space. Further, by

Proposition 3.3, each map is a bijection, and thus each is a homeomorphism. �
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4. Proof of Theorem B

Recall that h ∈ AutF (V ) is an anti-unitary involution and that ιg = µ(g)−1hgh−1 for g ∈ GU(V ).

Thus
θg = µ(g)hg−1h−1, g ∈ GU(V ).

The differential of θ is an involutary anti-automorphism of gu(V ) which for simplicity we usually

denote by the same symbol. It is given explicitly by

(4.0.1) θX = α(X)− hXh−1, X ∈ gu(V ).

The map ι restricts to an automorphism of U(V ) which we again denote by ι. Thus ιg = hgh−1

for g ∈ U(V ).

We restate Theorem B.

Theorem. The maps ι : U(V )→ U(V ) and ι : GU(V )→ GU(V ) are dualizing involutions.

To complete the proof, we only have to check Hypothesis (1) in §2.1.

4.1. We first restate the four parts of Hypothesis (1) and then verify each part in turn for the similitude

groups. Let G = GU(V ) and g = gu(V ).

(1) There is an oF -lattice L ⊂ g and a map c : g1 → G for g1 ⊂ g such that the following hold.

(a) θg1 = g1 and θG ◦ c = c ◦ θg.

(b) Ad(x)g1 = g1 and Int(x)c(X) = c(Ad(x)X) for all x ∈ G and X ∈ g.

(c) θL = L and $L ⊂ g1;

(d) For each k ≥ 1, the restriction c | $kL is a homeomorphism onto a compact open subgroup

of G. In particular, the family {c($kL)}k≥1 consists of compact open subgroups and forms

a neighborhood basis of the identity in G.

We put

g1 = {X ∈ g : 1 + α(X) 6= 0, det(1 +X) 6= 0, det(1 + α(X)−X) 6= 0}.

Note that g1 is contained in the domain (3.2.1) of the similitude Cayley map (3.2.2). We take

c : g1 → G to be the restriction of this map to g1 and put L = L̇ (see (3.4.1)).

(a) To show that θg1 = g1, it suffices to prove θX ∈ g1 for X ∈ g1.

To this end, we check first that

(4.1.1) α(θX) = α(X), X ∈ g.

We have X∗ = α−X with α = α(X). Hence

(θX)∗ = (α− hXh−1)∗

= α− (hXh−1)∗.

Using that h is anti-unitary with h2 = 1, a quick calculation shows that (hXh−1)∗ = hX∗h−1. Thus

(θX)∗ = α− hX∗h−1

= α− h(α−X)h−1

= hXh−1

= α− θX

which proves (4.1.1).
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For any X ∈ g,

det(1 + θX) = det(1 + α− hXh−1)

= deth(1 + α−X)h−1

= τ(det(1 + α−X)).

Similarly,

det(1 + α− θX) = det(1 + hXh−1)

= deth(1 +X)h−1

= τ(det(1 +X)).

Thus θX ∈ g1 for X ∈ g1 and θg1 = g1.

Further for any X ∈ g1,

θc(X) =
1

(1 + α)2
h c(X)−1h−1

=
1

(1 + α)2

(
1− hXh−1

1 + α

)−1
(1 + hXh−1)

=
1

(1 + α)2

(
1 + α− hXh−1

1 + α

)−1
(1 + hXh−1)

=
1

(1 + α)
(1 + θX)−1(1 + hXh−1)

= (1 + θX)−1
(

1 + α− (α− hXh−1)

1 + α

)
= (1 + θX)−1

(
1−

θX

1 + α

)
= c(θX).

(b) Let x ∈ G with xx∗ = β and X ∈ g. We have Ad(x)X = xXx−1 and

(xXx−1)∗ = (x−1)∗X∗x∗

= β−1xX∗βx−1

= xX∗x−1

= x(α−X)x−1

= α− xXx−1.

Thus α(Ad(x)X) = α(X). It follows easily that Ad(x)g1 = g1 and that Int(x)c(X) = c(Ad(x)X).

(c) We show first that θL ⊂ L which implies θL = L.

Let X ∈ L. By Lemma 3.4 (1), α = α(X) ∈ oF . As the oE-lattice L ⊂ V was chosen so that

h(L) = L, it follows that θX = α− hXh−1 preserves L and so θX ∈ L.

We have det(1 + $X) ∈ 1 + pF . As α($X) ∈ pF , it follows also also that α($X) 6= −1 and

det(1 + α($X)−$X) ∈ 1 + pF . In particular, $L ⊂ g1.

(d) This follows immediately from Lemma 3.5.
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4.2. Next we verify Hypothesis (1) for the classical groups U(V ). We continue with the notation

of the preceding subsection. In particular, G = GU(V ) and g = gu(V ). We set G′ = U(V ) and

g′ = u(V ). We also put g′1 = g1 ∩ g′ and L′ = L ∩ g′ so that L′ = L̈ in the notation of (3.4.1). We

take c : g′1 → G′ to be the classical Cayley map restricted to g′1. We have θg = hg−1h−1 for g ∈ G′.
The induced map on g′ which we again denote by θ is

θX = −hXh−1, X ∈ g′.

We need to show that (a)-(d) hold in this (primed) setting. For (a)-(c), the verifications of the

preceding subsection all go through using α(X) = 0 for X ∈ g′. Finally, for each k ≥ 1, Lemma 3.5

gives that c | $kL′ is a homeomorphism onto a compact open subgroup of G′ and so (d) holds.
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