
Group Actions

Math 415B/515B

The notion of a group acting on a set is one which links abstract algebra
to nearly every branch of mathematics. Group actions appear in geometry,
linear algebra, and differential equations, to name a few. For this reason
we will study them for a bit while taking a break from ring theory. Some
of this material is covered in Chapter 7 of Gallian’s book, but we will take
a slightly more general approach. The applications to conjugacy classes of
finite groups appear in Chapter 25 of Gallian, and Chapter 29 of Gallian has
applications of group actions to geometry and symmetry.

Let G be a group and let X be a set. Let Sym(X) denote the group of
all permutations of the elements of X. So, if X is a finite set and |X| = n,
then Sym(X) ∼= Sn. We will give two equivalent definitions of G acting on X.

Definition 1. We say that G acts on X if there is a homomorphism
φ : G→ Sym(X).

One way of thinking of G acting on X is that elements of the group G
may be “applied to” elements of X to give a new element of X. The next
definition takes this point of view.

Definition 2. We say that G acts on X if there is a map

· : G×X → X,

so that if g ∈ G and x ∈ X, then g · x ∈ X, such that:
(i) For every g, h ∈ G, x ∈ X, we have (gh) · x = g · (h · x),
(ii) For every x ∈ X, e · x = x, where e ∈ G is the identity.

Before giving examples, we need to show that the two above definitions ac-
tually define the same notion.
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Theorem 1 Definition 1 and Definition 2 are equivalent.

Proof. First assume that G and X satisfy Definition 1, so that we have a
homomorphism φ : G → Sym(X). We now show that G and X must also
then satisfy Definition 2. We define a map · : G×X → X by g ·x = φ(g)(x).
First, for every g, h ∈ G, x ∈ X, using the fact that φ is a homomorphism,
we have

(gh) · x = φ(gh)(x) = (φ(g) ◦ φ(h))(x) = φ(g)(φ(h)(x)) = g · (h · x),

so that · satisfies condition (i) of Definition 2. Also, since φ is a homomor-
phism, φ(e) is the trivial permutation, where e ∈ G is the identity element.
So e · x = φ(e)(x) = x, which is condition (ii) of Definition 2. Thus G and
X satisfy Definition 2.

Now suppose G and X satisfy Definition 2, so that we have a map

· : G×X → X

which satisfies (i) and (ii). We define a map φ : G→ Sym(X) by φ(g)(x) =
g · x. We first show that this is well-defined, that is, φ(g) is actually a one-
to-one and onto map from X to itself. To show that φ(g) is onto, let x ∈ X,
and consider g−1 · x ∈ X. Then we have

φ(g)(g−1 · x) = g · (g−1 · x) = (gg−1) · x = e · x = x,

so φ(g) is onto. To show that φ(g) is one-to-one, suppose that we have
φ(g)(x) = φ(g)(y) for x, y ∈ X, so that g · x = g · y. Using both conditions
(i) and (ii) of Definition 2, we have

g−1 · (g · x) = g−1 · (g · y)⇒ (g−1g) · x = (g−1g) · y ⇒ e · x = e · y ⇒ x = y.

Finally, we show that φ is a homomorphism. Let g, h ∈ G, x ∈ X. We have

φ(gh)(x) = (gh) · x = g · (h · x) = φ(g)(φ(h)(x)) = (φ(g) ◦ φ(h))(x).

Thus, G and X satisfy Definition 1. �

Now that we have a few ways of thinking about group actions, let’s see
some examples.

2



Example 1. As mentioned before, we may take X = {1, 2, . . . , n},
G = Sn = Sym(X), and φ : Sn → Sn to be the identity map.

Example 2. Let X = Rn and G = GL(n,R), and for A ∈ G, v ∈ X,
define A · v = Av. That is, we let G act on X as linear transformations.

Example 3. Let X be a unit cube sitting in R3, and let G be the group of
symmetries of X, which acts on X again as linear transformations on R3.

Example 4. Let X be a group H, and let G also be the same group
H, where H acts on itself by left multiplication. That is, for h ∈ X = H and
g ∈ G = H, define g ·h = gh. This action was used to show that every group
is isomorphic to a group of permutations (Cayley’s Theorem, in Chapter 6
of Gallian’s book).

Before defining more terms, we’ll first see a nice application to finite group
theory.

Theorem 2 Let G be a finite group, and let H be a subgroup of G such that
[G : H] = p, where p is the smallest prime dividing |G|. Then H is a normal
subgroup of G.

Proof. We let X be the set of left cosets of H in G. From a Corollary of
Lagrange’s Theorem, we have |X| = [G : H] = p, and so Sym(X) ∼= Sp. We
define an action of G on X by g · aH = gaH, for g ∈ G and aH ∈ X. That
is, we let G act on the left cosets of H in G by left multiplication. To check
that this satisfies Definition 2 is immediate, since for any g1, g2, a ∈ G, we
have (g1g2) · aH = g1g2aH and e · aH = aH. From Theorem 1, and since
Sym(X) ∼= Sp, we have a homomorphism φ : G→ Sp.

For any g ∈ G, g 6∈ H, we have g · H = gH 6= H, and so φ(g) cannot
be the trivial permutation of left cosets of H in G, that is, g 6∈ ker(φ) when
g 6∈ H. We must therefore have ker(φ) ≤ H. From the first isomorphism
theorem for groups, we have G/ker(φ) ∼= im(φ), where im(φ) is a subgroup
of Sp. So we have

|G|
|ker(φ)|

= |G/ker(φ)|
∣∣∣|Sp| = p!.

Note that p is the largest prime dividing p!, while p is the smallest prime
dividing |G|. Since ker(φ) ≤ H and H is a proper subgroup of G, we cannot
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have G = ker(φ), that is, [G : ker(φ)] 6= 1. The only possibility is that
|G/ker(φ)| = [G : ker(φ)] = p, since this is the only divisor of |G| which
divides p!. We now have

[G : ker(φ)] =
|G|
|ker(φ)|

= p = [G : H] =
|G|
|H|

,

so that |H| = |ker(φ)|. Since ker(φ) ⊆ H, we must have H = ker(φ), which
is a normal subgroup of G. �

We now define a few important terms relevant to group actions.

Definition 3. Let G be a group which acts on the set X. For x ∈ X, the
stabilizer of x in G, written stabG(x), is the set of elements g ∈ G such that
g · x = x. In symbols,

stabG(x) = {g ∈ G | g · x = x}.

For x ∈ X, the orbit of x under G, written orbG(x), is the set of all
elements in X of the form g · x for g ∈ G. In symbols,

orbG(x) = {g · x | g ∈ G}.

Example 5. Let G = {(1), (1 2), (3 4 6), (3 6 4), (1 2)(3 4 6), (1 2)(3 6 4)},
and let φ : G→ S6, φ(α) = α, be the natural injection, as G is a subgroup of
S6. Then G acts on {1, 2, 3, 4, 5, 6}. First note that since 5 is fixed by every
element of G, we have stabG(5) = G, and orbG(5) = {5}. We also have

stabG(3) = stabG(4) = stabG(6) = 〈(1 2)〉, stabG(1) = stabG(2) = 〈(3 4 6)〉,

orbG(3) = orbG(4) = orbG(6) = {3, 4, 6}, orbG(1) = orbG(2) = {1, 2}.

Example 6. Let G be any group, and we let G act on itself by conjugation.
That is, for g, a ∈ G, we define g ·a = gag−1. We first check that this satisfies
Definition 2. First, we have e · a = eae−1 = a. Now let g, h, a ∈ G. Then we
have

(gh) · a = gha(gh)−1 = ghah−1g−1 = g · (h · a),

so this is indeed a group action. If we fix an a ∈ G, we see that the orbit of
a is

orbG(a) = {gag−1 | g ∈ G},
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which we’ve seen before defined as the conjugacy class of a in G. If we look
at the stabilizer of a in G, we have

stabG(a) = {g ∈ G | gag−1 = a},

which we’ve also seen before defined as the centralizer of a in G, also written
CG(a). We’ve shown that the centralizers of elements in G are subgroups of
G, and the next Lemma shows us that stabilizers of group actions are always
subgroups.

Lemma 1 If G acts on X, and x ∈ X, then stabG(x) is a subgroup of G.

Proof. Let x ∈ X. Since e · x = x, we know that e ∈ stabG(x), and so
the stabilizer of x in G is nonempty. Now suppose g, h ∈ stabG(x). Since
g · x = x, we have

g−1 · (g · x) = g−1 · x⇒ (g−1g) · x = g−1 · x⇒ e · x = g−1 · x⇒ g−1 · x = x.

So, g−1 ∈ stabG(x). We also have

(gh) · x = g · (h · x) = g · x = x,

so gh ∈ stabG(x). Thus stabG(x) ≤ G. �

The next result is the most important basic result in the theory of group
actions.

Theorem 3 (Orbit-Stabilizer Lemma) Suppose G is a finite group which
acts on X. For any x ∈ X, we have

|G| = |stabG(x)| |orbG(x)|.

Proof. Fix x ∈ X. From Lemma 1, stabG(x) is a subgroup of G, and
it follows from Lagrange’s Theorem that the number of left cosets of H =
stabG(x) in G is [G : H] = |G|/|H|. Let K denote the set of left cosets of H
in G. Define a function

f : orbG(x)→ K,

by f(g ·x) = gH. First, we check that f is well-defined, and at the same time
check that f is injective. If g1, g2 ∈ G, g1 · x = g2 · x ∈ orbG(x) if and only if
(g−1

2 g1) · x = x, iff g−1
2 g1 ∈ stabG(x) = H, which is equivalent to g2H = g1H.
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So g1 · x = g2 · x if and only if f(g1 · x) = f(g2 · x), and f is well-defined and
injective. It is immediate that f is onto, since for any gH ∈ K, f(g ·x) = gH.

Now, f gives a one-to-one correspondence between elements of orbG(x)
and the left cosets of stabG(x) in G. Thus, these are equal in number, and
we have

|orbG(x)| = |K| = |G|
|stabG(x)|

,

which gives the desired result. �

There are several examples of the Orbit-Stabilizer Lemma applied to groups
of symmetries of geometric objects given in Chapter 7 of Gallian, which you
should read. The following application comes from Example 6 above, and
appears in Chapter 25 of Gallian.

Theorem 4 (Class Formula) Let G be a finite group, let Z(G) be the cen-
ter of G, and let A be a collection of distinct representatives of conjugacy
classes of G which are not in Z(G). Then we have

|G| = |Z(G)|+
∑
a∈A

[G : CG(a)].

Proof. For any x ∈ G, let cl(x) denote the conjugacy class of x in G. From
Example 6 above, we let G act on itself by conjugation, and for any x ∈ G,
we have orbG(x) = cl(x), and stabG(x) = CG(a). From Theorem 3, we have,
for each x ∈ G,

|cl(x)| = |G|/|CG(x)| = [G : CG(x)].

We showed in Math 415A that the relation of elements being conjugate in
G is an equivalence relation, and so conjugacy classes form a partition of G.
So, the union of distinct conjugacy classes of G gives G. Let B be a set of
representatives of distinct conjugacy classes of G, and we have

|G| =
∑
b∈B

|cl(b)| =
∑
b∈B

[G : CG(b)]. (1)

We also know that b ∈ Z(G) exactly when gbg−1 = b for every g ∈ G, which
happens exactly when |cl(b)| = 1. So,

∑
z∈Z(G) |cl(z)| = |Z(G)|. If we choose

A to be a set of representatives of conjugacy classes which are not in Z(G),
splitting (1) into a sum over Z(G) and a sum over A gives the result. �
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PROBLEMS:

1. Let p be prime, let Fp = Z/pZ, and let G be the following subgroup of
GL(2,Fp):

G =

{(
1 a
0 1

) ∣∣ a ∈ Fp

}
.

Let X = F2
p be the set of 2× 1 vectors with entries from Fp, that is,

F2
p =

{(
x
y

) ∣∣ x, y ∈ Fp

}
.

(a): For g ∈ G and v ∈ X, define g · v = gv, where gv is matrix-vector
multiplication. Show that this satisfies Definition 2 of a group action.
(b): Show that for every v ∈ X, we have |orbG(v)| = 1 or p.

(c): If v =

(
x
y

)
, show that stabG(v) = G if and only if y = 0.

2. Let G be a group which acts on a set X, and for x, y ∈ X, define x ∼ y if
there is a g ∈ G such that g · x = y. Prove that ∼ is an equivalence relation
on X, and the equivalence class of x ∈ X is orbG(x).

3. Let G be a finite group such that |G| = pk, for some prime p and integer
k ≥ 1. Use Theorem 4 to show that the center of G is nontrivial, that is,
that Z(G) contains more than just the identity element e.

4. Use Problem 3 above and Theorem 9.3 in Gallian to show that any
group of order p2, where p is prime, is abelian.
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