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Abstract. Let GL(n,Fq)〈τ〉 and U(n,Fq2 )〈τ〉 denote the finite general linear
and unitary groups extended by the transpose inverse automorphism, respec-

tively, where q is a power of p. Let n be odd, and let χ be an irreducible

character of either of these groups which is an extension of a real-valued char-
acter of GL(n,Fq) or U(n,Fq2 ). Let yτ be an element of GL(n,Fq)〈τ〉 or

U(n,Fq2 )〈τ〉 such that (yτ)2 is regular unipotent in GL(n,Fq) or U(n,Fq2 ),

respectively. We show that χ(yτ) = ±1 if χ(1) is prime to p and χ(yτ) = 0 oth-

erwise. Several intermediate results on real conjugacy classes and real-valued

characters of these groups are obtained along the way.

1. Introduction

Let F be a field and let n be a positive integer. Let GL(n,F) denote the general
linear group of degree n over F. In the special case that F is the finite field of order
q, we denote the corresponding general linear group by GL(n,Fq). Let τ denote
the involutory automorphism of GL(n,F) which maps an element g to its transpose
inverse (g′)−1, where g′ denotes the transpose of g, and let GL(n,F)〈τ〉 denote the
semidirect product of GL(n,F) by τ . Thus in GL(n,F)〈τ〉, we have τ2 = 1 and
τgτ = (g′)−1 for g ∈ GL(n,F). Let gτ and hτ be elements in the coset GL(n,F)τ .
These elements are conjugate in GL(n,F)〈τ〉 if and only if there is an element x in
GL(n,F) with

xgτx−1 = hτ,

which is equivalent to the equality

xgx′ = h.

Identifying g and h with non-degenerate bilinear forms over F, we see that gτ and hτ
are conjugate precisely when g and h define equivalent bilinear forms. Furthermore,
it is clear that the centralizer of gτ in GL(n,F) consists of those elements z ∈
GL(n,F) which satisfy

zgz′ = g.

This means that we may identify the centralizer of gτ with the isometry group of
the bilinear form defined by g. Thus the study of the conjugacy classes and their
centralizers of elements in the coset GL(n,F)τ encompasses one of the classical
problems of linear algebra.
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In this paper, we are interested in the irreducible characters and conjugacy classes
of the group GL(n,Fq)〈τ〉. The first-named author above showed that, when q is a
power of an odd prime, all the complex characters of GL(n,Fq)〈τ〉 may be realized
over the field R of real numbers. This property was subsequently shown to hold for
all finite fields, and it has some interesting consequences for the characters of the
finite general linear group.

Now the finite unitary group U(n,Fq2) also admits the transpose inverse map
as an involutory automorphism and we may thus form a corresponding semidirect
product U(n,Fq2)〈τ〉. In Section 2, we will show that there is a one-to-one corre-
spondence between the conjugacy classes of GL(n,Fq)〈τ〉 in the coset GL(n,Fq)τ
and the conjugacy classes of U(n,Fq2)〈τ〉 in the coset U(n,Fq2)τ , and that this
correspondence preserves the order of elements in corresponding classes and maps
centralizers to isomorphic centralizers. Some consequences of this correspondence
were described in the paper of the second named author above and N. Thiem [36].

In Section 3, we give a combinatorial description of the irreducible characters
of GL(n,Fq) and U(n,Fq2), and apply this description to give a correspondence
between real-valued irreducible characters of these two groups. In Section 4, this
correspondence of characters is applied, along with the duality between semisimple
and regular characters, to count the number of real-valued semisimple and regular
characters in these groups.

In Section 5, we return to the subject of conjugacy. In particular, results are ob-
tained on which elements in U(n,Fq2) and U(n,Fq2)〈τ〉 are strongly real. In Lemma
5.3, we prove that there are elements xτ and yτ in GL(n,Fq)τ and U(n,Fq2)τ (q
odd), respectively, such that, when n is odd, these elements are strongly real and
square to regular unipotent elements, and when n is even, these elements square to
the negative of a regular unipotent.

The main results on character values are proven in Sections 6 and 7, which are
as follows.

(Theorems 6.3 and 7.1) Let n be odd, q a power of p, and let yτ be an element of
GL(n,Fq)〈τ〉 (or U(n,Fq2)〈τ〉) such that (yτ)2 is regular unipotent, and let χ be a
character of GL(n,Fq)〈τ〉 (or U(n,Fq2)〈τ〉) which is an extension of a real-valued
character of GL(n,Fq) (or U(n,Fq2)). Then χ(yτ) = ±1 if χ(1) is prime to p, and
χ(yτ) = 0 otherwise. Also, χ(τ) ≡ ±χ(yτ) (mod p).

We also show (in Theorem 6.4) that there is no parallel result when n is even,
for elements which square to −u, where u is regular unipotent. A key tool that is
used to prove these results is a similar result due to Green, Lehrer, and Lusztig [22]
which gives the values of characters of finite groups of Lie type on regular unipotent
elements. The proof of our main result when q is even, given in Section 7, uses the
theory of Gelfand-Graev characters in disconnected groups due to K. Sorlin [32, 33].

Feit [16] has computed the values of cuspidal characters of GL(n,Fq) extended to
GL(n,Fq)〈τ〉, with motivation coming from the fact that characters of GL(n,Fq2)
extended by the standard Frobenius map play a key role in Shintani descent [31].
Shintani descent is relevant in this paper as well, as it gives a correspondence be-
tween real-valued characters of GL(n,Fq) and U(n,Fq2) (perhaps the same as our
correspondence in Theorem 3.3), as studied in a more general context by Digne [9].
Evidence suggests that Shintani descent dictates a specific relationship between the
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character values of GL(n,Fq)〈τ〉 and U(n,Fq2)〈τ〉, and this paper might be viewed
as a study of this relationship on a specific type of conjugacy class. In particu-
lar, we conjecture that if χ is a real-valued irreducible character of U(n,Fq2) with
Frobenius-Schur indicator 1, then the values of the extensions of χ to U(n,Fq2)〈τ〉
are Galois conjugates of the values of an irreducible character of GL(n,Fq)〈τ〉 ex-
tended from a real-valued irreducible character of GL(n,Fq) which is related to χ
through Shintani descent. Furthermore, we conjecture that if χ is a real-valued
irreducible character of U(n,Fq2) with Frobenius-Schur indicator −1, the nonzero
values of the extensions of χ are purely imaginary complex numbers (see Lemma
6.1 and Corollary 6.1) which are polynomials in

√
−q, and the real-valued character

of GL(n,Fq) which is related to χ through Shintani descent will have an extension
with nonzero values obtained from those of the extension of χ by substituting

√
q

for
√
−q. A specific case of the second part of this conjecture is mentioned at the

end of Section 6. We note that for the simple versions of these groups and their
extensions, the correspondence between character values as described above can be
observed in the examples given in the Atlas of finite groups [6].

Finally, there is a conjecture of Malle [29, p. 85] which describes a relationship
between the generalized Deligne-Lusztig characters of pairs of disconnected groups
which are related by twisting a Frobenius automorphism by a commuting automor-
phism, which includes GL(n,Fq)〈τ〉 and U(n,Fq2)〈τ〉. The specific correspondence
of character values as we have conjectured above would certainly give insight into
Malle’s conjecture in this case.

Acknowledgements. The second author thanks the University College in Dublin
for hosting a visit to the School of Mathematical Sciences in the summer of 2006,
when this work began, and also Karine Sorlin for email correspondence regarding
the material in Section 7. Both authors thank Robert Guralnick for pointing out
the linear algebra explanation of Corollary 2.1, and the referee for a careful reading.

2. A correspondence of conjugacy classes for certain finite groups
of Lie type

The aim of this section is to place the finite groups GL(n,Fq)〈τ〉 and U(n,Fq2)〈τ〉
into a more general context where we can use the theory of algebraic groups to draw
some conclusions which apply not only to these two groups but also to a number of
other important finite groups of Lie type. We assume in this section that K = F̄q
is a fixed algebraic closure of the finite field with q elements, where q is a power of
the prime p. Furthermore, G will denote a connected linear algebraic group over
K. Let F : G → G denote a (standard) Frobenius map of G and let GF denote
the finite subgroup of fixed points of F in G. Suppose that G has an involutory
automorphism τ which commutes with F in its action on G. We may then form a
twisted Frobenius map F̃ : G→ G by setting

F̃ (g) = F (τ(g))

for all g in G. Since F̃ 2 = F 2, it follows that the subgroup GF̃ is contained in GF
2
.

Let x be any element of GF . The Lang–Steinberg theorem [35, Theorem 10.1]
shows that there exists an element z in G with x = z−1F̃ (z). Since F (x) = x, and
F commutes with F̃ , it follows that

F (z)−1F̃ (F (z)) = z−1F̃ (z)
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and thus
zF (z)−1 = F̃ (z)F̃ (F (z)−1) = F̃ (zF (z)−1).

This shows that the element y = zF (z)−1 is in GF̃ . A different choice of z in G
used to represent x according to the Lang–Steinberg theorem will lead to another
element in GF̃ which is not obviously related to the element y just obtained. The
purpose of this section is to show that the idea of associating x in GF with y in GF̃

can be used to define a correspondence of certain conjugacy classes in extension
groups of GF and GF̃ , respectively, as we will now explain.

Following the construction described in the Introduction, let G〈τ〉 denote the
semidirect product of G by τ . Since F commutes with τ , it follows that both GF

and GF̃ admit τ as an automorphism and are thus normalized by τ in G〈τ〉. Let
GF 〈τ〉 and GF̃ 〈τ〉 denote the corresponding subgroups of G〈τ〉 generated by τ and
GF , GF̃ respectively.

Let H denote any of the groups G, GF or GF̃ . In order to define our correspon-
dence of conjugacy classes, we prove some elementary results relating to conjugacy
of elements in H〈τ〉. We make use of the observation in the Introduction that ele-
ments aτ and bτ in H〈τ〉 are conjugate if and only there exists an element c in H
with c−1aτ(c) = b.

Lemma 2.1. Let x be an element of GF and write x = z−1F̃ (z) for some z ∈ G.
Suppose that xτ is conjugate in GF 〈τ〉 to wτ , where w = v−1F̃ (v) for some v ∈ G.
Then

zF (z)−1τ and vF (v)−1τ

are conjugate in GF̃ 〈τ〉. Thus, if we also have x = z−1
1 F̃ (z1) for some other element

z1 in G, the elements
zF (z)−1τ and z1F (z1)−1τ

are conjugate in GF̃ 〈τ〉.

Proof. As we noted above, there exists g ∈ GF with g−1xτ(g) = w. Moreover, as
τ is involutory and g ∈ GF , we have F̃ (g) = τ(g). It follows that

g−1z−1F̃ (z)τ(g) = (zg)−1F̃ (zg) = w = v−1F̃ (v).

We deduce that zgv−1 ∈ GF̃ . We set zgv−1 = u, and then obtain v = u−1zg,
where u ∈ GF̃ . Since g = F (g) and τ(u) = F (u), it follows that

vF (v)−1 = u−1zgF (g)−1F (z)−1F (u) = u−1zF (z)−1τ(u),

and this equality proves that vF (v)−1τ and zF (z)−1τ are conjugate in GF̃ 〈τ〉, as
required. The second part is clear by taking w = x and z1 = v. �

Given an element x of H, we let [xτ ] denote the conjugacy class of xτ in H〈τ〉.
We trust that context will make it clear which subgroup H is implied in the event
of possible ambiguity. We now define a map φ associating a conjugacy class [xτ ]
in GF τ to a conjugacy class [yτ ] in GF̃ τ in the following way. Write x as z−1F̃ (z)
and let y = zF (z)−1 ∈ GF̃ . Then we set

φ[xτ ] = [yτ ].

Lemma 2.1 shows that the definition of φ does not depend on the choice of z
to represent x or the choice of x to represent the conjugacy class [xτ ]. We note
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however that φ is only defined at the level of conjugacy classes and does not apply
to individual elements. The next result is a special case of [12, Prop. 5.7].

Lemma 2.2. The map φ defines a one-to-one correspondence between the conju-
gacy classes in GF τ and the conjugacy classes in GF̃ τ .

Proof. We first show that φ is injective. Suppose then that φ[xτ ] = φ[x1τ ]. Write

x = z−1F̃ (z), x1 = z−1
1 F̃ (z1)

where z and z1 are appropriate elements of G. Then there exists some u ∈ GF̃ with

u−1zF (z)−1τ(u) = z1F (z1)−1.

Since τ(u) = F (u), this implies that z−1uz1 is in GF . We set g = z−1uz1. Then,
since τ(g) = F̃ (g), we have

g−1z−1F̃ (z)τ(g) = (zg)−1F̃ (zg) = (uz1)−1F̃ (uz1) = z−1
1 F̃ (z1)

and this implies that g conjugates xτ into x1τ . Thus [xτ ] = [x1τ ] and it follows
that φ is injective.

Next, we show that φ is surjective. Let u be any element of GF̃ . The Lang–
Steinberg theorem implies that u = zF (z)−1 for some z ∈ G. Since F̃ (u) = u,
we readily check that z−1F̃ (z) is in GF . Thus if we put x = z−1F̃ (z), we have
φ[xτ ] = [uτ ], which implies that φ is surjective, as required. �

We now show that if the order of an element in [xτ ] is r, the order of an element
in φ[xτ ] is also r. Thus φ preserves the order of the elements in a conjugacy class.

Lemma 2.3. Given x ∈ GF , let [yτ ] = φ[xτ ]. Then (xτ)−2 and (yτ)2 are conjugate
in G. Hence, xτ and yτ have the same (finite) multiplicative order in G〈τ〉.

Proof. As usual, we write x = z−1F̃ (z) and set y = zF (z)−1. Then we have

(xτ)2 = xτ(x) = z−1F̃ (z)(τ(z))−1F (z)

(yτ)2 = yτ(y) = zF (z)−1τ(z)F̃ (z)−1.

It follows that
z−1(yτ)2z = (xτ)−2,

as required. Furthermore, since xτ and yτ have finite even order, and their squares
have the same order by the argument above, we deduce that xτ and yτ have the
same order in G〈τ〉. �

We note that the fact that (xτ)−2 and (yτ)2 are conjugate in G (and possibly
in the smaller group GF

2
) provides information on how to recognize the class φ[xτ ]

in terms of the class [xτ ].
The map φ has an additional useful property, which is that the centralizer of xτ

in GF is conjugate in G to the centralizer of yτ in GF̃ , where yτ ∈ φ[xτ ], as we
now show.

Lemma 2.4. Let x be an element of GF , with x = z−1F̃ (z) for some z ∈ G. Let
y = zF (z)−1. Then the centralizer of xτ in GF is z−1GF̃ z∩GF and the centralizer
of yτ in GF̃ is zGF z−1 ∩ GF̃ . Thus, since these are conjugate subgroups, the
centralizer of xτ in GF is isomorphic to the centralizer of yτ in GF̃ .
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Proof. An element u ∈ GF commutes with xτ if and only if u−1xτu = xτ . This
occurs if and only if u−1xτ(u) = x. Since τ(u) = F̃ (u), u commutes with xτ if and
only if zuz−1 is in GF̃ . Thus the centralizer of xτ in GF is z−1GF̃ z ∩ GF , and a
similar argument shows that the centralizer of yτ in GF̃ is zGF z−1 ∩GF̃ . Since

z(z−1GF̃ z ∩GF )z−1 = zGF z−1 ∩GF̃ ,
the two centralizers are conjugate in G and hence isomorphic. �

We sum up our findings related to φ in the following theorem, which amalgamates
the various lemmas we have proved.

Theorem 2.1. Let G be a connected linear algebraic group over the algebraic clo-
sure of a finite field. Let F : G → G denote a standard Frobenius map of G.
Suppose that G has an involutory automorphism τ which commutes with F and let
F̃ denote the corresponding twisted Frobenius map. Let H denote either GF or GF̃

and let H〈τ〉 denote the semidirect product of H by τ . Given h ∈ H, let [hτ ] denote
the conjugacy class of hτ in H〈τ〉. Given x ∈ GF , write x = z−1F̃ (z) for some
z ∈ G and set y = zF (z)−1 ∈ GF̃ .

Then the map φ defined by φ[xτ ] = [yτ ] is a one-to-one correspondence between
the conjugacy classes in the coset GF τ and the conjugacy classes in the coset GF̃ τ .
The elements xτ and yτ have the same order and the centralizer of xτ in GF is
isomorphic to the centralizer of yτ in GF̃ .

We note that our theorem applies when we take G to be the group GL(n,K),
where K is the algebraic closure of a finite field and τ is the transpose inverse
automorphism. The corresponding groups GF and GF̃ are GL(n,Fq) and U(n,Fq2),
which will be the main application in this paper. In this case, Theorem 2.1 says
that the number of conjugacy classes in GL(n,Fq)τ is equal to the number of
conjugacy classes in U(n,Fq2)τ , and the centralizers in GL(n,Fq) and U(n,Fq2) of
corresponding classes are isomorphic. There are several results for the number of
conjugacy classes in GL(n,Fq)τ and the sizes of their GL(n,Fq)-centralizers given
by Fulman and Guralnick in [17, Sections 6 and 9]. By applying Theorem 2.1, we
obtain identical results for conjugacy classes in U(n,Fq2)τ .

We mention another special case of our theorem. We take G to be the special
orthogonal group SO(2m,K) of even degree 2m over K. G is a connected lin-
ear algebraic group which has index 2 in the (disconnected) full orthogonal group
O(2m,K). O(2m,K) contains an orthogonal reflection, t, say, which is an ele-
ment of order 2 not in SO(2m,K). We may assume that t has coefficients in the
field of order p. Conjugation by t induces an involutory automorphism τ , say, of
SO(2m,K) which commutes with the Frobenius map F , since t has coefficients in
the prime field. We may thus also form a twisted Frobenius map F̃ by means of
τ . The finite group GF is then the split special orthogonal group SO+(2m,Fq)
and GF̃ is the non-split special orthogonal group SO−(2m,Fq). We may identify
the extended groups GF 〈τ〉 and GF̃ 〈τ〉 with the full orthogonal groups O+(2m,Fq)
and O−(2m,Fq), respectively. The following result summarizes how Theorem 2.1
applies in this case.

Corollary 2.1. There is a one-to-one correspondence between the conjugacy classes
of O+(2m,Fq) \ SO+(2m,Fq) and those of O−(2m,Fq) \ SO−(2m,Fq) which pre-
serves the order of the elements in corresponding conjugacy classes. Under this
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correspondence, the centralizer in SO+(2m,Fq) of an element in a conjugacy class
in O+(2m,Fq)\SO+(2m,Fq) is isomorphic to the centralizer in SO−(2m,Fq) of an
element in the corresponding conjugacy class of O−(2m,Fq) \ SO−(2m,Fq).

We can explain this correspondence of classes and centralizers by simple linear
algebra in the odd prime case as follows. Suppose that q is odd. Let x be an element
of O+(2m,Fq)\SO+(2m,Fq). Since x is conjugate to its inverse, the multiplicity of
−1 as a root of the characteristic polynomial of x is odd. Let V be the underlying
space on which x acts and let U be the generalized eigenspace of x corresponding
to the eigenvalue −1. Let f : V × V → Fq be the symmetric bilinear form defining
O+(2m,Fq). There is a canonical orthogonal decomposition

V = U ⊥ U⊥

with respect to f , where the two summand are both x-invariant.
We define a new symmetric bilinear form g : V × V → Fq by rescaling the

restriction of f on U×U by a non-square element of Fq, and retaining its restriction
on U⊥ × U⊥. It is straightforward to see that f and g have opposite types, as
their determinants differ by a non-square. Furthermore, x clearly preserves g,
since it preserves its restriction on the two summands, and hence it is also an
element of O−(2m,Fq)\SO−(2m,Fq). Finally, the uniqueness of the decomposition
V = U ⊥ U⊥, which must be preserved by any orthogonal element centralizing x,
implies that the centralizers of x in the two orthogonal groups are identical.

3. Characters of GL(n,Fq) and U(n,Fq2)

In this section, we give a combinatorial description of the irreducible characters
of the finite general linear and unitary groups. The development will largely follow
[28, Chapter IV] in the case of GL(n,Fq), and [36] in the case of U(n,Fq2), where
notation will vary slightly due to the fact that we give the description of characters
for both cases simultaneously.

As before, we let K = F̄q denote a fixed algebraic closure of the finite field with
q elements. We set Ḡn = GL(n,K) and let F : Ḡn → Ḡn denote the standard
Frobenius map defined by F ((aij)) = (aqij). We let F̃ : Ḡn → Ḡn denote the
twisted Frobenius map defined by F̃ (g) = (F (g)′)−1. Then we have

ḠFn = GL(n,Fq) and ḠF̃n = U(n,Fq2).

We also use the notation Gn and Un for the groups GL(n,Fq) and U(n,Fq2), re-
spectively.

Both F and F̃ act on Ḡ1 = K× and the group of complex characters of K×,
which we will denote by K̂×. We consider the orbits arising from these actions. Let

Φ = {F -orbits of K×}, Φ̃ = {F̃ -orbits of K×},

Θ = {F -orbits of K̂×}, Θ̃ = {F̃ -orbits of K̂×}.
Remark. We note that the elements of Φ correspond to irreducible monic polyno-
mials with non-zero constant term over Fq, and there is a non-canonical bijective
correspondence between the orbits in Φ and Θ (and between Φ̃ and Θ̃) which
preserves the sizes of orbits. The elements of Φ̃ correspond to certain monic poly-
nomials with non-zero constant term over Fq2 which were studied and characterized
by Ennola [14].
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Let P denote the set of partitions of non-negative integers. For X = Φ, Θ, Φ̃ or
Θ̃, we define an X -partition to be a function λ : X → P. The size of an X -partition
is defined to be

||λ|| =
∑
x∈X
|x| |λ(x)|,

where |x| denotes the cardinality of the orbit x ∈ X , and |λ(x)| denotes the size of
the partition λ(x) ∈ P. Now define

PXn = {X -partition λ | ||λ|| = n} and PX =
∞⋃
n=1

PXn .

The following parameterizations of conjugacy classes follow from the theory of
elementary divisors in the case of GL(n,Fq) (see [28, IV.2]), and follow from the
work of Wall [37] and Ennola [14] in the case of U(n,Fq2).

Theorem 3.1. The conjugacy classes Kµ of Gn are parameterized by µ ∈ PΦ
n and

the conjugacy classes K̃γ of Un are parameterized by γ ∈ PΦ̃
n .

Let Cn and C̃n be the rings of C-valued class functions ofGn and Un, respectively,
and let

C =
⊕
n

Cn and C̃ =
⊕
n

C̃n.

For ζ1 ∈ Ci and ζ2 ∈ Cj , we define ζ1 · ζ2 to be the class function obtained by
parabolic induction, so that ζ1 · ζ2 is obtained by inflating ζ1 ⊗ ζ2 from Gi ×Gj to
the corresponding parabolic subgroup, and then inducing to Gi+j . Then we have
ζ1 · ζ2 ∈ Ci+j .

For β1 ∈ C̃i and β2 ∈ C̃j , we define β1 ◦ β2 to be the class function obtained by
Deligne-Lusztig induction, so that β1 ◦ β2 = R

Ui+j
Ui×Uj (β1 ⊗ β2) ∈ C̃i+j (see one of

[8, 11, 5] for a definition of Deligne-Lusztig induction).
Now, C and C̃ are graded C-algebras with respect to the products · and ◦,

respectively. The rings C and C̃ are endowed with the natural inner product for
class functions, where Ci and Cj , respectively C̃i and C̃j , are mutually orthogonal
if i 6= j. This is explained in detail in [28, Chapter IV] in the Gn case and in both
[10] and [36] in the Un case.

Let κµ ∈ Cn be the indicator class function for the conjugacy class Kµ of
Gn, where µ ∈ PΦ

n , and similarly let κ̃γ ∈ C̃n be the indicator class function for
the conjugacy class K̃γ of Un. Note that the κµ and κ̃γ are bases of C and C̃,
respectively. We let aµ and ãγ denote the orders of the centralizers of elements in
the conjugacy classes Kµ and K̃γ , respectively.

We now define two rings of symmetric functions in order to describe the irre-
ducible characters of Gn and Un. We refer to [28, Chapter I] for basic definitions and
notions in symmetric function theory. For each f ∈ Φ, we let {X(f)

i | i > 0} = X(f)

be an infinite set of indeterminates, and similarly for each h ∈ Φ̃, we have the set
of independent variables {X̃(h)

i | i > 0} = X̃(h). Let pn(X) denote the n-th power
sum symmetric function in the set of variables X. Define also for each ϕ ∈ Θ
a set of variables {Y (ϕ)

i | i > 0} = Y (ϕ), and for each ϑ ∈ Θ̃ a set of variables
{Ỹ (ϑ)

i | i > 0} = Ỹ (ϑ). We relate symmetric functions in the X(f) variables and
the Y (ϕ) variables, and symmetric functions in the X̃(h) and the Ỹ (ϑ) variables,
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through the following transforms:

(1) pn(Y (ϕ)) = (−1)n|ϕ|−1
∑

α∈ḠFn|ϕ|1

ξ(α)pn|ϕ|/|fα|(X
(fα)),

where α ∈ fα and ξ ∈ ϕ for fα ∈ Φ and ϕ ∈ Θ, and

(2) pn(Ỹ (ϑ)) = (−1)n|ϑ|−1
∑

α∈ḠF̃n|ϑ|1

ξ(α)pn|ϑ|/|hα|(X̃
(hα)),

where α ∈ hα and ξ ∈ ϑ for hα ∈ Φ̃ and ϑ ∈ Θ̃. If a is not a positive integer, the
power symmetric function pa is defined to be 0. We note that these equations do
not depend on the choice of ξ from the F -orbit ϕ or the F̃ -orbit ϑ.

For µ = (µ1, µ2, . . .) ∈ P, we define n(µ) =
∑
i(i − 1)µi, and for µ ∈ PX , we

define n(µ) =
∑
x∈X |x|n(µ(x)). For µ ∈ PΦ and γ ∈ PΦ̃, let

Pµ = q−n(µ)
∏
f∈Φ

Pµ(f)(X(f); q−|f |) and P̃γ = (−q)−n(γ)
∏
h∈Φ̃

Pγ(h)(X̃(h); (−q)−|h|),

where Pλ(X; t) denotes the Hall-Littlewood symmetric function. Now let

Λn = C-span{Pµ | µ ∈ PΦ
n } and Λ̃n = C-span{Pγ | γ ∈ PΦ̃

n }.

The two rings of symmetric functions defined by

Λ =
⊕
n

Λn and Λ̃ =
⊕
n

Λ̃n

are graded C-algebras with graded product given by ordinary multiplication of
symmetric functions. We define hermitian inner products on Λ and Λ̃, respectively,
by letting

〈Pµ1
, Pµ2

〉 = δµ1µ2
a−1

µ1
and 〈P̃γ1

, P̃γ2
〉 = δγ1γ2

ã−1
γ1
,

and extending. For λ ∈ PΘ and ν ∈ PΘ̃, we define

sλ =
∏
ϕ∈Θ

sλ(ϕ)(Y (ϕ)) and s̃λ =
∏
ϑ∈Θ̃

sλ(ϑ)(Ỹ (ϑ)),

where sλ(Y ) denotes the Schur symmetric function in the set of variables Y .
The following theorem, in the case of the general linear groups, is due to Green

[21]. In the case of the unitary groups, this theorem was originally a conjecture of
Ennola [15], and after progress of Hotta, Springer, Lusztig, and Srinivasan [23, 27],
it was finally proved in full generality by Kawanaka [26].

Theorem 3.2. Define maps ch : C → Λ and c̃h : C̃ → Λ̃ by letting ch(κµ) =
Pµ and c̃h(κ̃γ) = P̃γ , and extend linearly. Then ch and c̃h are both isometric
isomorphisms of graded C-algebras.

For λ ∈ PΘ and ν ∈ PΘ̃, define the class functions

χλ = ch−1(sλ) and ψν = c̃h
−1

((−1)b||ν||/2c+n(ν)s̃ν).

Then
{χλ | λ ∈ PΘ

n } and {ψν | ν ∈ PΘ̃
n }

are the sets of irreducible complex characters of Gn and Un, respectively.
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Let χλ(µ) and ψν(γ) denote the values of the characters χλ and ψν on the
conjugacy classes Kµ and K̃γ , respectively. Then Theorem 3.2 implies that we
have

(3) (−1)b||ν||/2c+n(ν)s̃ν =
∑

γ∈PΦ̃

ψν(γ)P̃γ ,

and a similar expansion for the characters of Gn.
Let ϕ ∈ Θ and ϑ ∈ Θ̃, and suppose that ϕ and ϑ are the F -orbit and F̃ -orbit,

respectively, of ξ ∈ K̂×. Define ϕ and ϑ to be the F -orbit and F̃ -orbit, respectively,
of ξ−1 = ξ. Note that |ϕ| = |ϕ| and |ϑ| = |ϑ|. For λ ∈ PΘ and ν ∈ PΘ̃, define λ
and ν, respectively, by

λ(ϕ) = λ(ϕ) and ν(ϑ) = ν(ϑ).

For an element v ∈ Λ or Λ̃, we define v to be the element of Λ or Λ̃ obtained
when conjugating the coefficients of v when expanding in terms of the Pµ or P̃γ ,
respectively.

Part (i) of the next result is stated in [4, 1.1.1], where a proof is not given, but
is indicated to come from the machinery in [28, Chapter IV] as we have developed
it here. We give the proof of only part (ii) below.

Lemma 3.1. (i) Let λ ∈ PΘ. Then χλ = χλ.
(ii) Let ν ∈ PΘ̃. Then ψν = ψν .

Proof. (i): The same as the proof of (ii), with appropriate changes made.
(ii): From Equation (3), it is enough to show that s̃ν = s̃ν . Through several changes
of basis, we keep track of what happens to coefficients when expanding s̃ν in terms
of the P̃γ . We have

s̃ν =
∏
ϑ∈Θ̃

sν(ϑ)(Ỹ (ϑ)) =
∏
ϑ∈Θ̃

sν(ϑ)(Ỹ
(ϑ)) =

∏
ϑ∈Θ̃

sν(ϑ)(Ỹ (ϑ)).

For a partition ρ = (ρ1, ρ2, . . . , ρ`) ∈ P, we define the power symmetric function pρ
as pρ = pρ1pρ2 . . . pρ` . Recall that the irreducible characters and conjugacy classes
of the symmetric group Sn on n letters are both parameterized by partitions of
n. Denote the irreducible character of Sn corresponding to the partition ν, where
|ν| = n, by ων , and denote the value of this character on an element of cycle-type
ρ, where |ρ| = n, by ων(ρ). Recall that all of the values of ων are integers. Let
zρ be the size of the centralizer of an element of cycle-type ρ. From the change
of basis from Schur functions to power symmetric functions, given in [28, Proof of
I.7.6], we have

(4) s̃ν =
∏
ϑ∈Θ̃

∑
ρ

ων(ϑ)(ρ)
zρ

pρ1(Ỹ (ϑ))pρ2(Ỹ (ϑ)) · · · pρ`(Ỹ (ϑ)).

Now we change each power symmetric function in the Ỹ variables to power sym-
metric functions in the X̃ variables using the transform in Equation (2). If ξ ∈ ϑ,
then we take ξ−1 = ξ as the representative of ϑ in the transform, and we make use
of the fact that |ϑ| = |ϑ|. We thus have the change of basis

(5) pρi(Ỹ
(ϑ)) = (−1)ρi|ϑ|−1

∑
α∈ḠF̃ρi|ϑ|1

ξ(α)pρi|ϑ|/|hα|(X̃
(hα)),
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where α ∈ hα and hα ∈ Φ̃. Finally, we may expand power symmetric functions in
the X̃ variables in terms of Hall-Littlewood symmetric functions in the X̃ variables.
For this change of basis, we have coefficients involving Green’s polynomials Qγρ(q).
It follows from the basis change given in [28, III.7.1 and 7.8] that we have

(6) pk(X̃(h)) =
∑
γ(h)

Q
γ(h)
(k) ((−q)|h|)(−q)−|h|n(γ(h))Pγ(h)(X̃(h); (−q)−|h|),

where the coefficients are all rational, by the comment at the beginning of [28,
III.7]. Note that in the change of bases in (4), (5), and (6), the only coefficients
when expanding in terms of the P̃γ which are not real occur in (5), with coefficients
of the form ξ(α). If we performed the same changes of basis to expand s̃ν , everything
would be exactly the same, except these coefficients in (5) would change to ξ(α).
So, when expanding s̃ν in terms of P̃γ , we obtain the expansion for s̃ν , except with
the coefficients conjugated. Therefore s̃ν = s̃ν . �

It follows immediately from Lemma 3.1 that an irreducible character χλ of Gn
(or ψν of Un) is real-valued if and only if λ = λ (or ν = ν). The next result gives
a natural bijective correspondence between real-valued irreducible characters of Gn
and real-valued irreducible characters of Un using this combinatorial information.
For ξ ∈ K̂×, let [ξ]F denote the F -orbit of ξ and let [ξ]F̃ denote the F̃ -orbit of ξ.

Theorem 3.3. Let λ ∈ PΘ
n such that λ = λ. Define r(λ) ∈ PΘ̃

n by r(λ)([ξ]F̃ ) =
λ([ξ]F ). Then the map r is well-defined, and r(λ) = r(λ). The map defined by

R : χλ 7→ ψr(λ)

is a bijection between real-valued irreducible characters of Gn and real-valued irre-
ducible characters of Un.

Proof. We have that λ([ξ]F ) = λ([ξ−1]F ) for every ξ ∈ K̂×. Also, for any ξ ∈ K̂×
we have

(7) [ξ]F ∪ [ξ−1]F = [ξ]F̃ ∪ [ξ−1]F̃ .

We have r(λ)([ξ]F̃ ) = λ([ξ]F ) and r(λ)([ξ−1]F̃ ) = λ([ξ−1]F ), and it follows from
(7) that r is well-defined and r(λ) = r(λ).

From Lemma 3.1, it follows that R maps real-valued irreducible characters of Gn
to real-valued irreducible characters of Un. From (7), λ and r(λ) may be viewed
as the same partition-valued functions on the unions of orbits [ξ]F ∪ [ξ−1]F , and it
follows that R is a bijection. �

4. Regular characters, semisimple characters, and duality

Let G be a finite group and N a normal subgroup of G. If ξ is a generalized
character of G, define TG/N (ξ) by

TG/N (ξ) =
1
|N |

∑
n∈N

ξ(ng).

Now let Ḡ be a connected reductive group over F̄q which is defined over Fq
and which has connected center, and let F be a Frobenius map. (We note that
this notation slightly conflicts with that used in Section 2 but are confident that no
confusion should arise.) Let W be the Weyl group of Ḡ, where W = 〈si | i ∈ I〉, and
let ρ be the permutation of the indexing set I which is induced by the action of the
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Frobenius map F . For any ρ-stable subset J ⊆ I, let P̄J be the parabolic subgroup
of Ḡ corresponding to WJ = 〈sj | j ∈ J〉, and let ŪJ be the unipotent subgroup. Let
PJ = P̄FJ and UJ = ŪFJ be the corresponding parabolic and unipotent subgroups of
the finite group G = ḠF . Define the following operator ∗ on the set of generalized
characters of G:

ξ∗ =
∑
J⊆I

ρ(J)=J

(−1)|J/ρ|(TPJ/UJ (ξ))G.

As stated in [5, Chapter 8], the definition of the operator ∗ and its properties
are due to Curtis [7], Kawanaka [25], and Alvis [1, 2, 3]. A proof of the following
theorem is given in [5, Section 8.2].

Theorem 4.1 (Curtis, Alvis, Kawanaka). The map ξ 7→ ξ∗ is an order 2 isometry
of the generalized characters of G, so that ξ∗∗ = ξ and 〈ξ, η〉 = 〈ξ∗, η∗〉 for all
generalized characters ξ, η of G.

The following is immediate from the definition of the map ∗.
Lemma 4.1. The map ∗ commutes with complex conjugation. That is, for any
generalized character ξ of G, we have (ξ)∗ = ξ∗.

Let p = char(Fq), and suppose now that p is a good prime for Ḡ (see, for example,
[5, Section 1.14] for a definition). Then we may define a semisimple character of G
to be an irreducible character χ of G such that χ(1) is not divisible by p. Recall
that the Gelfand-Graev character of G, which we will denote by Γ, is the character
of the representation obtained by inducing a non-degenerate linear character from
the unipotent subgroup of G up to G (see [5, Section 8.1] for a full discussion).
A regular character of G is defined as an irreducible character of G which appears
as a constituent of Γ. It is well known that the Gelfand-Graev character has a
multiplicity free decomposition into irreducible characters of G.

The map ∗ gives a duality between the regular characters and semisimple char-
acters of G. A proof of the following may be found in [5, Section 8.3].

Theorem 4.2. If χ is a regular character of G, then χ∗ = ±ψ, where ψ is a
semisimple character of G. If ψ is a semisimple character of G, then ψ∗ = ±χ,
where χ is a regular character of G.

It follows immediately from Lemma 4.1 that the duality given by ∗ in Theorem
4.2 behaves well when restricted to real-valued characters, as given in the next
result.

Corollary 4.1. The number of real-valued semisimple characters of G is equal to
the number of real-valued regular characters of G.

Now let us restrict our attention to the cases of the finite general linear group,
Gn = GL(n,Fq), and the finite unitary group, Un = U(n,Fq2). The exact decom-
positions of the Gelfand-Graev characters of these groups are known, and we give
them in terms of the parameterization of characters given in Section 3. For any
partition λ ∈ P, define the length of λ, `(λ), to be the number of non-zero parts of
λ. Let λ ∈ PX , where X = Φ,Θ, Φ̃, or Θ̃. Define the height of λ, written ht(λ), as

ht(λ) = max{`(λ(x)) | x ∈ X}.
The decompositions given in the next theorem essentially follow from the more
general work of Deligne and Lusztig in [8], and specific proofs are given for Gn in
[39] and for Un in [30].
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Theorem 4.3. Let Γ and Γ̃ be the Gelfand-Graev characters of Gn and Un, re-
spectively. Then the decompositions into irreducibles of Γ and Γ̃ are

Γ =
∑

λ∈PΘ
n

ht(λ)=1

χλ and Γ̃ =
∑

ν∈PΘ̃
n

ht(ν)=1

ψν .

We now count the number of real-valued regular and semisimple characters of
the groups of interest.

Theorem 4.4. Let Gn = GL(n,Fq) and Un = U(n,Fq2). Then:

the number of real-valued regular characters of Gn
=the number of real-valued regular characters of Un
=the number of real-valued semisimple characters of Gn
=the number of real-valued semisimple characters of Un

=


2qm if q is odd and n = 2m+ 1 is odd,
qm + qm−1 if q is odd and n = 2m is even,
qbn/2c if q is even.

Proof. First, from Corollary 4.1, the number of real-valued regular characters is
equal to the number of real-valued semisimple characters in Gn and in Un. From
Lemma 3.1 and Theorem 4.3, a real-valued regular character of Gn is of the form
χλ, where ht(λ) = 1 and λ = λ. Applying the bijection R given in Theorem
3.3 to χλ, we obtain some ψν , where r(λ) = ν ∈ PΘ̃

n satisfies ν = ν. Since the
bijection r defined in the proof of Theorem 3.3 does not change the length of any
partition, then ν also has the property that ht(ν) = 1. So, ψν is a real-valued
regular character of Un, and the map R gives a bijection between the real-valued
regular characters of Gn and those of Un, and the four quantities of interest are all
equal.

It is therefore enough to count the number of λ ∈ PΘ
n such that ht(λ) = 1 and

λ = λ. For such a λ, we have for each ϕ ∈ Θ such that λ(ϕ) is non-empty, λ(ϕ)
consists of exactly one part, and λ(ϕ) = λ(ϕ). From the Remark at the beginning
of Section 3, there is a (non-canonical) bijection between Θ and Φ which preserves
sizes of orbits, so we may count the µ ∈ PΦ

n such that ht(µ) = 1 and µ = µ.
The set Φ is in bijection with monic irreducible polynomials in Fq[t] with non-zero
constant, and so for f ∈ Φ, we may view f as the polynomial in Fq[t] whose roots
in F̄q are the reciprocals of those in f .

Now, if µ ∈ PΦ
n and ht(µ) = 1, we may think of µ as a collection of monic

irreducible polynomials with non-zero constant, {fi}, with a single positive integer
ei associated with each, such that∑

i

eideg(fi) = n.

Furthermore, since µ = µ, each fi satisfies either f i = fi or the number ei associ-
ated with fi is equal to that associated with f i. This means that the polynomial

f =
∏
i

feii

satisfies f = f , where f denotes the polynomial in Fq[t] whose roots are the recipro-
cals of those of f . In fact, such polynomials can always be factored into irreducibles
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in such a way that each factor fi either satisfies f i = fi, or fi occurs with the same
power as that of f i. So, the µ ∈ PΦ

n such that ht(µ) = 1 and µ = µ are in one-to-
one correspondence with monic polynomials f ∈ Fq[t] with non-zero constant such
that f = f and deg(f) = n.

Let f ∈ Fq[t], where

f = tn + an−1t
n−1 + · · ·+ a1t+ a0, a0 6= 0.

Then we have

f = a−1
0 tnf(t−1) = tn + a−1

0 a1t
n−1 + · · ·+ a−1

0 an−1t+ a−1
0 .

If f = f , then we must have a2
0 = 1 and an−i = a−1

0 ai for 1 ≤ i < n. If q is
odd and n = 2m + 1 is even, then we may choose a0 = ±1, and we may choose
ai, for 1 ≤ i ≤ m, to be any of q elements in Fq, and then an−i must be a−1

0 ai,
giving a total of 2qm polynomials. If q is odd and n = 2m is even, then for a0 = 1,
we may choose ai, for 1 ≤ i ≤ m, to be any element in Fq, while an−i = ai for
1 ≤ i ≤ m−1, giving qm polynomials. If we let a0 = −1, then ai, for 1 ≤ i ≤ m−1,
may be any element in Fq, while am = −am implies am must be 0, and an−i = ai
for 1 ≤ i ≤ m − 1, giving qm−1 polynomials, and a total of qm + qm−1. Finally, if
q is even, then we must have a0 = 1, and we may choose ai, for 1 ≤ i ≤ bn/2c, to
be any of q elements in Fq, while the other coefficients are then set, giving qbn/2c

polynomials. �

We note that there are formulas for the degrees of irreducible characters of Gn
and Un, and these could be used to count the number of real-valued semisimple char-
acters of these groups directly. However, giving the decomposition of Gelfand-Graev
characters seems to be more straightforward, and the duality given in Corollary 4.1
is very relevant to theme of the main results.

5. Reality properties and centralizers

We let G+
n = Gn〈τ〉 and U+

n = Un〈τ〉. All the elements of the group G+
n are real,

as we noted in [19]. The proof of this fact depends critically on a property of the
group Gn, namely, that all real elements are strongly real, where a strongly real
element is one that is inverted by an involution. As we shall see, not all elements of
U+
n are real, and this non-reality phenomenon is related to the fact that not all real

elements of Un are strongly real. We propose therefore to investigate the question
of whether or not a real element of Un is strongly real. It is the set of unipotent
elements that plays the key role in what follows.

Proposition 5.1. Let x be a regular unipotent element in Un. Then x is not
strongly real if n is even and q is odd, or if n is odd and q is even (note that x is
real in all cases).

Proof. Let V be a vector space of dimension n over Fq2 on which x acts, and let
f : V × V → Fq2 be a non-degenerate hermitian form preserved by x. As we
shall prove the results by induction on n, we first establish the starting cases. We
therefore assume first that n = 2 and q is odd. In this case V has a basis consisting
of vectors u and v which satisfy

xu = u+ v, xv = v.
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Since x is an isometry of f , we have

f(u, v) = f(xu, xv) = f(u+ v, v) = f(u, v) + f(v, v),

which implies that f(v, v) = 0.
Let s be any involution acting on V which inverts x. Since v spans the unique

one-dimensional space fixed by x, it follows that sv = ±v, and replacing s by −s
if necessary, we may assume that sv = v. It follows in a straightforward manner
that, since q is odd, su = −u. Suppose now that s is an isometry of f . Then we
have

f(u, v) = f(su, sv) = f(−u, v) = −f(u, v).
Again, since the underlying field has odd characteristic, we obtain f(u, v) = 0.
But the two equalities f(u, v) = f(v, v) = 0 imply that v is in the radical of f ,
contradicting the non-degeneracy of f . It follows that x is not strongly real in U2.

Next, we examine the case that n = 3 and q is even. V has a basis consisting of
vectors u, v and w which satisfy

xu = u+ v, xv = v + w, xw = w.

Let s be any involution acting on V which inverts x. An elementary calculation,
whose details we omit, shows that

su = u+ av + bw, sv = v + cw, sw = w,

where a, b and c are elements of Fq2 with either a = 0, c = 1 or a = 1, c = 0. Now
since x is an isometry of f , the equality f(v, w) = f(xv, xw) yields that f(w,w) = 0.
Similarly, we have

f(u,w) = f(xu, xw) = f(u+ v, w) = f(u,w) + f(v, w)

and hence f(v, w) = 0. We now observe that f(u,w) 6= 0, for otherwise we have

f(u,w) = f(v, w) = f(w,w) = 0,

which is impossible, since it implies that w is in the radical of f . Next, we observe
that

f(u, v) = f(xu, xv) = f(u+ v, v + w) = f(u, v) + f(u,w) + f(v, v)

and deduce that f(v, v) = f(u,w) 6= 0.
Suppose now that s is an isometry of f . Then we must have

f(u, v) = f(su, sv) = f(u+ av + bw, v + cw) = f(u, v) + cqf(u,w) + af(v, v),

since f(v, w) = f(w, v) = f(w,w) = 0. This implies that cqf(u,w) = af(v, v).
But as we already know that ac = 0 and f(v, v) = f(u,w) 6= 0, we deduce that
a = c = 0. This contradicts our earlier observation that one of a and c is 1. Hence,
s is not an isometry of f , and consequently x is not strongly real in U3.

We proceed to the general case where either n ≥ 4 is even and q is odd or n ≥ 5 is
odd and q is even, and assume that our desired result holds for spaces of dimension
n− 2. In this case, we can find elements v and w in V with

xv = v + w, xw = w.

A previous argument implies that f(w,w) = 0. Let W be the one-dimensional
subspace of V spanned by w and let W⊥ be the subspace of V orthogonal to W
(with respect to f). Then W is contained in W⊥, since f(w,w) = 0. Furthermore,
it is a general fact that f induces a non-degenerate hermitian form f1, say on
W⊥/W , which is a space of dimension n − 2 over Fq2 . Since x maps both W and
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W⊥ into themselves, it has an induced action as a regular unipotent element x1,
say, on W⊥/W , where it preserves f1.

Finally, suppose it is possible that x is inverted by an involutory isometry s of f .
Then, since W is the unique one-dimensional subspace of V fixed by x, s must also
fix W and hence also leaves W⊥ invariant. We therefore have an induced action
of s on W⊥/W as an involutory isometry, s1 say, of f1, and s1 inverts the regular
unipotent element x1. The induction hypothesis eliminates this possibility and we
have a contradiction. It follows that s is not an isometry of f and x is not strongly
real in Un. �

Having shown that certain unipotent elements are not strongly real, we turn
to showing that in some sense most real elements of Un are strongly real. The
approach we take is somewhat indirect and relies on the property of orthogonal
groups that all their elements are strongly real.

We first recall that there is a one-to-one correspondence between the real classes
in Gn and the real classes in Un [20, Theorem 3.8]. The correspondence is defined
in the following way. Given a real conjugacy class in Gn, the conjugacy class in
GL(n,Fq2) which contains this class is of course real, and, using the Lang-Steinberg
theorem, we can show that this conjugacy class in GL(n,Fq2) intersects Un in a
unique conjugacy class, which is also real.

Conversely, given a real conjugacy class in Un, the conjugacy class in GL(n,Fq2)
which contains this class is also real, and it intersectsGn in a unique conjugacy class,
which is real. Since the real conjugacy classes of Gn are determined by properties
of the elementary divisors of elements, we can specify unique real conjugacy classes
of Un by the same sets of elementary divisors, and vice versa.

We also need to make the following observation. Suppose that we have a non-
degenerate symmetric bilinear form of dimension n over Fq, where q is odd. Then
we may extend this form to a non-degenerate hermitian form over Fq2 , and any
isometry of the symmetric form may be extended to an isometry of the hermitian
form. Consequently, we can embed any orthogonal group O(n,Fq) into Un.

Likewise, a non-degenerate alternating bilinear form of dimension 2m over Fq,
where q is even, may extended to a non-degenerate hermitian form of the same
dimension over Fq2 , and we may then embed Sp(2m,Fq) into U2m (this is also true
if q is odd, but we will not make use of this embedding).

Proposition 5.2. Let x be a real element in Un. Then x is strongly real in either
of the following cases:

(a) q is odd and each elementary divisor of x of the form (t±1)2m occurs with even
multiplicity;

(b) q is even, n is even, and each elementary divisor of x of the form (t+ 1)2m+1

occurs with even multiplicity.

Proof. By the earlier discussion, x determines a unique real conjugacy class of Gn
with the same elementary divisors. Let z be an element of this conjugacy class
of Gn. Then, in case (a), z is conjugate to an element of some orthogonal group
O(n,Fq) by [37, p.38, Case C, part (i)]. Thus we may consider z as an element of
O(n,Fq), and it is strongly real in this group by a theorem of Wonenburger [38].
Since we may embed O(n,Fq) into Un, we see that Un has a strongly real conjugacy
class with the same elementary divisors as z, and thus the same as those of x. This
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conjugacy class is the same as that of x, since the elementary divisors determine
the conjugacy class, and hence x is strongly real.

In case (b), we use [37, p.36, Case B, part (i)], together with the fact that all
elements of Sp(2m,Fq) are strongly real when q is even [13] to achieve the desired
result. �

We are confident that Proposition 5.2 is also a necessary condition for the strong
reality of a real element of Un. We will not investigate this matter further here,
but note that any progress will involve generalizing considerably the ideas involved
in Proposition 5.1.

We proceed to examine the reality problem for elements of the coset Unτ in the
group U+

n . We begin with some general principles of linear algebra.
Let x be an element of GL(n,L), where L is an arbitrary field. We say that x is

cyclic if x acts as a cyclic endomorphism on the underlying n-dimensional vector
space over L. We note that if x acts indecomposably on the underlying vector space,
it is cyclic, and furthermore, that x is cyclic if and only if its minimal polynomial
equals its characteristic polynomial. Finally, if x is cyclic, its centralizer consists of
polynomials in x.

It is a theorem of Frobenius [24, Theorem 66] that x is conjugate to x′ by a
symmetric element, that is, there is an element s of GL(n,L) with s = s′ and

s−1xs = x′.

We will require the following consequence of Frobenius’s theorem.

Lemma 5.1. Let x be a cyclic element of GL(n,L) and let w be an element of
GL(n,L) which satisfies

w−1xw = x′.

Then w is symmetric.

Proof. We know from Frobenius’s theorem that a symmetric element s exists sat-
isfying s−1xs = x′. It follows that w = cs, where c centralizes x. Now c is a
polynomial in x, as x is cyclic, and hence, since s satisfies s−1xs = x′, we have
s−1cs = c′ also. Finally, we see that

w′ = sc′ = cs = w,

and thus w is symmetric. �

Let yτ be an element of U+
n and let g = (yτ)2. Then we have g = y(y′)−1 and

hence
y−1gy = (y′)−1y = (g′)−1.

Since g and g′ are conjugate in the underlying general linear group, it follows from
[37, p.34, Case A, part (ii)] that g is a real element of Un. In the case that g is
strongly real, we can prove that yτ is also strongly real under suitable hypotheses,
as we show below.

Proposition 5.3. Let yτ be an element of U+
n and let g = (yτ)2. Suppose that g

is cyclic and inverted by an involution π in Un. Then π inverts yτ and hence yτ is
strongly real in U+

n .
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Proof. As we observed above,

y−1gy = (y′)−1y = (g′)−1.

It follows that
y−1π−1gπy = g′.

Thus, since g is cyclic by hypothesis, Lemma 5.1 implies that πy is symmetric,
which translates into

πy = y′π′.

We now want to prove that

π−1(yτ)π = (yτ)−1 = τ−1y−1 = y′τ.

This amounts to showing that
π−1yπ′ = y′.

But this equality holds since πy = y′π′ and π is an involution. Hence yτ is inverted
by π. �

Corollary 5.1. Let yτ be an element of U+
n and let g = (yτ)2. Suppose that g is

cyclic. Then yτ is strongly real under either of the following hypotheses:
(a) q is odd and g has no elementary divisor of the form (t+ 1)2m;
(b) q is even, n is even, and g has no elementary divisor of the form (t+ 1)2m+1.

Proof. As we noted earlier, g is certainly real. Suppose first that q is odd. In this
case [37, Theorem 2.3.1] shows that any elementary divisor of g of the form (t−1)2m

occurs with even multiplicity. Now since g is cyclic by hypothesis, its elementary
divisors occur with multiplicity 0 or 1, and we deduce that g has no elementary
divisors of the form (t − 1)2m. Furthermore, since g has no elementary divisors of
the form (t + 1)2m by hypothesis, g is strongly real by Proposition 5.2, and hence
yτ is strongly real by Proposition 5.3. If we are in case (b), g is again strongly
real by Proposition 5.2 and correspondingly, yτ is also strongly real by Proposition
5.3. �

While Corollary 5.1 gives some information about (strong) reality of elements of
U+
n in the coset Unτ , it turns out to be relatively straightforward to show that all

elements of Un are strongly real in U+
n . We begin by proving an analogue for Un of

the theorem of Frobenius described earlier. Note that in our model of the unitary
group Un, if x ∈ Un, then x′ ∈ Un.

Lemma 5.2. Let x be an element of Un. Then there exists a symmetric element s
in Un with s−1xs = x′.

Proof. We have observed earlier that x and x′ are certainly conjugate in Un. Sup-
pose first that x is cyclic. Lemma 5.1 implies that any element which conjugates x
into x′ is symmetric, and this proves the lemma in this case.

In the general case, let V be the underlying vector space of dimension n over
Fq2 on which x acts, and let f : V × V → Fq2 be a non-degenerate hermitian form
preserved by x. The results of Wall show that V is a direct sum of subspaces Vi,
say, which are orthogonal with respect to f and x-invariant. Moreover, x either acts
indecomposably on the subspace Vi, or Vi is a direct sum of two totally isotropic
indecomposable x-invariant subspaces and the minimal polynomials of the actions
of x on the two summands are relatively prime.
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Let ni be the dimension of Vi and let xi be the element of Uni induced by the
action of x on Vi. Then xi is cyclic and hence conjugate to x′i in Uni by a symmetric
element in this group, by the argument above. It is then straightforward to see that,
since x is conjugate in Un to an orthogonal direct sum of the xi, it is also conjugate
to its transpose by a symmetric element in Un. �

Corollary 5.2. Each element x of Un is strongly real in U+
n .

Proof. Let s be a symmetric element in Un satisfying s−1xs = x′, whose existence
is assured by Lemma 5.2. Then we may easily check that sτ is an involution which
inverts x. �

We turn to the investigation of some specific elements in G+
n and U+

n .

Lemma 5.3. Suppose that q is odd. Then the following hold.
(a) If n is odd, then there is an element x ∈ Gn such that (xτ)2 is regular unipotent,
and there is an element y ∈ Un such that (yτ)2 is regular unipotent. The element
yτ is strongly real in U+

n .
(b) If n is even, there there is an element x ∈ Gn such that (xτ)2 = −u, where
u ∈ Gn is regular unipotent, and there is an element y ∈ Un such that (yτ)2 = −v,
where v ∈ Un is regular unipotent.

Proof. We consider case (a) first. Since a regular unipotent element in Gn has
the single elementary divisor (t − 1)n, it follows from [37, Theorem 2.3.1] that
there is an element x ∈ Gn such that (xτ)2 is regular unipotent (note that, in
Wall’s terminology, multipliers in this context are precisely elements of the form
(xτ)2). Now let φ be the map of conjugacy classes described in Lemma 2.2 and let
φ[xτ ] = [yτ ]. Lemma 2.3 shows that (xτ)−2 and (yτ)2 are conjugate in GL(n,K),
and this implies that (yτ)2 is also regular unipotent. That yτ is strongly real follows
from Corollary 5.1.

The proof in case (b) is similar, since if u is regular unipotent, −u has the single
elementary divisor (t+1)n and hence is a multiplier by Wall’s theorem. This implies
the existence x ∈ Gn such that (xτ)2 = −u. Lemma 2.3 then implies the existence
y ∈ Un such that (yτ)2 = −v, where v is regular unipotent in Un. �

We note that when q is even and when n is odd, there are also elements xτ ∈ G+
n

and yτ ∈ U+
n such that (xτ)2 and (yτ)2 are regular unipotent in Gn and Un,

respectively. Such elements are explicitly given in Section 7.

Lemma 5.4. Let n = 2m + 1 and q both be odd, and x ∈ Gn be an element such
that (xτ)2 is regular unipotent. Then

|CG+
n

(xτ)| = 4qm.

Proof. Clearly, we have
|CG+

n
(xτ)| = 2|CGn(xτ)|.

We set u = (xτ)2 and note then that ux′ = x. We observed in the Introduction
that the centralizer of xτ in Gn is identical with the isometry group of the the
bilinear form, b say, defined by x. Now in our case x+ x′ = (u+ 1)x′ is symmetric
and invertible, since u + 1 is invertible, and hence determines a non-degenerate
symmetric bilinear form, f say. Furthermore, u is an isometry of f . Fulman and
Guralnick observe in [17, p.386] that the isometry group of b is identical with the
centralizer of u in the isometry group of f , which in this case is the orthogonal
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group O(2m + 1,Fq). Since by [37, p.38, Case C, part (iv)], this centralizer has
order 2qm, we obtain the desired result. �

Corollary 5.3. Let n = 2m+ 1 and q both be odd, and let y be an element in Un
such that (yτ)2 is regular unipotent. Then we have

|CU+
n

(yτ)| = 4qm.

Proof. We know that y exists from Lemma 5.3 and the formula for the order of the
centralizer follows from Lemma 2.4 and Lemma 5.4. �

6. Character values

Let χ is an irreducible complex character of a finite group G. Recall that the
Frobenius-Schur indicator, ε(χ), takes the value 1 if the representation correspond-
ing to χ may be realized over the real field, −1 if χ is real-valued but the corre-
sponding representation cannot be realized over the real field, and 0 if χ is not
real-valued. The following result on Frobenius-Schur indicators is proven in [19] for
the case of Gn and G+

n , and in [36] in the cases for Un and U+
n .

Theorem 6.1. Let G+
n and U+

n be the semidirect product of Gn and Un by the
transpose inverse automorphism, respectively. We have the following:

(1) Let θ be a real-valued character of Gn. Then ε(θ) = 1, and θ has two
extensions χ and χ′ to G+

n such that ε(χ) = ε(χ′) = 1.
(2) Let θ be a character of Un such that ε(θ) = 1. Then θ has two extensions

χ and χ′ to U+
n such that ε(χ) = ε(χ′) = 1.

(3) Let θ be a character of Un such that ε(θ) = −1. Then θ has two extensions
χ and χ′ to U+

n such that ε(χ) = ε(χ′) = 0.

Except possibly when n and q are both even, the group Un has irreducible
characters θ such that ε(θ) = −1, and Theorem 6.1, part (3), above says that when
we extend such θ to U+

n , some of the character values will not be real. The following
result tells us that these values are purely imaginary (and all other values are 0).

Lemma 6.1. Let N be a normal subgroup of index 2 of some finite group G. Let
θ be a real-valued irreducible character of N which is invariant under conjugation
by elements in G. Let χ be an extension of θ to G, and suppose that χ is not
real-valued. Then for every g ∈ G \N , χ(g) is either 0 or purely imaginary.

Proof. We have θG = χ + σχ, where σ is the sign character of G/N . Since θG

is real-valued, χ̄ is a constituent of θG, but χ 6= χ̄ since χ is not real-valued, so
χ̄ = σχ. For g ∈ G \ N , σ(g) = −1, and so χ̄(g) = −χ(g), hence χ(g) = 0 or is
purely imaginary. �

We may immediately apply Lemma 6.1 to see that the real-valued irreducible
characters of Frobenius-Schur indicator −1 of Un vanish on many elements of Unτ
when they are extended to U+

n .

Corollary 6.1. Let θ be an irreducible character of Un such that ε(θ) = −1, and
let χ be an extension of θ to U+

n . Then χ(gτ) = 0 for any real element gτ of the
coset Unτ in U+

n .
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Proof. Certainly, θ is real-valued, but from Theorem 6.1, part (3), χ is not real-
valued. From Lemma 6.1, χ(gτ) is either 0 or purely imaginary. But gτ is a real
element by hypothesis and so χ(gτ) must be a real number. This implies that
χ(gτ) = 0. �

As in Section 4, let Ḡ be a connected reductive group over F̄q which is defined
over Fq and which has connected center, let F be a Frobenius map, and let G = ḠF .
Also assume that p = char(Fq) is a good prime for Ḡ, and recall that a semisimple
character of G is an irreducible character with degree prime to p. We note that if
Ḡ = GL(n, F̄q), then every prime is a good prime for Ḡ. Green, Lehrer, and Lusztig
[22] found that the character values of G on a regular unipotent element of G can
only be 0, 1, or −1, and are congruent to the character degree modulo p, as stated
in the next result.

Theorem 6.2 (Green, Lehrer, Lusztig). Let χ be an irreducible character of G, let
u ∈ G be a regular unipotent element, and let p = char(Fq). If χ(1) is prime to p,
then χ(u) = ±1, and otherwise χ(u) = 0. Also,

χ(1) ≡ χ(u) (mod p).

Our main result in Theorem 6.3 below may be viewed as a generalization of
Theorem 6.2 to the groups G+

n and U+
n . Before giving this result we first prove the

following.

Lemma 6.2. Let χ be a character of G+
n or U+

n which is an extension of a real-
valued semisimple character of Gn or Un, respectively. Let α ∈ Gal(Q̄/Q). Then
χα = α ◦ χ is a character of G+

n or U+
n which is an extension of a real-valued

semisimple character of Gn or Un, respectively.

Proof. The proof is the same in either case. Let χ be such a character of G+
n , and

let χ|Gn denote restriction to Gn. First note that we have

(χα)|Gn = (χ|Gn)α.

Now, since χ|Gn is an irreducible character, so is (χ|Gn)α, and so (χα)|Gn is irre-
ducible. This implies that χα is the extension of a real-valued character. Since χ(1)
is prime to p, then so is χα(1) = χ(1), and the result follows. �

Theorem 6.3. Let n = 2m + 1 and q both be odd. Let yτ be an element of G+
n

(or U+
n ) such that (yτ)2 is regular unipotent, and let χ be a character of G+

n (or
U+
n ) which is an extension of a real-valued irreducible character of Gn (or Un).

Then χ(yτ) = ±1 if χ(1) is prime to p, and χ(yτ) = 0 otherwise. Also, for any
irreducible χ of G+

n (or U+
n ),

χ(τ) ≡ ±χ(yτ) (mod p).

Proof. We give the proof in the case of Un and U+
n . The proof for Gn and G+

n is
identical. Let g = yτ ∈ U+

n , so g2 = u ∈ Un is regular unipotent. Let χ1, χ2, . . . , χt,
be the irreducible characters of U+

n which are extended from real-valued semisimple
characters of Un. From Theorems 4.4 and 6.1, we have t = 4qm, where n = 2m+ 1.
Let O be the ring of algebraic integers in Q̄. Let χ be one of the χj . We have

χ(g)2 ≡ χ(g2) (mod 2O),

and from Theorem 6.2, χ(g2) = χ(u) = ±1. So

(8) χ(g)2 ≡ 1 (mod 2O),
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and in particular, χ(g) 6= 0. Now, from the arithmetic-geometric mean inequality,
we have

(9)
1
t

t∑
j=1

|χj(g)|2 ≥
t∏

j=1

|χj(g)|2/t.

From Lemma 6.2, the set {χ1, . . . χt} is a union of Galois orbits, and since χj(g) is
an algebraic integer, we have

t∏
j=1

χj(g) ∈ Z, and so
t∏

j=1

|χj(g)|2/t ≥ 1.

From (9), it follows that

(10)
t∑

j=1

|χj(g)|2 ≥ t = 4qm.

Corollary 5.3 tells us that |CU+
n

(g)| = 4qm, and so by the column orthogonality
relation of characters, we have

(11)
t∑

j=1

|χj(g)|2 ≤ 4qm.

The inequalities (10) and (11) together tell us that for every j, we have |χj(g)| = 1,
and if χ is any other irreducible character of U+

n , then χ(g) = 0. From Lemma 5.3,
χj(g) is real, and so we have χj(g) = ±1.

For the second statement, first consider the case Gn. Since (yτ)2 = u is regular
unipotent, then

(
(yτ)p

k)2 = I for some k, where I is the identity matrix. This
implies that (yτ)p

k

= sτ for some symmetric matrix s ∈ Gn, since for any g ∈ Gn,
gsτg−1 = gsg′τ . So, from the classification of symmetric bilinear forms, and since n
is odd, we have sτ is conjugate to either τ or dIτ , where d is some non-square in Fq.
If (yτ)p

k

is conjugate to τ , then we have χ(τ) ≡ χ(yτ) (mod p) for any irreducible
χ of G+

n . If (yτ)p
k

is conjugate to dIτ , let χ be an irreducible character of G+
n which

is extended from a real-valued irreducible of Gn (otherwise, χ(yτ) = χ(τ) = 0). Let
Π be the representation of G+

n with character χ. Then Π(dIτ) = Π(dI)Π(τ), and
since Π restricted to Gn has real-valued character, then its central character on Gn
takes only the values ±1. Since dI is in the center of Gn, then Π(dI)Π(τ) = ±Π(τ).
So, χ(dIτ) = ±χ(τ). Now we have χ(τ) ≡ ±χ(yτ) (mod p).

In the case Un, again we have (yτ)p
k

= sτ for some k, and for some symmetric
s in Un. The conjugacy classes in Unτ of order 2 are again in correspondence with
Un-equivalence classes of symmetric matrices in Un, and by Theorem 2.1 there are
exactly two such classes, since there are two such classes in Gn. It follows from the
classification of symmetric bilinear forms, the fact that n is odd, and the definition
of Un, that these two classes are represented by I and bI, where b is an element
of M = {a ∈ Fq2 | aq+1 = 1} which is not the square of an element of M . Thus,
sτ is conjugate to either τ or bIτ , and by the same argument as above, for any
irreducible χ of U+

n , we have χ(τ) ≡ ±χ(yτ) (mod p). �

The next result follows directly from Theorems 6.3 and 6.2.
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Corollary 6.2. Let χ be an irreducible character of G+
n (or U+

n ) which is an
extension of a real-valued irreducible of Gn (or Un). Then

χ(1)− χ(τ) ≡ ±2 or 0 (mod p).

We now show that there is no direct analogue of Theorem 6.3 in the even di-
mensional case for Un. Suppose that q is odd and n is even, and let u be a regular
unipotent element in Un. We showed in Proposition 5.1 that u is real but not
strongly real in Un. We also noted in [18], in the discussion before Theorem 4.4,
that there exists a real-valued irreducible character θ of Un with ε(θ) = −1 and
θ(u) 6= 0. It follows from Theorem 6.2 that p does not divide θ(1) and θ(u) = ±1.

By Theorem 6.1, θ extends to an irreducible character χ of U+
n which is not

real-valued. We also know by Lemma 5.3 that there is an element y ∈ Un with
(yτ)2 = −u. We show next that χ(yτ) is a non-zero purely imaginary complex
number.

Theorem 6.4. Let n be even and q odd, and let u be a regular unipotent element
in Un. Let yτ be an element of U+

n such that (yτ)2 = −u and let θ be a real-valued
irreducible character of Un of degree prime to p for which ε(θ) = −1. Let χ be an
extension of θ to an irreducible character of U+

n . Then χ(yτ) is a non-zero purely
imaginary complex number. Hence yτ is not real.

Proof. We first observe that our remarks above show that there exist characters
θ with the stated property. Let g = yτ ∈ U+

n , so that g2 = −u ∈ Un is regular
unipotent. Let O be the ring of algebraic integers in Q̄. As in the proof of Theorem
6.3, we have

χ(g)2 ≡ χ(g2) (mod 2O),
and from Theorem 6.2,

χ(g2) = χ(−u) = ±θ(u) = ±1.

Hence
χ(g)2 ≡ 1 (mod 2O),

and in particular, χ(g) 6= 0. It follows from Corollary 6.1 that χ(g) is a non-zero
purely imaginary complex number and hence g = yτ is not real. �

On the basis of examining examples, we conjecture that if n = 2m, there are qm−1

characters θ satisfying the hypothesis of Theorem 6.4, and if χ is an extension of
θ, then χ(yτ) = ±

√
−q. Examples also suggest that there should be corresponding

irreducible characters ψ of G+
n , extended from real-valued characters of Gn, such

that ψ(xτ) = ±√q, where (xτ)2 = −u and u is regular unipotent in Gn.

7. Characteristic two

In this section we apply the theory of Gelfand-Graev characters of disconnected
reductive groups, due to Sorlin [32, 33], to obtain results on extended character
values when our finite field has characteristic 2. The reference [32] is a summary of
the main results of the theory of Gelfand-Graev characters of disconnected groups,
while [33] contains all proofs for the statements. We first establish that our partic-
ular example fits the general framework of the theory of Sorlin.

Let Ḡn = GL(n, F̄q), where q is a power of 2. Define the automorphism σ on Ḡ
by σ(g) = w0(g′)−1w0, where g′ denotes transpose as before, and w0 is the element
with 1’s on the antidiagonal and 0’s elsewhere. We let F be the standard Frobenius
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map, but now we define F̃ by F̃ = F ◦ σ. Note that this Frobenius map differs
from the F̃ defined earlier as it includes conjugation by w0, but it follows from the
Lang-Steinberg Theorem that ḠF̃n is isomorphic to the finite unitary group Un as
defined before. The automorphism σ commutes with F and F̃ , and so σ is rational
with respect to these Frobenius maps. We let Ḡn〈σ〉 denote the semidirect product
of Ḡ by σ, making Ḡn〈σ〉 a disconnected reductive group. Note that if τ is the
transpose inverse automorphism, then since w0 ∈ Ḡn, we have Ḡn〈σ〉 = Ḡn〈τ〉.
The unipotent elements of this group are described in [34, I.2.7], and in particular,
σ is unipotent. Also note that σ stabilizes the standard Borel subgroup and its
maximal torus in Ḡ, since we have conjugated by w0. It follows from [12, Cor.
1.33] that σ is a rational quasi-central automorphism of Ḡ.

The theory in [32, 33] now allows us to define Gelfand-Graev characters of the
groups ḠFn 〈σ〉 and ḠF̃n 〈σ〉. If N̄ is the standard unipotent subgroup of Ḡn, we note
that N̄ is fixed under F , F̃ , and σ. Let N denote either N̄F or N̄ F̃ , which are the
standard unipotent subgroups of ḠFn = Gn and ḠF̃n

∼= Un, respectively, and let G
denote either ḠFn or ḠF̃n . Since char(Fq) = 2, there exist σ-fixed non-degenerate
linear characters of N , and these are exactly the real-valued non-degenerate linear
characters ofN . Choose one of these characters θ, and extend it to a linear character
θ+ of N〈σ〉 such that θ+(σ) = 1, which is possible since θ is real-valued. The
Gelfand-Graev character Γ of G〈σ〉 is defined as (see [33, Prop. 5.1])

Γ = IndG〈σ〉N〈σ〉(θ
+).

Now note that if n = 2m is even, then Ḡσ ∼= Sp(2m, F̄q), and if n = 2m+ 1 is odd,
then Ḡσ ∼= O(2m+ 1, F̄q) ∼= Sp(2m, F̄q). Then Ḡσ has semisimple rank m = bn/2c,
and Z(Ḡσ) consists of only the identity, and in particular is connected. From [33,
Cor. 8.12], it follows that there is a unique Gelfand-Graev character of G〈σ〉, and
so Γ does not depend on the linear character θ. From [33, Prop. 6.1], the character
Γ of G〈σ〉 is multiplicity-free, and its restriction to G is exactly the Gelfand-Graev
character ΓG of G.

Consider the set of complex-valued G-class functions on the coset Gσ. Define an
inner product on such functions by

(12) 〈α, β〉Gσ =
1
|G|

∑
xσ∈Gσ

α(xσ)β(xσ).

A duality operation on these class functions, much like the duality discussed in
Section 4 of this paper, is defined in [12, Def. 3.10], and we will use the notation α∗

for the dual of α. By [12, Cor. 3.12], the operation ∗ is an isometric involution with
respect to the inner product (12). Denote by ΓGσ the Gelfand-Graev character of
G〈σ〉 restricted to Gσ, and let ΞGσ = Γ∗Gσ. Let 〈·, ·〉 and 〈·, ·〉G denote the standard
inner products on class functions of G〈σ〉 and G, respectively.

Lemma 7.1. Let χ be an irreducible character of G〈σ〉 extended from a σ-stable
irreducible character of G, and let χGσ be the restriction of χ to Gσ. Then we have

〈χGσ,ΞGσ〉Gσ = ±1 or 0.

Proof. We have

〈χ, χ〉 = 〈χG, χG〉G = 〈χGσ, χGσ〉Gσ = 1.
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Define χ∗ to be the class function on G〈σ〉 such that χ∗ restricted to Gσ is χ∗Gσ, and
χ∗ restricted to G is χ∗G, where the latter ∗ denotes the duality operation defined
in Section 4. We have

〈χ∗, χ∗〉 =
1
2
〈χ∗G, χ∗G〉G +

1
2
〈χ∗Gσ, χ∗Gσ〉Gσ = 1,

and so ±χ∗ is an irreducible character of G〈σ〉. We have

〈χ∗,Γ〉 = 〈χ∗G,ΓG〉G = ±1 or 0,

since both Γ and ΓG are multiplicity free. Finally, we have

〈χGσ,ΞGσ〉Gσ = 〈χ∗Gσ,ΓGσ〉 = 2〈χ∗,Γ〉 − 〈χ∗G,ΓG〉G = ±1 or 0. �

It follows from [33, Thm. 8.4(ii)] and the fact that ∗ is an isometry that

〈ΓGσ,ΓGσ〉Gσ = 〈ΞGσ,ΞGσ〉Gσ = qbn/2c.

We note that this also follows from our Theorem 4.4, as we now explain. If ψ is
an irreducible character of G which is a constituent of ΓG, consider ψ induced to
G〈σ〉, which we denote by ψG〈σ〉. We have

〈Γ, ψG〈σ〉〉 = 〈ΓG, ψ〉G = 1.

So, if ψ is a real-valued character, then ψG〈σ〉 = ψ1 + ψ2, where ψ1 and ψ2 are
irreducible extensions of ψ to G〈σ〉, and so exactly one of these extensions of ψ to
G〈σ〉 is a constituent of Γ. If ψ is not real-valued, then ψ is also a constituent of Γ
since Γ is real-valued, and ψG〈σ〉 is an irreducible character of G〈σ〉 which is ψ+ψ
on G and 0 on Gσ. Thus, 〈Γ,Γ〉 is equal to the number of real-valued constituents
of ΓG plus half the number of constituents of ΓG which are not real-valued. From
Theorem 4.4, we now have

〈ΓGσ,ΓGσ〉Gσ = 2〈Γ,Γ〉 − 〈ΓG,ΓG〉G = qbn/2c.

The definition of a regular unipotent element in a disconnected reductive group
is given in [34, I.4.8], and it follows from that section that all regular unipotent
elements of Ḡn〈σ〉 are conjugate. From [34, Prop. II.10.2], all regular unipotent
elements of Ḡn〈σ〉 are of the form vσ with v ∈ Ḡn. A rational regular unipotent
element of ḠFn 〈σ〉 (or ḠF̃n 〈σ〉) is a regular unipotent element of Ḡn〈σ〉 which is fixed
under the Frobenius map F (or F̃ ). The result [34, Prop. II.10.2] can be used to
give explicit regular unipotent elements in Ḡnσ. If m = bn/2c, then vσ is regular
unipotent, where vii = 1 for 1 ≤ i ≤ n, vi,i+1 = 1 for 1 ≤ i ≤ m, and vij = 0
otherwise. These are in fact rational regular unipotent elements in ḠFnσ, where if n
is odd, (vσ)2 is regular unipotent in Gn, and if n is even, (vσ)2 is unipotent of type
(n − 1, 1) in Gn. It follows that all of the rational regular unipotent elements in
ḠFnσ are conjugate. Applying Theorem 2.1, we obtain exactly one conjugacy class
of rational regular unipotent elements in ḠF̃nσ as well.

It follows from [33, Thm. 3.6] that

(13) the number of rational regular unipotent elements in Gσ is
|G|
qbn/2c

.

We note that given the description of rational regular unipotent elements above,
we can also count the number of such elements in ḠFnσ using [17, Thm. 3.3] and
apply Theorem 2.1 to find that this is also the number of such elements in ḠF̃nσ.
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Proposition 7.1. Let G denote either ḠFn = Gn or ḠF̃n ∼= Un. Let vσ be a regular
unipotent element in Gσ. For any irreducible character χ of G〈σ〉, χ(vσ) = ±1 or
0.

Proof. From [33, Cor. 8.12], ΞGσ takes the value qbn/2c on regular unipotent ele-
ments and 0 elsewhere. Let χ be any irreducible of G〈σ〉. Applying (13) and the
fact that the rational regular unipotent elements in Gσ are all conjugate, we have

〈χGσ,ΞGσ〉Gσ =
1
|G|

∑
vσ regular
unipotent

χ(vσ)ΞGσ(vσ)

=
1
|G|

|G|
qbn/2c

χ(vσ)qbn/2c = χ(vσ).

From Lemma 7.1, we have χ(vσ) = ±1 or 0. �

Finally, we obtain the characteristic 2 version of Theorem 6.3.

Theorem 7.1. Let n = 2m + 1 be odd and q be even. Let yτ be an element of
G+
n = Gn〈τ〉 (or U+

n = Un〈τ〉) such that (yτ)2 is regular unipotent, and let χ be a
character of G+

n (or U+
n ) which is an extension of a real-valued irreducible character

of Gn (or Un). Then χ(yτ) = ±1 if χ(1) is odd, and χ(yτ) = 0 if χ(1) is even.
Also, χ(yτ) ≡ χ(τ) (mod 2) for any irreducible χ of G+

n (or U+
n ).

Proof. Since σ = w0τ , and w0 ∈ Gn, we have G+
n = Gn〈σ〉. Since w0 ∈ ḠF̃n , we

have ḠF̃n 〈σ〉 = ḠF̃n 〈τ〉, and since ḠF̃n
∼= Un, we have ḠF̃n 〈σ〉 ∼= U+

n . When n is
odd, the regular unipotent elements of ḠFn 〈σ〉 (or ḠF̃n 〈σ〉) correspond exactly to the
elements of G+

n (or U+
n ) of the form yτ such that (yτ)2 = u is regular unipotent in

Gn (or Un). If χ is an irreducible of G+
n (or U+

n ) which is extended from a real-
valued irreducible character, then we know from Proposition 7.1 that χ(yτ) = ±1
or 0. From Theorem 6.2, we know that χ(u) = ±1 when χ(1) is odd and χ(u) = 0
when χ(1) is even. Since we have

χ(yτ)2 ≡ χ(u) (mod 2O),

and χ(yτ) = ±1 or 0, then we must have χ(yτ) = ±1 when χ(1) is odd and
χ(yτ) = 0 when χ(1) is even. Since τ2 = 1, then χ(τ) is an integer such that

χ(τ)2 ≡ χ(1) (mod 2).

It follows that χ(yτ) ≡ χ(τ) (mod 2). �
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