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1. Introduction

In his seminal work [9], Green described a remarkable connection between
the class functions of the finite general linear group GL(n,Fq) and a gener-
alization of the ring of symmetric functions of the symmetric group Sn. In
particular, Green defines a map, called the characteristic map, that takes
irreducible characters to Schur-like symmetric functions, and recovers the
character table of GL(n,Fq) as the transition matrix between these Schur
functions and Hall-Littlewood polynomials [19, Chapter IV]. Thus, we can
use the combinatorics of the symmetric group Sn to understand the represen-
tation theory of GL(n,Fq). Some of the implications of this approach include
an indexing of irreducible characters and conjugacy classes of GL(n,Fq) by
multi-partitions and a formula for the degrees of the irreducible characters
in terms of these partitions.

This paper describes the parallel story for the finite unitary group U(n,Fq2)
by collecting known results for this group and examining some applications
of the unitary characteristic map. Inspired by Green, Ennola [5, 6] used
results of Wall [22] to construct the appropriate ring of symmetric func-
tions and characteristic map. Ennola was able to prove that the analogous
Schur-like functions correspond to an orthonormal basis for the class func-
tions, and conjectured that they corresponded to the irreducible characters.
He theorized that the representation theory of U(n,Fq2) should be deduced
from the representation theory of GL(n,Fq) by substituting “−q” for ev-
ery occurrence of “q”. The general phenomenon of obtaining a polynomial
invariant in q for U(n,Fq2) by this substitution has come to be known as
“Ennola duality”.

Roughly a decade after Ennola made his conjecture, Deligne and Lusztig
[3] constructed a family of virtual characters, called Deligne-Lusztig charac-
ters, to study the representation theory of arbitrary finite reductive groups.
Lusztig and Srinivasan [18] then computed an explicit decomposition of the
irreducible characters of U(n,Fq2) in terms of Deligne-Lusztig characters.
Kawanaka [15] used this composition to demonstrate that Ennola duality
applies to Green functions, thereby improving results of Hotta and Springer
[12] and finally proving Ennola’s conjecture.

This paper begins by describing some of the combinatorics and group
theory associated with the finite unitary groups. Section 2 defines the finite
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unitary groups, outlines the combinatorics of multi-partitions, and gives a
description of some of the key subgroups. Section 3 analyzes the conjugacy
classes of U(n,Fq2) and the Jordan decomposition of these conjugacy classes.

Section 4 outlines the statement and development of the Ennola conjec-
ture from two perspectives. Both points of view define a map from a ring
of symmetric functions to the character ring C of U(n,Fq2). However, the
first uses the multiplication for C as defined by Ennola, and the second uses
Deligne-Lusztig induction as the multiplicative structure of C. This mul-
tiplicative structure on the graded ring of characters of the unitary group
was studied by Digne and Michel in [4], where the focus is that this mul-
tiplication induces a Hopf algebra structure. This structure theorem in [4]
is equivalent to our Corollary 4.1, although our approach focuses on the
explicit map between characters and symmetric functions.

The main results are

I. (Theorem 4.2) The Deligne-Lusztig characters correspond to power-sum
symmetric functions via the characteristic map of Ennola.

II. (Corollary 4.2) The multiplicative structure that Ennola defined on C is
Deligne-Lusztig induction.

Section 5 computes the degrees of the irreducible characters, and uses this
result to evaluate various sums of character degrees (see [19, IV.6, Example
5] for the GL(n,Fq) analogue of this method). The main results are

III. (Theorem 5.1) An irreducible χλ character of U(m,Fq2) corresponds to

(−1)bm/2c+n(λ)sλ and χλ(1) = qn(λ′)

∏
1≤i≤m

(qi − (−1)i)∏
�∈λ

(qh(�) − (−1)h(�))
,

where sλ is a Schur-like function, and both n(λ) and h(�) are combinatorial
statistics on the multi-partition λ.

IV. (Corollary 5.2) If PΘ
n indexes the irreducible characters χλ of U(n,Fq2),

then ∑
λ∈PΘ

n

χλ(1) = |{g ∈ U(n,Fq2) | g symmetric}|.

Section 6 uses results by Ohmori [21] and Henderson [11] to adapt a model
for the general linear group, found by Klyachko [17] and Inglis and Saxl [13],
to the finite unitary group. The main result is

V. (Theorem 6.2) Let Um = U(m,Fq2), where q is odd, and let Γm be the
Gelfand-Graev character of Um, 1 be the trivial character of the finite sym-
plectic group Sp2r = Sp(2r,Fq), and RGL be the Deligne-Lusztig induction
functor. Then∑

0≤2r≤m
RUmUm−2r⊕U2r

(
Γm−2r ⊗ IndU2r

Sp2r
(1)
)

=
∑

λ∈PΘ
m

χλ.
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That is, in the theorem of Klyachko, one may replace parabolic induction
by Deligne-Lusztig induction to obtain a theorem for the unitary group.

These results give considerable combinatorial control over the representa-
tion theory of the finite unitary group, and there are certainly more applica-
tions to these results than what we present in this paper. Furthermore, this
characteristic map gives some insight as to how a characteristic map might
look in general type, using the invariant rings of other Weyl groups.

2. Preliminaries

2.1. The unitary group and its underlying field K. Let K = F̄q be the
algebraic closure of the finite field with q elements and let Km = Fqm denote
the finite subfield with qm elements. Let GL(n,K) denote the general linear
group over K, and define Frobenius maps

(2.1)
F :GL(n,K) −→ GL(n,K)

(aij) 7→ (aqji)
−1,

and
F ′ :GL(n,K) −→ GL(n,K)

(aij) 7→ (aqn−j,n−i)
−1.

Then the unitary group Un = U(n,K2) is given by

Un = GL(n,K)F = {a ∈ GL(n,K) | F (a) = a}(2.2)
∼= GL(n,K)F

′
= {a ∈ GL(n,K) | F ′(a) = a}.(2.3)

In fact, it follows from the Lang-Steinberg theorem (see, for example, [2])
that there exists y ∈ GL(n,K2) such that GL(n,K)F = yGL(n,K)F

′
y−1.

We define the multiplicative groups Tm as

Tm = GL(1,K)F
m

= {x ∈ K | xqm−(−1)m = 1}.

Note that Tm ∼= K×m only if m is even. We identify K× with the inverse limit
lim
←
Tm with respect to the norm maps

Nmr : Tm −→ Tr
x 7→ xx−q · · ·x(−q)m/r−1 , where m, r ∈ Z≥1 with r | m.

If T ∗m is the group of characters of Tm, then the direct limit

K∗ = lim
→
T ∗m

gives the group of characters of K×. Let

Θ = {F -orbits of K∗}.

A polynomial f(t) ∈ K2[t] is F -irreducible if there exists an F -orbit
{x,x−q, . . . , x(−q)d} of K× such that

f(t) = (t− x)(t− x−q) · · · (t− x(−q)d).

Let

(2.4) Φ = {f ∈ K2[t] | f is F -irreducible} 1−1←→ {F -orbits of K×}.
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The set Φ has an alternate description, as given in [5]. For f = td +
a1t

d−1 + · · ·+ ad ∈ K2[t] with ad 6= 0, let

f̃ = td + a−qd (aqd−1t
d−1 + · · ·+ aq1t+ 1),

which has the effect of applying F to the roots of f in K. Then a polynomial
f ∈ K2[t] is F -irreducible if and only if either

(a) f is irreducible in K2[t] and f̃ = f (d must be odd in this case), or
(b) f(t) = h(t)h̃(t) where h is irreducible in K2[t] and h̃(t) 6= h(t).

2.2. Combinatorics of Φ-partitions and Θ-partitions. Fix an ordering
of Φ and Θ, and let

P = {partitions} and Pn = {ν ∈ P | |ν| = n}.

Let X be either Φ or Θ. An X -partition ν = (ν(x1),ν(x2), . . .) is a sequence
of partitions indexed by X . The size of an X -partition ν is

(2.5) ||ν|| =
∑
x∈X
|x||ν(x)|, where |x| =

{
|x| if X = Θ,
d(x) if X = Φ,

|x| is the size of the orbit x ∈ Θ, and d(x) is the degree of the polynomial
x ∈ Φ. Let

(2.6) PXn = {X -partitions ν | ||ν|| = n}, and PX =
∞⋃
n=1

PXn .

For ν ∈ PX , let

(2.7) n(ν) =
∑
x∈X
|x|n(ν(x)), where n(ν) =

`(ν)∑
i=1

(i− 1)νi.

The conjugate ν ′ of ν is the X -partition ν ′ = (ν(x1)′,ν(x2)′, . . .), where ν ′

is the usual conjugate partition for ν ∈ P.
The semisimple part νs of ν = (ν(x1),ν(x2), . . .) ∈ PXn is

(2.8) νs = ((1|ν(x1)|), (1|ν(x2)|), . . .) ∈ PXn ,

and the unipotent part νu of ν ∈ PXn is given by

(2.9) νu(11) has parts {|x|ν(x)i | x ∈ X , i = 1, . . . , `(ν(x))}

where

11 =
{
{1} if X = Θ,
t− 1 if X = Φ,

1 is the trivial character in K∗, and νu(x) = ∅ for x 6= 11.

Example. If µ ∈ PΦ is given by

µ =
(

(f)
,

(g)
,

(h)
)
, where d(f) = 1, d(g) = d(h) = 2,
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then ||µ|| = 1 · 4 + 2 · 2 + 2 · 5 = 18, n(µ) = 1 · 2 + 2 · 0 + 2 · 1 = 4,

µs =

 (f)

,
(g)
,

(h)
 and µu =

 (t−1)
 .

2.3. Levi subgroups and maximal tori. Let X be either Φ or Θ as in
Section 2.2.

For ν ∈ PXn , let

(2.10) Lν =
⊕
x∈Xν

Lν(x), where Xν = {x ∈ X | ν(x) 6= ∅},

and for x ∈ Xν ,

(2.11) Lν(x) =
{

U(|ν(x)|,K2|x|) if |x| is odd,
GL(|ν(x)|,K|x|) if |x| is even.

Then Lν is a Levi subgroup of Un = U(n,K2) (though not uniquely deter-
mined by ν). The Weyl group

(2.12) Wν =
⊕
x∈Xν

S|ν(x)|,

of Lν has conjugacy classes indexed by

(2.13) Pν
s = {γ ∈ PX | γs = νs},

and the size of the conjugacy class cγ is

(2.14) |cγ | =
|Wγ |
zγ

, where zγ =
∏
x∈X

zγ(x) and zγ =
`(γ)∏
i=1

imimi!,

for γ = (1m12m2 · · · ) ∈ P.
For every ν = (ν1, ν2, . . . , ν`) ∈ Pn there exists a maximal torus (unique

up to isomorphism) Tν of Un such that

Tν ∼= Tν1 × Tν2 × · · · × Tν` .

For every γ ∈ Pµ
s , there exists a maximal torus (unique up to isomorphism)

Tγ ⊆ Lν such that

(2.15) Tγ =
⊕
x∈Xν

Tγ(x), where Tγ(x) ∼= T|x|γ(x)1
× · · · × T|x|γ(x)` .

Note that as a maximal torus of Un, the torus Tγ
∼= Tγu(11).
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3. Conjugacy classes and Jordan decomposition

Let Un = U(n,K2) as in (2.2). For r ∈ Z≥0, let

(3.1) ψr(x) =
r∏
i=1

(1− xi).

In the following proposition, (i) is due to Ennola in [6], and the order of the
centralizer in (ii) was obtained by Wall in [22] in a slightly different form,
while the version in the proposition below appears in [6].

Proposition 3.1 (Ennola, Wall).
(a) The conjugacy classes cµ of Un are indexed by µ ∈ PΦ

n .
(b) Let g ∈ cµ. The order aµ of the centralizer g in Un is

aµ = (−1)||µ||
∏
f∈Φ

aµ(f)

(
(−q)d(f)

)
, where aµ(x) = x|µ|+2n(µ)

∏
j

ψmj (x
−1),

for µ = (1m12m23m3 · · · ) ∈ P.

For µ ∈ PΦ, let Lµ be as in (2.10). Note that |Lµ| = aµs .

Lemma 3.1. Suppose g ∈ cµ with Jordan decomposition g = su. Then
(a) s ∈ cµs and u ∈ cµu, where µs and µu are as in (2.8) and (2.9),
(b) the centralizer CUn(s) of s in Un is isomorphic to Lµ.

Proof. (a) Suppose f = td − ad−1t
d−1 − · · · a1t− a0 ∈ Φ is irreducible (so d

is odd). Define

(3.2) J(f) =


0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 0 · · · 0 1
a0 a1 a2 · · · ad−1

 ∈ GL(d,K2).

For ν = (ν1, ν2, . . . , ν`) ∈ P, let

Jν(f) = Jν1(f)⊕ · · · ⊕ Jν`(f), where Jm(f) =


J(f) Idd 0

0 J(f)
. . .

...
. . . . . . Idd

0 · · · 0 J(f)


is an md×md matrix and Idd is the d× d identity matrix. Note that

Jm(f) = J(1m)(f)u(m)(f), where u(m)(f) =


Idd J(f)−1 0

Idd
. . .
. . . J(f)−1

0 Idd


is the Jordan decomposition of Jm(f) in GL(d,K2).
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Similarly, if f = hh̃ ∈ Φ (or d(f) is even), then define

J(f) = J(h)⊕ J(h̃), Jm(f) = Jm(h)⊕ Jm(h̃), Jν(f) = Jν(h)⊕ Jν(h̃),

so that
Jm(f) =

(
J(1m)(h)⊕ J(1m)(h̃)

)(
u(m)(h)⊕ u(m)(h̃)

)
is the Jordan decomposition of Jm(f). If g ∈ cµ, then g is conjugate to

Jµ =
⊕
f∈Φ

Jµ(f)(f)

in GL(||µ||,K2). Claim (a) follows from the uniqueness of the Jordan de-
composition.

(b) In GL(n,K2),

CGL(n,K2)(J(1m)(f)) ∼=
{

GL(m,K2d(f)) if d(f) is odd,
GL(m,Kd(f))⊕GL(m,Kd(f)) if d(f) is even.

If d(f) is odd and s = xJ(1m)(f)x−1 for some x ∈ GL(n,K2), then

(xGL(m,K2d(f))x
−1)F = GL(m,K2d(f))

x◦F ∼= GL(m,K2d(f))
F = U(m,K2d(f)).

Suppose d(f) is even so that f = hh̃, and let y ∈ GL(n,K2) such that
GL(n,K)F = yGL(n,K)F

′
y−1 (see the comment after (2.2)). The element

J(f) is conjugate to

J(h)⊕ (F ′(J(h))) ∈ GL(n,K2)F
′
,

whose centralizer in GL(n,K2)F
′

is

{g ⊕ F ′(g) | g ∈ GL(m,Kd(f))} ∼= GL(m,Kd(f)). �

4. The Ennola Conjecture

4.1. The characteristic map. Let X = {X1, X2, . . .} be an infinite set
of variables and let Λ(X) be the graded C-algebra of symmetric functions
in the variables {X1, X2, . . .}. For ν = (ν1, ν2, . . . , ν`) ∈ P, the power-sum
symmetric function pν(X) is

pν(X) = pν1(X)pν2(X) · · · pν`(X), where pm(X) = Xm
1 +Xm

2 + · · · .
The irreducible characters ωλ of Sn are indexed by λ ∈ Pn. Let ωλ(ν) be
the value of ωλ on a permutation with cycle type ν. For λ ∈ P, the Schur
function sλ(X) is given by

(4.1) sλ(X) =
∑
ν∈P|λ|

ωλ(ν)z−1
ν pν(X), where zν =

∏
i≥1

imimi!

is the order of the centralizer in Sn of the conjugacy class corresponding to
ν = (1m12m2 · · · ) ∈ P. Let t ∈ C. For µ ∈ P, the Hall-Littlewood symmetric
function Pµ(X; t) is given by

(4.2) sλ(X) =
∑
µ∈P|λ|

Kλµ(t)Pµ(X; t),
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where Kλµ(t) is the Kostka-Foulkes polynomial (as in [19, III.6]). For ν, µ ∈
Pn, the classical Green function Qµν (t) is given by

(4.3) pν(X) =
∑
µ∈P|ν|

Qµν (t−1)tn(µ)Pµ(X; t).

As a graded ring,

Λ(X) = C-span{pν(X) | ν ∈ P}
= C-span{sλ(X) | λ ∈ P}
= C-span{Pµ(X; t) | µ ∈ P}.

For every f ∈ Φ, fix a set of independent variablesX(f) = {X(f)
1 , X

(f)
2 , . . .},

and for any symmetric function h, we let h(f) = h(X(f)) denote the sym-
metric function in the variables X(f). Let

Λ = C-span{Pµ | µ ∈ PΦ}, where Pµ = (−q)−n(µ)
∏
f∈Φ

Pµ(f)(f ; (−q)−d(f)).

Then
Λ =

⊕
n≥0

Λn, where Λn = C-span{Pµ | ||µ|| = n},

makes Λ a graded C-algebra. Define a Hermitian inner product on Λ by

〈Pµ, Pν〉 = a−1
µ δµν .

For each ϕ ∈ Θ let Y (ϕ) = {Y (ϕ)
1 , Y

(ϕ)
2 , . . .} be an infinite variable set,

and for a symmetric function h, let h(ϕ) = h(Y (ϕ)). Relate symmetric
functions in the X variables to symmetric functions in the Y variables via
the transform

(4.4) pn(ϕ) = (−1)n|ϕ|−1
∑

x∈Tn|ϕ|

ξ(x)pn|ϕ|/d(fx)(fx),

where ϕ ∈ Θ, ξ ∈ ϕ, and fx ∈ Φ satisfies fx(x) = 0.
Then

(4.5) Λ = C-span{sλ | λ ∈ PΘ}, where sλ =
∏
ϕ∈Θ

sλ(ϕ)(ϕ).

Let Cn denote the set of complex-valued class functions of the group Un,
and for ||µ|| = n, let πµ : Un → C be given by

πµ(u) =
{

1 if u ∈ cµ,
0 otherwise, where u ∈ Un.

Then the πµ form a C-basis for Cn. By Proposition 3.1, the usual inner
product on class functions of finite groups, 〈·, ·〉 : Cn × Cn → C, satisfies

〈πµ, πλ〉 = a−1
µ δµλ.
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For αi ∈ Cni , Ennola [6] defined a product α1 ? α2 ∈ Cn1+n2 , which takes
the following value on the conjugacy class cλ:

α1 ? α2(cλ) =
∑

||µi||=ni

gλ
µ1µ2

α1(cµ1
)α2(cµ2

),

where gλ
µ1µ2

is the product of Hall polynomials (see [19, Chapter II])

gλ
µ1µ2

=
∏
f∈Φ

g
λ(f)
µ1(f)µ2(f)((−q)

d(f)).

Extend the inner product to

C =
⊕
n≥0

Cn,

by requiring the components Cn and Cm to be orthogonal for n 6= m. This
gives C a graded C-algebra structure. The characteristic map is

ch : C −→ Λ
πµ 7→ Pµ, for µ ∈ PΦ.

The following is implicit in [6], and a proof quickly follows from [19, III.3.6].

Proposition 4.1. Let multiplication in the character ring C of Un be given
by ?. Then the characteristic map ch : C → Λ is an isometric isomorphism
of graded C-algebras.

Following the work of Green [9] on the general linear group, Ennola was
able to obtain the following result. One may obtain a proof from the charac-
teristic map point of view by following Macdonald [19, IV.4] on the general
linear group case.

Proposition 4.2 (Ennola). The set {sλ | λ ∈ PΘ} is an orthonormal basis
for Λ.

Now let χλ ∈ C be class functions so that χλ(1) > 0 and ch(χλ) = ±sλ.
Ennola conjectured that {χλ | λ ∈ PΘ

n } is the set of irreducible characters
of Un. He pointed out that if one could show that the product ? takes virtual
characters to virtual characters, then the conjecture would follow. There is
no known direct proof of this fact, however. Significant progress on Ennola’s
conjecture was only made after the work of Deligne and Lusztig [3].

4.2. Deligne-Lusztig Induction. Let Tν ∼= Tν1 × · · · × Tν` be a maximal
torus of Un. If t ∈ Tν , then t is conjugate to

J(1m1 )(f1)⊕ · · · ⊕ J(1m` )(f`), where fi ∈ Φ, mid(fi) = νi.

Define γt ∈ PΦ by

(4.6) γt(f) has parts {mi | fi = f}.

Note that (γt)u(t− 1) = ν, but in general t /∈ cγt .
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Example. If t ∈ T(4,4,2,2,1) and t is conjugate to

J (t− 1)⊕ J (t2 + 1)⊕ J (t− 1)⊕ J (t2 + 1)⊕ J (t− 1),

then

γt =

(
(t−1)

,
(t2+1)

)
.

For µ ∈ PΦ, let Lµ, γ ∈ Pµ
s and Tγ be as in Section 2.3. Let θ be

a character of Tν . The Deligne-Lusztig character Rν(θ) = RUnTν (θ) is the
virtual character of Un given by(

Rν(θ)
)
(g) =

∑
t∈Tν

γt∈P
µ
s

θ(t)QLµ

Tγt
(u),

where g ∈ cµ has Jordan decomposition g = su (thus, by Lemma 3.1
CUn(s) ∼= Lµ), and Q

Lµ

Tγt
(u) is a Green function for the unitary group (see,

for example, [2]).
It is proven by Lusztig and Srinivasan [18] that

Cn = {class functions of Un}
= C-span{Rν(θ) | ν ∈ Pn, θ ∈ Hom(Tν ,C×)},

so we may define Deligne-Lusztig induction by

(4.7)
R
Um+n

Um⊕Un : Cm ⊗ Cn −→ Cm+n

RUmα (θα)⊗RUnβ (θβ) 7→ R
Um+n

Tα⊕Tβ (θα ⊗ θβ),

for α ∈ Pm, β ∈ Pn, θα ∈ Hom(Tα,C), and θβ ∈ Hom(Tβ,C).
Let Λ and C be as in Section 4.1, except we now give C a graded C-

algebra structure using Deligne-Lusztig induction. That is, we define a
multiplication ◦ on C by

χ ◦ η = R
Um+n

Um⊕Un(χ⊗ η), for χ ∈ Cm and η ∈ Cn.

We recall the characteristic map defined in Section 4.1,

ch : C −→ Λ
πµ 7→ Pµ for µ ∈ PΦ.

As noted in Proposition 4.1, it is immediate that ch is an isometric isomor-
phism of vector spaces, but it is not yet clear if ch is also a ring homomor-
phism when C has multiplication given by Deligne-Lusztig induction.

4.3. The Ennola conjecture. To prove the Ennola conjecture we require
two further ingredients:

(1) Theorem 4.2 and Corollary 4.1 establish that this new characteristic
map is also a ring isomorphism by using a key result by Kawanaka
on Green functions to evaluate ch(Rν(θ)).
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(2) Corollary 4.3 uses an explicit decomposition by Lusztig and Srini-
vasan of irreducible characters of Un into Deligne-Lusztig characters
to complete the reproof of the Ennola conjecture.

To compute ch(Rν(θ)), we need to write the Green functions QLµ

Tγ
(u) as

polynomials in q. These Green functions turn out to be those of the general
linear group, except with q replaced by −q, which is the essence of Ennola’s
original idea. This fact was proven by Hotta and Springer [12] for the case
that p = char(Fq) is large compared to n, and was finally proven in full
generality by Kawanaka [15].

Theorem 4.1 (Hotta-Springer, Kawanaka). The Green functions for the
unitary group are given by QLµ

Tγ
(u) = Qµ

γ (−q), where

Qµ
γ (−q) =

∏
f∈Φµ

Q
µ(f)
γ(f)((−q)

d(f)),

and Qµγ(q) is the classical Green function as in (4.3).

For ν = (ν1, ν2, . . . , ν`) ∈ P and θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θ` a character of Tν ,
define

pµνθ =
∏
ϕ∈Θ

pµνθ(ϕ)(ϕ), where µνθ(ϕ) = (νi/|ϕ| | θi ∈ ϕ).

Theorem 4.2. Let ν = (ν1, ν2, . . . , ν`) ∈ P, θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θ` be a
character of Tν , and ν = µνθ ∈ PΘ. Then

ch
(
Rν(θ)

)
= (−1)||ν||−`(ν)pν .

Proof. By Theorem 4.1, and since ch(πµ) = Pµ, it suffices to show that the
coefficient of Pµ in the expansion of (−1)|ν|−`(ν)pν is∑

t∈Tν
γt∈P

µ
s

θν(t)Qµ
γt

(−q).

Since
pν = pν1/|ϕ1|(ϕ1) · · · pν`/|ϕ`|(ϕ`), where θi ∈ ϕi,

the transform (4.4) implies

(−1)||ν||−`(ν)pν =
∏̀
i=1

∑
ti∈k×νi

θi(ti)pνi/di(fi) =
∑
t∈Tν

θ(t)
(∏̀
i=1

pνi/di(fi)
)
,

where fi ∈ Φ satisfies fi(ti) = 0 and di = d(fi). By definition (4.6),

(4.8) (−1)||ν||−`(ν)pν =
∑
t∈Tν

θ(t)
(∏
f∈Φ

pγt(f)(f)
)
.
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Change the basis from power-sums to Hall-Littlewood polynomials (4.3),
and we obtain

(−1)||ν||−`(ν)pν

=
∑
t∈Tν

θ(t)
(∏
f∈Φ

∑
µ(f)∈P|γt(f)|

Q
µ(f)
γt(f)((−q)

d(f))(−q)−d(f)n(µ(f))Pµ(f)(f ; (−q)−d(f))
)

=
∑
t∈Tν

θ(t)
∑

µ∈PΦ

γt∈P
µ
s

Qµ
γt

(−q)Pµ

=
∑

µ∈PΦ

( ∑
t∈Tν
γt∈P

µ
s

θ(t)Qµ
γt

(−q)
)
Pµ,

as desired. �

The following result immediately follows from the definition of the Deligne-
Lusztig product (4.7) and Theorem 4.2. This result is equivalent to the Hopf
algebra structure theorem obtained in [4].

Corollary 4.1. Let multiplication in the character ring C of Un be given
by ◦. Then the characteristic map ch : C → Λ is an isometric isomorphism
of graded C-algebras.

An immediate consequence is that the graded multiplication that Ennola
originally defined on C is exactly Deligne-Lusztig induction, or

Corollary 4.2. Let χ ∈ Cm and η ∈ Cn. Then

χ ◦ η = χ ? η.

We therefore have the advantage of using either product as convenience
demands.

For λ ∈ PΘ, let Lλ, Wλ, and Tγ , γ ∈ Pλ
s , be as in Section 2.3.

Note that the combinatorics of γ almost specifies character θγ of Tγ in
the sense that

θγ(Tγ(ϕ)) = θϕ(Tγ(ϕ)), for some θϕ ∈ ϕ.

In fact, we may define

(4.9) Rγ = RUnTγ
(θγ) = ch−1

(
(−1)||γ||−`(γ)pγ

)
,

where θγ is any choice of the θϕ’s.
For every λ ∈ PΘ there exists a character ωλ of Wλ defined by

ωλ(γ) =
∏
ϕ∈Θ

ωλ(ϕ)(γ(ϕ)),

where ωλ(γ) is the value of ωλ on the conjugacy class cγ corresponding to
γ ∈ PΘ

s .
In [18], Lusztig and Srinivasan decomposed the irreducible characters of

Un as linear combinations of Deligne-Lusztig characters, as follows.
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Theorem 4.3 (Lusztig-Srinivasan). Let λ ∈ PΘ
n . Then there exists τ ′(λ) ∈

Z≥0 such that the class function

R(λ) = (−1)τ
′(λ)+bn/2c+

P
ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e

∑
γ∈Pλ

s

ωλ(γ)
zγ

Rγ

is an irreducible character of Un (zγ is as in (2.14)).

Remark. The sign

(−1)bn/2c+
P
ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e = (−1)Fq-rank of Un + Fq-rank of Lλ ,

and Theorem 5.1 will show that

τ ′(λ) = n(λ′) + ||λ|| −
∑
ϕ∈Θ

|ϕ|d|λ(ϕ)|/2e = n(λ′) +
∑
ϕ∈Θ

|ϕ|b|λ(ϕ)|/2c.

Corollary 4.3 (Ennola Conjecture). For λ ∈ PΘ, there exists τ(λ) ∈ Z≥0

such that {
ch−1

(
(−1)τ(λ)sλ

)
| λ ∈ PΘ

n

}
is the set of irreducible characters of Un.

Proof. By Theorem 4.3 and Theorem 4.2,

ch(R(λ)) = (−1)τ
′(λ)+bn/2c+

P
ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e

∑
γ∈Pλ

s

ωλ(γ)
zγ

(−1)n−`(γ)pγ

= (−1)τ
′(λ)+bn/2c+n+

P
ϕ∈Θ |ϕ|d|λ(ϕ)|/2e

∑
γ∈Pλ

s

ωλ(γ)
zγ

(−1)
P
ϕ∈Θ |λ(ϕ)|−`(γ)pγ .

Note that the sign character ωλs of Wλ acts by

ωλs(γ) = (−1)
P
ϕ∈Θ |γ(ϕ)|−`(γ),

and that ωλ ⊗ ωλs = ωλ′ , so since γ ∈ Pλ
s ,

ch(R(λ)) = (−1)τ
′(λ)+bn/2c+n+

P
ϕ∈Θ |ϕ|d|λ(ϕ)|/2e

∑
γ∈Pλ

s

(ωλ ⊗ ωλs)(γ)
zγ

pγ

= (−1)τ
′(λ)+bn/2c+n+

P
ϕ∈Θ |ϕ|d|λ(ϕ)|/2e

∑
γ∈Pλ

s

ωλ′(γ)
zγ

pγ ,

and by applying (4.1) to a product over Θ,

= (−1)τ
′(λ)+bn/2c+n+

P
ϕ∈Θ |ϕ|d|λ(ϕ)|/2esλ′ . �

Remark. There are at least two natural ways to index the irreducible
characters of Un by Θ-partitions: Theorem 4.3 gives a natural indexing by
Θ-partitions, but Corollary 4.3 indicates that the conjugate choice is equally



14 NATHANIEL THIEM AND C. RYAN VINROOT

natural. Following Macdonald [19], we have chosen the latter indexing. How-
ever, several references, including Ennola [6], Ohmori [21], and Henderson
[11], make use of the former.

5. Characters degrees

5.1. A formula for character degrees. Let λ ∈ PΘ, and suppose � ∈ λ
is in position (i, j) in λ(ϕ) for some ϕ ∈ Θ. The hook length h(�) of � is

h(�) = |ϕ|h(�), where h(�) = λ(ϕ)i − λ(ϕ)′j − i− j + 1,

is the usual hook length for partitions.

Example. For |θ| = 1, |ϕ| = 3 and

λ =

(
(θ)
,

(ϕ)
)
, the hook lengths are

(
4 3 1

2 1

(θ)
,

12 3

6

3

(ϕ)
)
.

Example 2 in [19, I.1] implies that

(5.1)
∑
�∈λ

h(�) = ||λ||+ n(λ) + n(λ′).

For λ ∈ PΘ, let

ηλ = ch−1(sλ).

Theorem 5.1. Let λ ∈ PΘ and let 1 be the identity in U||λ||. Then

ηλ(1) = (−1)τ(λ)qn(λ′)

∏
1≤i≤||λ||

(qi − (−1)i)

∏
�∈λ

(qh(�) − (−1)h(�))
,

where τ(λ) = ||λ||(||λ||+ 3)/2 + n(λ) ≡ b||λ||/2c+ n(λ) (mod 2). So for
each λ, we have χλ = (−1)τ(λ)ηλ.

Proof. We follow the computations in [19, IV.6]. Let ηλ
µ be the value of ηλ

on the conjugacy class cµ. Then

sλ =
∑

µ∈PΦ
||λ||

ηλ
µPµ,

implies ηλ
µ = 〈sλ, aµPµ〉. Since the sλ are orthonormal,

(5.2) aµPµ =
∑
λ

ηλ
µs̄λ where s̄λ =

∑
µ∈PΦ

||λ||

η̄λ
µPµ

is obtained by taking the complex conjugates of the coefficients of the Pµ.
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If cµ1
is the conjugacy class corresponding to the identity element 1 of

Um, then µ1(t− 1) = (1m) and µ1(f) = 0 for f 6= t− 1. From the definition
of aµ, and the fact that P(1m)(x; t) = em(x) (see [19, III.8]), we have

aµ1
Pµ1

= (−1)m(−q)m+m(m−1)ψm(−q−1)(−q)−m(m−1)/2P(1m)(X
(t−1); (−q)−1)

= (−1)m(−q)m(m+1)/2ψm((−q)−1)P(1m)(X
(t−1); (−q)−1)

= ψm(−q)em(t− 1).

Therefore, by (5.2),

(5.3) ψm(−q)em(t− 1) =
∑
||λ||=m

ηλ(1)s̄λ.

Let δ : Λ→ C be the C-algebra homomorphism defined by

δ(pm(f)) =

{
(−1)m−1/(qm − (−1)m) if f = t− 1,
0 if f 6= t− 1.

It follows from [19, I.4.3] and the argument from [19, p. 279] that

(5.4) log

 ∑
λ∈PΘ

sλ ⊗ s̄λ

 =
∑
n≥1

1
n

∑
f∈Φ

(qnd(f) − (−1)nd(f))pn(f)⊗ pn(f).

Apply δ ⊗ 1 to both sides of Equation (5.4) to obtain

log
( ∑

λ∈PΘ

δ(sλ)s̄λ

)
=
∑
m≥1

(−1)m−1

m
pm(t− 1) = log

∏
i

(1 +X
(t−1)
i ).

By exponentiating and expanding the product to em’s, we have∑
m≥0

em(t− 1) =
∑
λ

δ(sλ)s̄λ,

which gives

em(t− 1) =
∑
||λ||=m

δ(sλ)s̄λ.

Compare coefficients with (5.3) to deduce

(5.5) ηλ(1) = ψm(−q)δ(sλ), where δ(sλ) =
∏
ϕ∈Θ

δ(sλ(ϕ)(ϕ)).

By the definitions of δ and pm(ϕ), ϕ ∈ Θ,

δ(pm(ϕ)) = (−1)|ϕ|m
(
(−q)|ϕ|m − 1

)−1 = (−1)|ϕ|m
∑
i≥1

(−q)−i|ϕ|m,

so
δ(pm(Y (ϕ)

1 , Y
(ϕ)

2 , . . .)) = (−1)|ϕ|mpm((−q)−|ϕ|, (−q)−2|ϕ|, . . .).
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That is, applying δ to a homogeneous symmetric function in Y (ϕ) of degree
m replaces each Y (ϕ)

i by (−q)−i|ϕ| and multiplies by (−1)|ϕ|m. In particular,
for λ ∈ P, ϕ ∈ Θ,

(5.6) δ(sλ(ϕ)) = (−1)|λ||ϕ|sλ
(
(−q)−|ϕ|, (−q)−2|ϕ|, . . .

)
.

Example 2 in [19, I.3] implies

(5.7) δ(sλ(ϕ)) = (−1)|ϕ||λ|(−q)−|ϕ|(|λ|+n(λ))
∏
�∈λ

(
1− (−q)−|ϕ|h(�)

)−1
.

Combine (5.5) and (5.7) to get

δ(sλ) = (−1)||λ||(−q)−||λ||−n(λ)
∏
�∈λ

(
1− (−q)−h(�)

)−1

= (−1)||λ||(−q)−||λ||−n(λ)+
P

�∈λ h(�)
∏
�∈λ

(
(−q)h(�) − 1

)−1

= (−1)||λ||(−q)n(λ′)
∏
�∈λ

(
(−q)h(�) − 1

)−1
, (by (5.1))

= (−1)||λ||+n(λ′)+
P

�∈λ h(�)qn(λ′)
∏
�∈λ

(
qh(�) − (−1)h(�)

)−1
.

Since

||λ||+ n(λ′) +
∑
�∈λ

h(�) = 2||λ||+ 2n(λ′) + n(λ) ≡ n(λ) (mod 2),

we have
δ(sλ) = (−1)n(λ)qn(λ′)

∏
�∈λ

(
qh(�) − (−1)h(�)

)−1
.

Since

ψm(−q) =
m∏
i=1

(1− (−q)i) = (−1)m+m(m+1)/2
m∏
i=1

(qi − (−1)i),

we have

ηλ(1) = (−1)τ(λ)qn(λ′)
∏

1≤i≤||λ||

(qi − (−1)i)
∏
�∈λ

(qh(�) − (−1)h(�))−1. �

By the Littlewood-Richardson rule, for any µ, ν ∈ P, we have

sµsν =
∑
λ

cλµνsλ,

where cλµν is the number of tableaux T of shape λ − µ and weight ν such
that the word w(T ) is a lattice permutation [19, I.9]. So we have

(5.8) sµsν =
∑
λ

cλµνsλ where cλµν =
∏
ϕ∈Θ

c
λ(ϕ)
µ(ϕ)ν(ϕ).
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Corollary 5.1. Let µ,ν ∈ PΘ. Then χµ ◦ χν is a character if and only if
every λ ∈ PΘ such that cλµν > 0 satisfies

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2)

Proof. Since
ch(χµ ◦ χν) = (−1)τ(µ)+τ(ν)

∑
λ

cλµνsλ,

the class function χµ ◦ χν is a character if and only if every λ such that
cλµν > 0 satisfies

τ(µ) + τ(ν) ≡ τ(λ) (mod 2).
For each λ such that cλµν > 0, we have, for every ϕ ∈ Θ, a tableau of shape
λ(ϕ)−µ(ϕ) and weight ν(ϕ). In particular, we have |µ(ϕ)|+|ν(ϕ)| = |λ(ϕ)|
for every ϕ ∈ Θ, so that ||µ|| + ||ν|| = ||λ||. The result follows from the
definition of τ . �

It follows that the operation ◦ does not always take a pair of characters
to a character. For example, let ϕ1 be the orbit of the trivial character, and
define µ = ν =

(
�(ϕ1)

)
. Then one λ such that cλµν > 0 is

λ =
(

(ϕ1)
)
.

Then we have n(µ) + n(ν) = 0 while n(λ) + ||µ|| ||ν|| = 1, and so χµ ◦ χν

is not a character by Corollary 5.1.

5.2. Character degree sums. Let dr denote the number of F -orbits in Θ
of size r. Since the F -action preserves T ∗m and |T ∗m| = qm − (−1)m, we have

(5.9) qm − (−1)m =
∑
r|m

rdr, for m ∈ Z>0.

Theorem 5.2. The sum of the degrees of the complex irreducible characters
of Um is given by∑

||λ||=m

χλ(1) = (q + 1)q2(q3 + 1)q4(q5 + 1) · · ·
(
qm +

(1− (−1)m)
2

)
.

Proof. Following a similar approach to [19, IV.6, Example 5], we consider
the coefficient of tm in the series

S =
∑

λ∈PΘ

(−1)n(λ)+||λ||δ(sλ)t||λ||,

where n(λ) is as in (2.7). Note that S = SoSe, where

So =
∏
|ϕ|
odd

∑
λ

(−1)n(λ)δ(sλ(ϕ))(−t)|λ||ϕ| and Se =
∏
|ϕ|

even

∑
λ

δ(sλ(ϕ))t|λ||ϕ|.

Combine the following identity from Example 6 in [19, I.5],∑
λ

(−1)n(λ)sλ =
∏
i

(1− xi)−1
∏
i<j

(1 + xixj)−1
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with (5.6) to obtain∑
λ∈P

(−1)n(λ)(−1)|ϕ||λ|δ(sλ(ϕ))t|λ||ϕ|

=
∏
i≥1

(
1− (t(−q)−i)|ϕ|

)−1
∏

1≤i<j

(
1 + (t2(−q)−i−j)|ϕ|

)−1
.

Taking the logarithm,

logSo =
∑
m odd

dm

(∑
i≥1

∑
r≥1

(t(−q)−i)mr

r
+
∑

1≤i<j

∑
r≥1

(
− (t2(−q)−i−j)m

)r
r

)
=
∑
m odd

dm
∑
r≥1

(
tmr

r

∑
i≥1

(−q)−imr + (−1)r
∑

1≤i<j
t2mr(−q)−(i+j)mr

)

=
∑
m odd

dm
∑
r≥1

tmr

r((−q)mr − 1)

(
1 + (−1)r

∑
i≥1

tmr(−q)−2imr

)

=
∑
m odd

dm
∑
r≥1

tmr

r(qmr − (−1)mr)

(
(−1)mr +

∑
i≥1

tmrq−2imr

)
,

where dm is as in (5.9). Similarly for |ϕ| even, by Example 4 in [19, I.5],∑
λ

sλ =
∏
i

(1− xi)−1
∏
i<j

(1− xixj)−1

so ∑
λ∈P

δ(sλ(ϕ))t|λ||ϕ| =
∏
i≥1

(
1− (tq−i)|ϕ|

)−1
∏

1≤i<j

(
1− (t2q−i−j)|ϕ|

)−1
.

Taking logarithms,

logSe =
∑
m even

dm

(∑
i≥1

∑
r≥1

(tq−i)mr

r
+
∑

1≤i<j

∑
r≥1

(t2q−i−j)mr

r

)

=
∑
m even

dm
∑
r≥1

tmr

r(qmr − (−1)mr)

(
(−1)mr +

∑
i≥1

tmrq−2imr

)
.

Let N = mr, and by (5.9),

logS = logSo + logSe

=
∑
N≥1

((−t)N

N
+
∑
i≥1

t2Nq−2iN

N

)
= log(1 + t)−1 +

∑
i≥1

log(1− t2q−2i)−1.

By exponentiating,

S =
1

1 + t

∏
i≥1

1
1− t2q−2i

= (1− t)
∏
i≥0

1
1− t2q−2i

= (1− t)
∑
l≥0

t2l

ψl(q−2)
,
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where the last equality comes from Example 4 in [19, I.2]. Multiply the
coefficient of tm by (−1)m|ψm(−q)| = (−1)m

∏m
i=1(qi − (−1)i) to obtain∑

||λ||=m

χλ(1) = (q + 1)q2(q3 + 1)q4(q5 + 1) · · ·
(
qm +

(1− (−1)m)
2

)
. �

Write fUm(q) =
∑
||λ||=m χ

λ(1). The polynomial fGm(q) expressing the
sum of the degrees of the complex irreducible characters of Gm = GL(m,Fq)
was computed in [7] for odd q and in [17] and Example 6 of [19, IV.6] for
general q. From these results we see that

fUm(q) = (−1)m(m+1)/2fGm(−q),
giving another example of Ennola duality.

Gow [7] and Klyachko [17] proved that the sum of the degrees of the
complex irreducible characters of Gn is equal to the number of symmetric
matrices in Gn. Gow accomplished this by considering the split extension
of Gn by the transpose-inverse automorphism,

(5.10) G+
n = 〈Gn, κ | κ2 = 1, κgκ = tg

−1 for every g ∈ Gn〉,
and showed that every complex irreducible representation of G+

n could be
realized over the real numbers. Instead, we show directly that the sum of the
degrees of the complex irreducible characters of Un is equal to the number
of symmetric matrices in Un. One can apply this result to determine reality
properties of the characters of U+

n , where

(5.11) U+
n = 〈Un, κ | κ2 = 1, κuκ = tu

−1 for every u ∈ Un〉.

Corollary 5.2. The sum of the degrees of the complex irreducible characters
of U(n,Fq2) is equal to the number of symmetric matrices in U(n,Fq2).

Proof. Define SUn to be

SUn = {symmetric matrices in Un}.
Then Un acts on the set SUn by the action

u · s = tusu, s ∈ SUn , u ∈ Un.
To find the number of elements in SUn , we find the stabilizers of the orbits
under this action. Consider the same action of Gn = GL(n,Fq) on its subset
of symmetric matrices. That is, let

SGn = {symmetric matrices in Gn},
and let Gn act on the set SGn by the action

g · s = tgsg, s ∈ SGn , g ∈ Gn.
Gow [8] proved, using the Lang-Steinberg theorem, that there is a one-to-

one correspondence between conjugacy classes of G+
n (5.10) and U+

n (5.11)
of elements of the form gκ and uκ, for g ∈ Gn and u ∈ Un. Moreover,
Gow proved that this correspondence preserves orders of the elements, and
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the corresponding centralizers in Gn and Un are isomorphic. The conjugacy
classes of order 2 elements of this form correspond to the orbits of symmetric
matrices in Gn and Un, and their centralizers in Gn and Un to the stabilizers
under the action described above. So to find the stabilizers of the orbits in
the case for Un, it is enough to do this for Gn.

If q is odd, or when q is even and n is odd, the stabilizers of the orbits of
SGn are exactly the orthogonal groups (see, for example, [10, Chapters 9, 14]
for a complete discussion and orders). When q and n are both even, there
are two orbits, and one orbit consists of symmetric matrices which have
at least one nonzero entry on the diagonal, the order of whose stabilizer is
computed in [20]. The other orbit, consisting of symmetric matrices with
zero diagonal, corresponds to the unique class of alternating forms, with
stabilizer the symplectic group over Fq. In each of these cases, it may be
easily checked that the sum of the indices of these stabilizers as subgroups
of Un, which by Gow’s result is the size of SUn , is exactly the polynomial
obtained in Theorem 5.2. �

For a finite groupH with order 2 automorphism ι, and irreducible complex
representation π of H, the twisted Frobenius-Schur indicator of π, denoted
ει(π), was originally defined in [16], and studied further in [1]. This indicator
is a generalization of the classical Frobenius-Schur indicator ε(π), which
takes the value 1 if π is a real representation, −1 if the character of π
is real-valued but π is not real, and 0 if the character of π is not real-
valued. If H = Un, and ι is the inverse-transpose automorphism, it follows
from Corollary 5.2 and [1, Proposition 1] that ει(π) = 1 for every complex
irreducible representation π of Un. Using this fact, along with the formula
for the twisted Frobenius-Schur indicator established in [16], we obtain the
following reality properties for the group U+

n .

Corollary 5.3. Let U+
n be the split extension of Un by the transpose-inverse

involution, as in (5.11). Let π be a complex irreducible representation of Un.
Then we have the following:

(1) If ε(π) = 0, then π induces to an irreducible representation ρ =
IndU

+
n

Un
(π) of U+

n such that ε(ρ) = 1.
(2) If ε(π) = 1, then π extends to two irreducible representations π′ and

π′′ of U+
n such that ε(π′) = ε(π′′) = 1.

(3) If ε(π) = −1, then π extends to two irreducible representations π′

and π′′ of U+
n such that ε(π′) = ε(π′′) = 0.

A Θ-partition λ is even if every part of λ(ϕ) is even for every ϕ ∈ Θ.
Let Sp2n = Sp(2n,Fq) be the symplectic group over the finite field Fq. The
following was proven in [11].
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Theorem 5.3 (Henderson). Let q be odd. The decomposition of IndU2n
Sp2n

(1)
into irreducibles is given by

IndU2n
Sp2n

(1) =
∑
||λ||=2n

λ′even

χλ.

So, for q odd, Theorem 5.3 implies an identity for the sum of the degrees of
characters appearing in the permutation character. We are able to calculate
this degree sum for any q, suggesting that Theorem 5.3 should hold for q
even as well.

Theorem 5.4. The sum of the degrees of the complex irreducible characters
of U2m corresponding to λ such that λ′ is even is given by∑

||λ||=2m

λ′ even

χλ(1) = (q + 1)q2(q3 + 1) · · · q2m−2(q2m−1 + 1) =
|U(n,Fq2)|
|Sp(2n,Fq)|

.

Proof. To calculate this sum, we find the coefficient of t2m in the series

T =
∑

λ′ even

(−1)n(λ)+||λ||δ(sλ)t||λ|| = ToTe,

where

To =
∏
|ϕ|
odd

∑
λ′ even

(−1)n(λ)δ(sλ(ϕ))t|λ||ϕ| and Te =
∏
|ϕ|

even

∑
λ′ even

δ(sλ(ϕ))t|λ||ϕ|.

It follows from the computation in Example 6 of [19, I.5] that∑
λ′ even

(−1)n(λ)sλ =
∏
i<j

(1 + xixj)−1,

and applying this yields∑
λ′ even

(−1)n(λ)δ(sλ(ϕ))t|λ||ϕ| =
∏

1≤i<j

(
1 +

(
t2(−q)−i−j

)|ϕ|)−1
.

From Example 5(b) in [19, I.5], we have the identity∑
λ′ even

sλ =
∏
i<j

(1− xixj)−1,

from which it follows, for |ϕ| even, that∑
λ′ even

δ(sλ(ϕ))t|λ||ϕ| =
∏

1≤i<j

(
1−

(
t2q−i−j

)|ϕ|)−1
.

Proceeding similarly as in the proof of Theorem 5.2, we obtain

T =
∏
i≥1

1
1− t2q−2i

= (1− t2)
∏
i≥0

1
1− t2q−2i

= (1− t2)
∑
l≥0

t2l

ψl(q−2)
.
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Multiplying the coefficient of t2m by |ψ2m(−q)| =
∏2m
i=1(qi − (−1)i), we

obtain ∑
||λ||=2m

λ′ even

χλ(1) = (q + 1)q2(q3 + 1) · · · q2m−2(q2m−1 + 1). �

Write gUm(q) =
∑
||λ||=2m,λ′ even χ

λ(1), and let gGm(q) denote the corre-
sponding sum for Gm. The polynomial gGm(q) was calculated in Example 7
of [19, IV.6], and similar to the previous degree sum, we see that we have

gUm(q) = (−1)mgGm(−q).

6. A Deligne-Lusztig model

A model of a finite group G is a representation ρ, which is a direct sum of
representations induced from one-dimensional representations of subgroups
of G, such that every irreducible representation of G appears as a component
with multiplicity 1 in the decomposition of ρ.

Klyachko [17] and Inglis and Saxl [13] obtained a model for GL(n,Fq),
where the induced representations can be written as a Harish-Chandra prod-
uct of Gelfand-Graev characters and the permutation character of the finite
symplectic group.

In this section we show that the same result is true for the finite unitary
group, except the Harish-Chandra product is replaced by Deligne-Lusztig
induction. The result is therefore not a model for U(n,Fq2) in the finite
group character induction sense, but rather from the Deligne-Lusztig point
of view.

Let Γ(m) be the Gelfand-Graev character of U(m,Fq2) (see, for example,
[2] for a general definition). For λ ∈ PΘ, define

ht(λ) = max{`(λ(ϕ)) | ϕ ∈ Θ}.
It is well-known that the Gelfand-Graev character has a multiplicity free
decomposition (see, for example, [2]), and Ohmori [21, Section 5.2] gives the
following explicit decomposition. Alternatively, the theorem also follows by
applying the characteristic map to [3, Theorem 10.7].

Theorem 6.1. The decomposition of Γ(m) into irreducibles is given by

Γ(m) =
∑

λ∈PΘ
m

ht(λ)=1

χλ.

For a partition λ, let o(λ) denote the number of odd parts of λ, and for
λ ∈ PΘ, let o(λ) =

∑
ϕ∈Θ |ϕ|o(λ(ϕ)). The following gives the Deligne-

Lusztig model for the finite unitary group.

Theorem 6.2. Let q be odd. For each r such that 0 ≤ 2r ≤ m,

Γm−2r ◦ IndU2r
Sp2r

(1) =
∑

o(λ′)=m−2r

χλ.
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Furthermore, ∑
0≤2r≤m

Γm−2r ◦ IndU2r
Sp2r

(1) =
∑
||λ||=m

χλ

Proof. Suppose µ,ν ∈ PΘ, such that ht(µ) = 1 and ν ′ is even. From (5.8),
Corollary 4.3, and Pieri’s formula [19, I.5.16],

(6.1) χµ ◦ χν = (−1)τ(µ)+τ(ν)
∑
λ

χλ,

where the sum is taken over all λ such that for every ϕ ∈ Θ, λ(ϕ)− ν(ϕ) is
a horizontal |µ(ϕ)|-strip.

We now use Corollary 5.1 to show that χµ ◦χν is a character. As λ(ϕ)−
ν(ϕ) is a horizontal |µ(ϕ)|-strip, the part λ(ϕ)′i is either ν(ϕ)′i or ν(ϕ)′i + 1
for every i = 1, 2, . . . , `(λ(ϕ)). By assumption, ν ′ is even, so ν(ϕ)′i is even
for every ϕ ∈ Θ, and so(

ν(ϕ)′i + 1
2

)
= ν(ϕ)′i +

(
ν(ϕ)′i

2

)
≡
(

ν(ϕ)′i
2

)
(mod 2).

Thus, n(λ(ϕ)) =
∑

i

(λ(ϕ)′i
2

)
≡ n(ν(ϕ)) (mod 2). The assumption ht(µ) = 1

implies n(µ(ϕ)) = 0, and since ||ν|| is even,

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2).

By Corollary 5.1, χµ ◦ χν is a character.
Use the decompositions of Theorem 5.3 and Theorem 6.1 in the product

(6.1) to observe that the irreducible characters χλ in the decomposition of
Γm−2r◦IndU2r

Sp2r
(1) are indexed by λ ∈ PΘ

m such that for every ϕ, λ(ϕ)−ν(ϕ)
is a horizontal |µ(ϕ)|-strip, where ||µ|| = m − 2r, for some ν(ϕ) such that
ν(ϕ)′ is even. Then the number of odd parts of λ(ϕ)′ is exactly |µ(ϕ)|,
and so the λ in the decomposition must satisfy

∑
ϕ∈Θ |ϕ|o(λ(ϕ)′) = ||µ|| =

m− 2r. �
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