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Abstract

The duplication of a cube and the trisection of an angle are two of the most famous geometric construction
problems formulated in ancient Greece. In 1837 Pierre Wantzel (1814–1848) proved that the problems cannot
be constructed by ruler and compass. Today he is credited for this contribution in all general treatises of the
history of mathematics. However, his proof was hardly noticed by his contemporaries and during the following
century his name was almost completely forgotten. In this paper I shall analyze the reasons for this neglect and
argue that it was primarily due to the lack of importance attributed to such impossibility results at the time.
� 2009 Elsevier Inc. All rights reserved.
Resumé

Terningens fordobling og vinklens tredeling er to af de mest berømte geometriske konstruktionsproblemer
formuleret i det antikke Gr�kenland. I 1837 beviste Pierre Wantzel (1814–1848) at problemerne ikke kan
konstrueres med passer og lineal. I vore dage omtales dette bevis i alle generelle matematikhistorier. Men i hans
samtid blev Wantzel’s bevis overset, og i det efterfølgende århundrede gik hans navn stort set i glemmebogen.
I denne artikel skal jeg analysere hvorfor beviset blev overset, og jeg skal argumentere for at det prim�rt
skyldes at den slags umulighedsresultater ikke blev tillagt større betydning i begyndelsen af 1800-tallet.
� 2009 Elsevier Inc. All rights reserved.
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1. Introduction

This paper has a twofold aim. On the one hand, it tells a story of the reception of one
particular mathematical result, namely, the proof of the impossibility of constructing the
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duplication of the cube and the trisection of the angle by ruler and compass. On the other
hand, it is a contribution to our understanding of the thorough conceptual changes that
mathematics underwent during the 19th century.

I shall begin by establishing that Pierre Wantzel’s proof of the impossibility of two of the
three classical problems remained virtually unknown for a century after its publication in
1837. The neglect of a mathematical result does not in itself pose a historical problem that
needs an explanation. After all, the majority of results published in mathematical journals
and books are more or less overlooked and never make it into the treatises of the history of
mathematics. However, in the case of Wantzel’s proof, there are good reasons that we
would have expected his paper to have been noticed by his contemporaries and successors.
Though the classical construction problems were not at the center stage of mathematical
research during the early 19th century, they were certainly well known. The quadrature
of the circle was the most celebrated of the problems, but the duplication of the cube
and the trisection of the angle enjoyed so much fame that one would have expected
Wantzel’s resolution of them to have made an impression on the mathematical community.
However, that did not happen until a century later when Wantzel began to be generally
acknowledged as the first person to have solved the problems.

Thus, the reception of Wantzel’s proof raises two historical problems: 1. Why was
Wantzel’s proof initially overlooked? and 2. Why was it rediscovered and made prominent
later on? I shall mainly discuss the first of these questions, but at the end of the paper I shall
address the second question as well.

2. Neglect and rediscovery of Wantzel’s proof

At the occasion of the centenary of the École Polytechnique in 1894, A. de Lapparent
wrote a short biography of the Parisian mathematician Pierre Laurent Wantzel (1814–
1848). It began with the words “Wantzel, in the eyes of the world, is forgotten” [Lapparent,
1895, 133]. Indeed, if one consults 19th- and early 20th-century treatises on the history of
mathematics or mathematical works discussing the classical problems, one will not find any
mention of Wantzel or his impossibility proof.

Some histories of mathematics, such as those of Arneth [1852], Cajori [1893], Cantor
[1898–1908], and Smith [1923–1925], discussed the classical problems without mentioning
their impossibility with ruler and compass. Other treatises, such as that of Hankel [1874],
emphasized the impossibility problem, but they did not refer to any proofs of impossibility.
In the works after 1880 one can distinguish two different ways of dealing with the history
of the impossibility question: Some writers, such as Fink [1890, 161–162], Rudio [1892, iii],
Adler [1906, 267], Ball[1893, 38], Sturm [1917, 15–16], and Sanford [1930], referred to Fer-
dinand Lindemann’s proof [Lindemann, 1882] of the transcendence of p and the resulting
impossibility of the quadrature of the circle, but left the history of the impossibility of the
other two classical problems somewhat vague or ascribed them to Gauss [1801, §365]. A
late and extreme example of this type of treatment is Coolidge [1940, 53], who ascribed
the impossibility proof of all three classical problems to Lindemann. Another strand of
works explicitly or implicitly referred to the impossibility proofs contained in Klein’s
Vorträge über ausgewählte Fragen der Elementargeometrie [1895] or to the only reference
regarding the matter given in that work, namely Julius Petersen’s algebra book [1877].
Works in this tradition include those of Sturm [1895, 134], Enriques [1907, 129 and its sec-
ond edition 1923, 140], Smith [1906, 65], and Dickson [1911] [see also Dickson, 1914].
Probably Zeuthen [1896, 75] also implicitly referred to his friend and colleague Petersen
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when he declared that the impossibility of solving the classical problems with ruler and
compass had been proven “in recent times.” Even the otherwise very well informed and
complete Encyclopädie der mathematischen Wissenschaften only mentioned Wantzel once,
namely in connection with a number-theoretic result. The paper in the Encyclopädie by
Sommer [1914] dealing with the classical problems did not mention Wantzel at all.

In the 19th-century literature dealing with the classical problems, I have only found one
reference to Wantzel’s impossibility proof. This was published in the concluding paragraph
of Petersen’s doctoral thesis of 1871 [Petersen, 1871, 44], in which he presented his
own proof for the first time. I do not know how Petersen found out about Wantzel’s paper.
His own interest in the problem certainly grew out of his earlier interest in geometric
problem-solving, which resulted in his famous book Methods and Theories [Petersen,
1866, 1879]. Petersen’s knowledge of Wantzel is the more surprising because he was
infamous for his neglect of the literature [cf. Lützen et al., 1992, 38]. However, Petersen’s
reference to Wantzel was overlooked by his contemporaries, probably because the doctoral
thesis was written in Danish. As mentioned above, Petersen included an improved version
of the proof in his algebra book [Petersen, 1877, 161–177], and this proof became known
through Klein’s reference to the German translation (the book also appeared in a French
translation). However, in this book there was no reference to Wantzel, so even a historically
informed mathematician such as Klein seems to have remained unaware of Wantzel’s
paper.

In 1906 Max Simon published an account “on the development of elementary geometry
during the 19th century” in which he explicitly gave credit to Wantzel’s “rigorous” proof of
the impossibility of angle trisection by ruler and compass [Simon, 1906, 82]. Simon’s
account was intended as a contribution to the Encyclopädie der mathematischen Wissen-
schaften, but since Simon did not conform to the standards of this work (in particular,
the references were not precise enough), Klein refused to include it in the Encyclopädie.
Instead, Klein arranged for Simon’s account to be published as a supplementary volume
to the yearbook of the Deutsche Mathematiker-Vereinigung. If Simon’s reference to
Wantzel had been published in the Encyclopädie it might have been noticed. Since it was
not, it seems to have been overlooked.

Indeed, in an account of Wantzel’s life and work published in 1918 by Cajori, he stated,
“Quite forgotten are the proofs given by Wantzel of three other theorems of note, viz., the
impossibility of trisecting angles, of doubling cubes, and of avoiding the “irreducible case”
in the algebraic solution of irreducible cubics. For these theorems Wantzel appears to have
been the first to advance rigorous proofs” [Cajori, 1918, 345]. Cajori’s paper published in
the Bulletin of the American Mathematical Society may well have been the primary origin of
the general acknowledgment of Wantzel’s priority in the 20th century. Unfortunately
Cajori did not reveal how he got the idea of writing about this obscure mathematician.

The first encyclopedic work I have found that explicitly refers to Wantzel’s proof is the
new edition of 1934 by Paul Epstein of Heinrich Weber and Josef Wellstein’s Encyclopädie
der Elementarmathematik [Weber and Wellstein, 1934, 443]. The earlier 1909–1915 edition
of that work contained a proof of the impossibility of the two classical problems but no
references to earlier proofs.1 In the 1934 edition Epstein generalized the proof of the pre-
vious edition to a proof similar to that of Petersen and referred to both Petersen and
Wantzel in a footnote. Three years later Johannes Tropfke, in his history of elementary
1 See Weber and Wellstein [1909, 1915]. Vahlen [1911] dealt with the matter in a similar way.
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mathematics, explicitly attributed the priority of the proof of impossibility of the trisection
of an arbitrary angle to Wantzel: “The first rigorous proof that the angle trisection cannot
be done with ruler and compass was given by Wantzel [1837]” [Tropfke, 1937, 125]. Thus, it
was 100 years before Wantzel’s proof found its way into general treatises on the history of
mathematics. From this time on it became commonplace to attribute the impossibility the-
orem to Wantzel. For example, Bell [1940, 77–78] ascribed the proofs of impossibility of the
classical problems to Wantzel and Lindemann. Still, Børge Jessen apparently did not know
about Wantzel’s proof as late as [Jessen, 1943].

My search of the literature is obviously not complete, but still it indicates that Wantzel’s
proof of the impossibility of the two classical problems remained virtually unknown for a
century after its publication. This raises two questions: Why was Wantzel’s proof forgotten
for so long, and why was it rediscovered? I shall turn to the first of these questions.

The history of mathematics is full of contributions that were later acknowledged for their
importance but were overlooked at the time of their publication. In many cases such results
were overlooked because they were published in obscure places or because they were con-
troversial at the time of publication. These reasons are often mentioned in connection with
the initial neglect of Nikolai Ivanovich Lobachevsky’s and János Bolyai’s work on non-
Euclidean geometry or Bernhard Bolzano’s proof of the intermediate value theorem. How-
ever, in the case of Wantzel’s proof, such reasons cannot explain the neglect.

In fact, Wantzel’s proof was published in the second volume (1837) of Liouville’s Journal
de Mathématiques pures et appliquées, which along with Crelle’s Journal was the leading
mathematics journal of the time (indeed the only other specialized mathematics journal
was The Cambridge Mathematical Journal, founded in 1837). Published in Paris, still con-
sidered the mathematical capital of the world, Liouville’s Journal contained papers by most
of the leading French mathematicians and many foreigners as well. So Wantzel’s paper was
in fact published in a place with a very high impact for the day.

And Wantzel’s result was far from controversial. Indeed, at least since Pappus’ work
from late antiquity, the vast majority of mathematicians had believed that the trisection
of an arbitrary angle and the duplication of a cube could not be constructed by ruler
and compass.

3. Was the proof correct? An account of Wantzel’s proof

We should also consider the possibility that Wantzel’s contribution did not become
famous at the time because the proof was considered to be incorrect or incomplete by
his contemporaries. So let us have a closer look at Wantzel’s proof in order to uncover
if it contains elements that would have been objectionable at the time. The following
account or reconstruction of Wantzel’s proof keeps as close as possible to Wantzel’s
own terminology, while at the same time filling in the details that he left out. The amount
of “filling in” can be judged from the fact that Wantzel’s original argument took up about
one-third of the space covered by this reconstruction. Let me list some of the additions and
clarifications I have made in the following account: I have added two lemmas that Wantzel
used without stating. I have made a notational distinction between the value of the princi-
pal unknown of the geometric problem (the line segment we want to construct) and the
other roots of the final equation. Wantzel denoted all roots by the same letter. This is prob-
ably the most confusing of the notational inconveniences in Wantzel’s paper. Moreover,
I have explicitly written the arguments of the various rational functions whereas Wantzel
left out the arguments. I cannot prove that my reconstruction of Wantzel’s proof reflects
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his own train of thought in all details, but it has the advantage that it is in accordance with
Wantzel’s published text.

Wantzel’s paper [1837], as he stated in the title, addressed the general problem: “Recherches
sur les moyens de reconnaı̂tre si un problème de géométrie peut se résoudre avec la règle et le
compas.” His main theorem can be stated as follows:

Main Theorem. The irreducible polynomial (with rationally known coefficients) having a con-
structible line segment x0

n as its root must have a degree that is a power of 2.
His proof can be divided into four parts: 1. First he translated the geometric problem

into an algebraic one. 2. Then he showed how this leads to an equation of degree
2n ðn 2 NÞ. 3. The hard part of the proof “establishes” that this equation is irreducible
under certain assumptions. 4. Finally he showed that the duplication of the cube and the
trisection of the angle lead to irreducible cubic equations. I shall now give a detailed
account of these four parts of the argument.

1. In the first part of the proof he argued that if a problem can be solved by ruler and
compass then “the principal unknown of the problem can be obtained by the resolution
of a series of quadratic equations whose coefficients are rational functions of the givens
of the problem and the roots of the previous equations.” This is a very clear formulation
of the translation from geometry to algebra. Wantzel’s proof is brief and, contrary to mod-
ern proofs, it appeals to trigonometry. He did not formulate or prove the simpler converse
theorem to the effect that successive solvability by quadratic equations implies constructa-
bility with ruler and compass, although some of his later arguments depended on this
converse.

2. He then proved that if an algebraic number is a solution of such a system of quadratic
equations then it is a root in a polynomial of degree 2n ðn 2 NÞ. To this end he assumed
that the principal unknown of the geometrical problem x0

n is the root of the last of a series
of equations

x2
1 þ Ax1 þ B ¼ 0 ð1Þ

x2
2 þ A1x2 þ B1 ¼ 0 ð2Þ

. . .

x2
m þ Am�1xm þ Bm�1 ¼ 0 ðmÞ

x2
mþ1 þ Amxmþ1 þ Bm ¼ 0 ðmþ 1Þ

. . .

x2
n�1 þ An�2xn�1 þ Bn�2 ¼ 0 ðn� 1Þ
x2

n þ An�1xn þ Bn�1 ¼ 0; ðnÞ
where A and B are rational functions of the given quantities p; q; r; . . . , or in modern termi-
nology A;B 2 Qðp; q; r; . . .Þ; A1;B1 are rational functions of the given quantities and a root
x0

1 of the first equation, i.e., A1;B1 2 Qðp; q; r; . . . ; x0
1Þ; and in general Am;Bm 2

Qðp; q; r; . . . ; x0
1; x

0
2; . . . ; x0

m�1; x
0
mÞ.

A rational function of p; q; r; . . . ; x0
1, x0

2; . . . ; x0
m�1; x

0
m can always be written in a very sim-

ple form. Indeed one can eliminate all powers of x0
m higher than the first by using Eq. (m).

Therefore the function can be written in the form

Cm�1x0
m þ Dm�1

Em�1x0
m þ F m�1

;
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where Cm�1;Dm�1; Em�1; F m�1 2 Qðp; q; r; . . . ; x0
1; x

0
2; . . . ; x0

m�1Þ. Multiplying the numerator
and denominator of this fraction by2 Em�1x0

m þ ðAm�1Em�1 � F m�1Þ will reduce it to a stan-
dard form A0m�1x0

m þ B0m�1, where A0m�1;B
0
m�1 2 Qðp; q; r; . . . ; x0

1; x
0
2; . . . ; x0

m�1Þ.
Eq. (n � 1) has two roots, x0

n�1 and x0n�1. Wantzel substituted each of these roots for x0
n�1

in the rational expressions of An�1 and Bn�1 on the lefthand side of the last equation (n) and
multiplied the results by each other. In this way he got a fourth-degree polynomial with
coefficients in Qðp; q; r; . . . ; x0

1; x
0
2; . . . ; x0

n�2Þ. Indeed, the coefficients will be symmetric in
x0

n�1 and x0n�1 and will therefore, by a theorem3 due to Waring [1770, 9–18] and Lagrange
[1770–1771, 371–372] and certainly well known to Wantzel, be rational functions of the
coefficients of the last equation but one (n � 1); i.e., they will be rational functions of
p; q; r; . . . ; x0

1; x
0
2; . . . ; x0

n�2. In the same way, Wantzel replaced x0
n�2 in these rational functions

by the two roots of the previous equation and multiplied the resulting polynomials by each
other to obtain a polynomial of degree 8 with coefficients in Qðp; q; r; . . . ; x0

1; x
0
2; . . . ; x0

n�3Þ.
Continuing in this way, he ended up with a polynomial P ðxÞ of degree 2n with coefficients
in Qðp; q; r; . . .Þ. This equation has x0

n as a root. h

3. Of course any algebraic number is the root of a polynomial of degree a power of 2, so
the above argument does not give any new information as stated. But Wantzel argued that
if one has reduced the number of equations in (1)–(n) to a minimum, then the final polynomial
PðxÞ resulting from the above procedure is irreducible over Qðp; q; r; . . .Þ. This is the main
theorem of Wantzel’s paper that I formulated above.

Until this point Wantzel’s argument has been rather easy to follow, but his proof of the
main theorem is harder. My “filling in” really begins here. In fact the following consider-
ations until Theorem 3 are not found in Wantzel’s paper. I shall for brevity leave out the
known quantities p; q; r; . . . ; assuming that they are themselves rational numbers. This
changes nothing in the argument.

Let us first consider the roots of the polynomial PðxÞ. They can be characterized by a
particular choice x01; x

0
2; x
0
3; . . . ; x0n of roots of the equations (1)–(n). First one chooses a root

x01 of Eq. (1). This root is substituted for x0
1 in the expression of the coefficients A1 and B1 of

Eq. (2). Then one chooses a root x02 of the resulting Eq. (2) and so on. The choice
x0

1; x
0
2; . . . ; x0

n leads to the principal unknown of the geometric problem; other choices lead
to the other 2n roots of P ðxÞ.

With this in mind we can formulate a lemma that is used repeatedly by Wantzel, but not
formulated explicitly in his paper:

Lemma 1. Let x01; x
0
2; x
0
3; . . . ; x0n be a choice of roots of the system (1)–(n) leading to a root x0n of

PðxÞ and let f ðx1; x2; x3; . . . ; xmÞ be a rational function of m variables ðm 6 nÞ. As explained
above, this function applied to x01; x

0
2; x
0
3; . . . ; x0m can be written in the standard form
f ðx01; x02; x03; . . . ; x0mÞ ¼ A0m�1ðx01; x02; x03; . . . ; x0m�1Þx0m þ B0m�1ðx01; x02; x03; . . . ; x0m�1Þ:
Let x001; x
00
2; x
00
3; . . . ; x00n be another choice of roots. Then f ðx001; x002; x003; . . . ; x00mÞ can be written in the

standard form
f ðx001; x002; x003; . . . ; x00mÞ ¼ A0m�1ðx001; x002; x003; . . . ; x00m�1Þx00m þ B0m�1ðx001; x002; x003; . . . ; x00m�1Þ; ð3Þ
2 Wantzel erroneously wrote �Em�1ðAm�1 þ DmÞ þ F m�1.
3 The theorem states that any rational symmetric function in a number of variables can be

expressed as a rational function of the elementary symmetric functions in those variables.
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where A0m�1 and B0m�1 are the same rational functions as in the standard form of
f ðx01; x02; x03; . . . ; x0mÞ but applied to the new series of roots.

Proof. This lemma is an easy consequence of the way we arrived at the standard form. We
made certain reductions of f ðx01; x02; x03; . . . ; x0mÞ using only that x0m is a root of (m) in which
x01; x

0
2; x
0
3; . . . ; x0m�1 are inserted into the rational functions A0m�1 and B0m�1. Precisely the same

reductions applied to f ðx001; x002; x003; . . . ; x00mÞ will of course lead to the standard form (3). h

Another trivial lemma that Wantzel’s proof also uses is the following:

Lemma 2. If one of the solutions of one of the equations (1)–(n) say, the root x0m of Eq. (m), is
a rational function of the roots x01; x

0
2; x
0
3; . . . ; x0m�1 of the previous equations, then the other

conjugate root of this equation (with the same coefficients) will also be a rational function of
x01; x

0
2; x
0
3; . . . ; x0m�1.
Proof. The reason is of course that the only difference between the two solutions is the sign
in front of

ffiffiffiffi

D
p

where D is the discriminant. h

Wantzel’s proof of the irreducibility proceeds in two steps. First he proved the following
result, which I shall state as a theorem:

Theorem 3. If the number of equations in the system (1)–(n) is reduced to a minimum, “then
any of them, say x2

mþ1 þ Amxmþ1 þ Bm ¼ 0, cannot be satisfied by a rational function of the
givens and the roots of the previous equations” [Wantzel, 1837, 367].

This formulation is not entirely clear, but the subsequent proof indicates what I think
Wantzel had in mind. Before giving an account of Wantzel’s proof, I shall indicate a line
of argument that he did not follow: Assume that x0

m is a rational function of x0
1; . . . ; x0

m�1.
Then Eq. (m) can be left out of the system since the coefficients of the subsequent equation
will be rational functions of x0

1; . . . ; x0
m�1.

Wantzel’s proof is much more complicated for the following reason: When he says that
none of the equations x2

mþ1 þ Amxmþ1 þ Bm ¼ 0 has roots that are rational functions of the
roots of the previous equations, he means not only Eq. (m), which must be solved on the
way to finding the principal unknown x0

n of the problem (i.e., where x0
1; . . . ; x0

m�1 have been
substituted into the expression of Am and Bm), but all of the Eqs. (m), which must be solved
on the way to all the roots of P ðxÞ (i.e., where any choice x01; x

0
2; x
0
3; . . . ; x0m�1 of roots of the

previous equations are substituted into the expression of Am and Bm). The above argument
shows that if one of these roots x0m is a rational function of x01; x

0
2; x
0
3; . . . ; x0m�1, one can

abbreviate the series of equations leading to x0n. But will the abbreviated system of equa-
tions still lead to the principal unknown of the system x0

n? This is not clear, and this seems
to be the reason for the more complicated proof given by Wantzel.

Wantzel’s proof of Theorem 3. The proof is indirect. Wantzel assumes that a certain choice
of roots x01; x

0
2; x
0
3; . . . ; x0m; x

0
mþ1; . . . ; x0n of Eqs. (1)–(n) contains a root x0mþ1 of (m + 1) that is a

rational function of the previous roots

x0mþ1 ¼ gðx01; x02; x03; . . . ; x0mÞ:
If this function is substituted into the lefthand side of (m + 1), the result will be a rational
function of x01; x

0
2; x
0
3; . . . ; x0m that can be written in the form

A0m�1ðx01; . . . ; x0m�1Þx0m þ B0m�1ðx01; . . . ; x0m�1Þ;
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where A0m�1 and B0m�1 are rational functions. The equation itself will be reduced to

A0m�1ðx01; . . . ; x0m�1Þx0m þ B0m�1ðx01; . . . ; x0m�1Þ ¼ 0:

Now either A0m�1ðx01; . . . ; x0m�1Þ ¼ 0 or A0m�1ðx01; . . . ; x0m�1Þ – 0. In the latter case

x0m ¼ �
B0m�1

ðx0
1
;...;x0m�1

Þ
A0m�1

ðx0
1
;...;x0

m�1
Þ is a rational function of x01; . . . ; x0m�1.

Inserting this new rational function into Eq. (m) and repeating the procedure, one either
reaches a k for which A0k�1ðx01; . . . ; x0k�1Þ ¼ 0 or else the process ends with an equation of the
form

A00x01 þ B00 ¼ 0;

where A00 – 0 and B00 are rational numbers. In this case the root x01 ¼ �
B0

0

A0
0

is a rational root

of the first equation (1) and thus according to Lemma 2 the other root x001 of that equation is
also rational. Thus x01 and x001 can be left out of the expressions of all the remaining roots and
coefficients, so the first equation can be left out, contrary to our assumption.

On the other hand, if the process leads to a (first) value of k for which

A0k�1ðx01; . . . ; x0k�1Þ ¼ 0, we are in the following situation: the root x0kþ1 ¼ �
B0kðx01;...;x

0
kÞ

A0kðx01;...;x
0
kÞ

is a

rational function of x01; . . . ; x0k and this function inserted into Eq. (k + 1),

x2
kþ1 þ Akxkþ1 þ Bk ¼ 0; ðk þ 1Þ

will lead to an equation of the form A0k�1ðx01; . . . ; x0k�1Þx0k þ B0k�1ðx01; . . . ; x0k�1Þ ¼ 0, where
A0k�1ðx01; . . . ; x0k�1Þ ¼ 0. This also implies that B0k�1ðx01; . . . ; x0k�1Þ ¼ 0.

Wantzel then claimed that both A0k�1 and B0k�1 vanish identically such that
A0k�1ðx001; . . . ; x00k�1Þ ¼ B0k�1ðx001; . . . ; x00k�1Þ ¼ 0 for all choices of roots x001; . . . ; x00k�1. He did not
explain why, but one can prove the result by assuming that m is the smallest value of the
index for which a root x0mþ1 is a rational function of the previous roots x01; x

0
2; x
0
3; . . . ; x0m.

Indeed, if A0k�1 did not vanish identically, the equation A0k�1ðx001; . . . ; x00k�1Þ ¼ 0 would make it
possible to express one of the roots x001; x

00
2; . . . ; x00k�1 as a function of those of a lower index,

contrary to the assumption that mþ 1 was the first index for which that could happen.
Wantzel further claimed that all the roots of the Eq. (k + 1) are rational functions of the

roots of the previous equations. For the root conjugate to x0kþ1, this follows from Lemma 2
above. Now consider Eq. (k + 1) corresponding to a different choice of roots of the

previous equations, x001; x
00
2; x
00
3; . . . ; x00k . Consider x00kþ1 ¼ �

B0kðx001 ;x
00
2
;x00

3
;...;x00k Þ

A0kðx001 ;x
00
2
;x00

3
;...;x00k Þ

, where we apply the

same rational functions A0k and B0k as above to the new sequence of roots of the previous
equations. If we insert this value of x00kþ1 into the lefthand side of Eq. (k + 1) we can,
according to Lemma 1, write the result in the standard form
A0k�1ðx001; x002; . . . ; x00k�1Þx00k þ B0k�1ðx001; x002; . . . ; x00k�1Þ ¼ 0, where A0k�1 and B0k�1 are the same
functions as above. But we know from above that A0k�1 ¼ 0 and B0k�1 ¼ 0. Thus the lefthand

side of (k + 1) is equal to 0, so that x00kþ1 ¼ �
B0kðx001 ;x

00
2 ;x
00
3 ;...;x

00
k Þ

A0kðx001 ;x
00
2
;x00

3
;...;x00k Þ

is one of the roots of Eq. (k + 1)

for the choice x001; x
00
2; x
00
3; . . . ; x00k of the previous roots, and it is rational in these roots.

According to Lemma 2, the conjugate root of the equation must also be rational in
x001; x

00
2; x
00
3; . . . ; x00k .

Thus, all the roots of (k + 1) are rational in the roots of the previous equations, and
therefore the Eq. (k + 1) can be left out.
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To conclude: if one root of one of the equations (1)–(n) is a rational function of the roots
of the previous equations, then one of the equations can be left out and the system is not
minimal. This concludes the proof of Theorem 3. h

Next Wantzel proves the following result:

Theorem 4. If the number of equations in the system (1)–(n) has been reduced to a minimum
and if the resulting polynomial P ðxÞ shares a root with a rational function F ðxÞ, then all the
roots of P ðxÞ are roots of F ðxÞ.
Wantzel’s proof of Theorem 4. Any root of P ðxÞ is a root x0n of Eq. (n) for a choice of roots
x01; x

0
2; x
0
3; . . . ; x0n�1 of the previous equations. If this root is inserted into F ðxÞ, the result F ðx0nÞ

can be written as

F ðx0nÞ ¼ A0n�1ðx01; x02; x03; . . . ; x0n�1Þx0n þ B0n�1ðx01; x02; x03; . . . ; x0n�1Þ; ð4Þ
where A0n�1 and B0n�1 are rational functions. Similarly, A0n�1ðx01; x02; x03; . . . ; x0n�1Þ can be written
in the form

A0n�1ðx01; x02; x03; . . . ; x0n�1Þ ¼ A1
n�2ðx01; x02; x03; . . . ; x0n�2Þx0n�1 þ B1

n�2ðx01; x02; x03; . . . ; x0n�2Þ ð5Þ
and B0n�1ðx01; x02; x03; . . . ; x0n�1Þ can be written in the form

B0n�1ðx01; x02; x03; . . . ; x0n�1Þ ¼ A2
n�2ðx01; x02; x03; . . . ; x0n�2Þx0n�1 þ B2

n�2ðx01; x02; x03; . . . ; x0n�2Þ ð6Þ
and so on. If x00 is another root of P ðxÞ corresponding to another choice of roots
x001; x

00
2; x
00
3; . . . ; x00n�1; x

00
n of Eqs. (1)–(n), F ðx00Þ can similarly be expressed by a series of rational

functions. According to Lemma 1, the new rational functions will in fact be equal to

A0n�1;B
0
n�1;A

1
n�2;B

1
n�2;A

2
n�2;B

2
n�2; . . . :

obtained from the root x0n, except the functions should be applied to the roots in the se-
quence x001; x

00
2; x
00
3; . . . ; x00n�1.

Now assume that x0n is also a root of F ðxÞ, i.e., that F ðx0nÞ ¼ 0. From (4) we conclude that

A0n�1ðx01; x02; x03; . . . ; x0n�1Þx0n þ B0n�1ðx01; x02; x03; . . . ; x0n�1Þ ¼ 0:

If A0n�1ðx01; x02; x03; . . . ; x0n�1Þ– 0 we could find x0n as a rational function,

xn ¼ �
B0n�1ðx01; x02; x03; . . . ; x0n�1Þ
A0n�1ðx01; x02; x03; . . . ; x0n�1Þ

;

of the roots of the previous equations. However, from Theorem 3, we know that this is
impossible, so we conclude that A0n�1ðx01; x02; x03; . . . ; x0n�1Þ ¼ 0 and consequently that
B0n�1ðx01; x02; x03; . . . ; x0n�1Þ ¼ 0. From (5) we conclude in the same way that

A1
n�2ðx01; x02; x03; . . . ; x0n�2Þ ¼ 0 and B1

n�2ðx01; x02; x03; . . . ; x0n�2Þ ¼ 0

and from (6) we conclude that

A2
n�2ðx01; x02; x03; . . . ; x0n�2Þ ¼ 0 and B2

n�2ðx01; x02; x03; . . . ; x0n�2Þ ¼ 0:

Continuing this way we arrive at rational functions Ai
1 and Bi

1 ði ¼ 1; 2; 3; . . . ; 2n�2Þ of one
variable such that

Ai
1ðx01Þ ¼ Aix01 þ Bi ¼ 0; ði ¼ 1; 2; 3; . . . ; 2n�2Þ and

Bi
1ðx01Þ ¼ A2ðn�2Þþix01 þ B2ðn�2Þþi ¼ 0; ði ¼ 1; 2; 3; . . . ; 2n�2Þ:
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Here Ai and Bi ði ¼ 1; 2; 3; . . . ; 2n�1Þ are rational numbers and, using the above argument a
last time, we conclude that they are all equal to zero.

If we make the same reduction of F ðx00nÞ for another root x00n of P ðxÞ we will, according to
the argument above, end up with the same rational numbers Ai and Bi ði ¼ 1; 2; . . . ; 2n�1Þ,
and since they do not depend on the choice of the roots of the system of equations, they
must also be equal to zero. But then Ai

1ðx001Þ ¼ Aix001 þ Bi ¼ 0 and Bi
1ðx001Þ ¼

A2ðn�2Þþix001 þ B2ðn�2Þþi ¼ 0 ði ¼ 1; 2; . . . ; 2n�2Þ. Going back up through the rational functions,
we end up concluding that F ðx00nÞ ¼ 0.

Thus, if a rational function F ðxÞ has one root x0n in common with P ðxÞ, then all roots of
PðxÞ will also be roots of F ðxÞ. h
Wantzel’s “Proof” of the Main Theorem. In particular, the function F ðxÞ in Theorem 4
could be a polynomial, so Wantzel concluded that a polynomial “equation F ðxÞ ¼ 0 cannot
admit a root of ½P ðxÞ� without admitting them all” [Wantzel, 1837, 369]. This result is cor-
rect. But he immediately continued with the formulation of the main theorem: “Thus, the
equation ½P ðxÞ� is irreducible” [Wantzel, 1837, 369]. h

As pointed out by Hartshorne [2007], this last conclusion is incorrect when we attribute
the modern meaning to the concept of irreducibility.4 And there is no doubt that Wantzel
used the word “irreducible” in the same way we do today. Indeed, he wrote, “irreducible,
that means that it cannot have roots in common with an equation of lower degree” [Wantzel,
1837, 368].

Wantzel’s conclusion regarding the irreducibility of PðxÞ is obviously correct if the poly-
nomial P ðxÞ has only simple roots. But it is false in general. For example, if P ðxÞ ¼ ½QðxÞ�r,
where QðxÞ is irreducible, Theorem 4 holds, but P ðxÞ is reducible.

Wantzel provided no proof that PðxÞ has only simple roots. He may have overlooked the
problem or he may have believed that it followed from the minimality of the system (1)–(n).
However, that is not the case, at least if one interprets the minimality as meaning simply
that none of the equations of the system can be left out. This is a reasonable interpretation,
since it is the only property of a minimal system used in the proof. One might also interpret
the minimality more strongly as saying that there does not exist a shorter system leading to
the desired root. In that case Wantzel’s conclusion is correct, but his argument does not
provide a proof of it.

It is rather easy to complete Wantzel’s arguments: Assume that QðxÞ is the normed irre-
ducible polynomial having the constructible line segment x0

n as a root. We want to prove
that its degree is a power of 2. According to Theorem 4, all of P ’s roots are also roots
of Q. Let x1 ¼ x0

n; x2; x3; . . . ; xk denote the different roots of PðxÞ. QðxÞ has no roots other
than x1; x2; x3; . . . ; xk because otherwise the largest common divisor of P ðxÞ and QðxÞ would
be a non-trivial divisor of QðxÞ, which is impossible, since QðxÞ was assumed to be irreduc-
ible. Since an irreducible polynomial has no multiple roots, we conclude that
QðxÞ ¼ ðx� x1Þðx� x2Þðx� x3Þ � � � ðx� xkÞ.

Thus QðxÞ divides PðxÞ, so P ðxÞ ¼ QðxÞP 1ðxÞ. If P 1ðxÞ is not a constant, it must have one
of the xi’s as a root and so, according to Theorem 4, it has all the xi’s as roots, which means
4 In Section 28 of [Hartshorne, 2000], Hartshorne gave a modern proof using Galois theory of
Wantzel’s main theorem and remarked in a note (p. 490) that Wantzel’s proof “has a gap.” Since
1999 he has given talks about Wantzel’s proof and its connection to the work of Descartes, Gauss,
Petersen, and later writers.
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that it is divisible by QðxÞ. Continuing in this way, we conclude that PðxÞ ¼ C½QðxÞ�r, where
C is a rational constant. From Wantzel’s argument we know that the degree of P ðxÞ is a
power of 2 and therefore the degree of QðxÞ is also a power of 2. h

This completion of Wantzel’s proof is due to Petersen [1877, 164] and is spelled out in
greater detail by Klein [1895, 19, 20].

4. Having proved the Main Theorem, Wantzel turned to the classical problems. He
observed without proof that the equation x3 � 2a3 ¼ 0, corresponding to the duplication
of the cube, is always irreducible. More generally, he addressed the problem of finding
two mean proportionals between a and b, that is, finding x and y such that

a
x
¼ x

y
¼ y

b
:

This leads to the equation x3 � a2b ¼ 0, which, according to Wantzel, is irreducible unless
b=a is a cube. Since these equations have a degree that is not a power of 2, the problems
cannot be solved by ruler and compass except when b=a is a cube.

Similarly, he claimed without proof that the trisection of the angle depends on the equa-
tion x3 � 3

4
xþ 1

4
a ¼ 0. He correctly pointed out that this equation is irreducible5 when it has

no root that is a rational function of a. Moreover, he stated that this is the case whenever a
is algebraic. This last statement is clearly false, and it is not clear to me what Wantzel had in
mind. However, it is true that the equation is irreducible for some values of a, for example,
the value corresponding to the trisection of the constructible angle of 120�. Thus the trisec-
tion cannot be constructed in general by ruler and compass. As Wantzel put it,
5 He
It seems to us that it has not been demonstrated rigorously until now that these prob-
lems, so famous among the ancients, are not capable of a solution by the geometric con-
structions they valued particularly [Wantzel, 1837, 369].
Wantzel finally gave a short and elegant argument for the converse of Gauss’s theorem
about the constructability of regular polygons (see below):
The division of the circle into N parts cannot be done by ruler and compass unless the
prime factors of N different from 2 are of the form 2n þ 1 and they enter only in the first
power in this number [Wantzel, 1837, 369].
In the last part of the paper, Wantzel tried to investigate how one can decide if a root of
an irreducible equation of degree 2n can be constructed by ruler and compass. He described
some procedures for deciding the question, but admitted in the concluding paragraph that
“These procedures are in general difficult to use” [Wantzel, 1837, 372].

As the above discussion shows, there were in fact some lapses in clarity and some holes in
Wantzel’s proof, and these shortcomings were of a kind that could have been noticed at the
time. In particular, the problems concerning the proof of irreducibility were not entirely
trivial. Still, if we use these shortcomings as reasons for the neglect of Wantzel’s paper,
we must establish that they were pointed out by 19th-century mathematicians. However,
there is no evidence that the shortcomings were discovered at all. Wantzel’s result was
neglected rather than criticized. Indeed, Hartshorne [2007] has been unable to locate any-
one who discovered the main hole in the proof before he pointed it out recently.

So although there were problems in Wantzel’s proof, they do not seem to be responsible
for the neglect of his contribution.
apparently meant irreducible over Q½x�.
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4. Was Wantzel a well-known mathematician?

Today, Wantzel is not a household name in the history of mathematics. If at all, he is
mentioned in general histories of mathematics for the contribution we discuss in this paper.
In specialized works about the history of algebra he may be mentioned in passing for his
improvement of Niels Henrik Abel’s proof of the unsolvability of the quintic by
radicals.

In his own day, he attained some renown in mathematical circles in Paris when, in
1832, he was ranked first in the entrance examination at both the École Polytechnique
and the École Normale Supérieure. No student before him had had such success in these
prestigious exams. He chose the Polytechnique, and two years later he continued his studies
at the École des Ponts et Chaussées. He was still a student at the school when, in 1837, he
published the impossibility proof of the two classical problems. The same year he decided
that he wanted to devote himself to science rather than engineering and asked for a leave
from his studies. However, the head of the school asked him to continue and gave him the
opportunity to serve his time by analyzing some German scientific works rather than
working in the field. He accepted the offer and graduated as an engineer in 1840. Already
two years earlier he had been appointed assistant (répétiteur) in the analysis course at the
École Polytechnique, and in 1843 he was promoted to examiner for the school’s entrance
examination. In 1844 he also became assistant in the course of applied mechanics at the
École des Ponts et Chaussées.

To this point, his career followed the path of most famous French mathematicians of the
time. However, his research did not measure up to his apparent aptitude for mathematics.
His list of publications [Saint-Venant, 1848, 328–331] contains 21 papers and notes, but
except for one experimental physics paper of 37 pages on the flow of air, written together
with Barré de Saint-Venant [Saint-Venant and Wantzel, 1839], they are all less than 10
pages long, and most are less than 1 page. They had essentially no impact. Saint-Venant,
whose obituary [Saint-Venant, 1848] seems to be the source of all later biographical notes
on Wantzel, including the present account, wondered why this ingenious young mathema-
tician did not achieve more. Others ascribed it to “the metaphysical form of his mind,” but
Saint-Venant blamed his bad working habits, his inability to remain with a subject long
enough, his great facility with the subjects, and his great workload as a teacher. According
to Saint-Venant, Wantzel had a feverish spirit. He did not take care of his health, slept very
little, ate irregularly, and misused both coffee and opium.

For these reasons and because of his early death at the age of 33, he was not elected a
member of the Académie des Sciences and seems to have remained virtually unknown out-
side of Parisian circles. The relative obscurity of the author probably contributed to the
neglect of his result concerning the classical problems.

5. Was the proof considered new?

The reason we now credit Wantzel with the impossibility result is of course that we think
he was the first who came up with a proof of it. However, there are indications that, at the
beginning of the 19th century, the problem of constructing the two classical problems with
ruler and compass was not only considered to be in principle impossible, but the impossi-
bility may even have been considered a well-established and proven fact.

René Descartes had claimed that all constructible problems could ultimately be reduced
to the solution of a quadratic equation, and he had pointed out that the two classical prob-
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lems led to cubic equations [Descartes, 1637, 302, 396].6 He admitted that this did not give a
reason that the two problems were not constructible [Descartes, 1637, 401], but went on to
provide a geometric argument. He pointed out that both problems ask for the construction
of two points (the two mean proportionals and the two points of trisection). So “inasmuch
as the curvature of the circle depends only upon a simple relation between the center and all
its points on the circumference, the circle can only be used to determine a single point
between two extremes. . .” [Descartes, 1637, 402]. He thus concluded that the two problems
cannot be solved by lines and circles.

About a century later, Jean Étienne Montucla gave an interesting twist to Descartes’s
arguments, raising the numbers occurring in the argument by one. In an appendix to his
Histoire des recherches sur la quadrature du cercle [Montucla, 1754], he discussed the other
two classical problems and claimed that, with the aid of modern analytic geometry (and
only with its aid), one can “prove the impossibility” of the problems with ruler and com-
pass. His proof rested on two principles: 1. An nth degree equation has n roots, and 2.
A geometric solution of an equation must lead to all its roots and must be performed by
the intersection of two curves. Now, since the two classical problems lead to irreducible
cubics (irreducibility is claimed but not proved), they cannot be solved by “curves that
are only capable of giving less than three points of intersection” [Montucla, 1754, 273–285].

In a subsequent paper I shall return to Descartes’s and Montucla’s arguments. Here it
suffices to point out that Montucla repeated the impossibility claim in his influential His-
toire des mathématiques of 1758. About the two mean proportionals he declared that “one
proves today, and the ancients were not ignorant about it, that one cannot solve it with the
aid of the ordinary geometry” [Montucla, 1758, vol. 1, 188, my italics]. About the trisection
of the angle or the division of the angle in a given ratio he wrote: “It was in vain that one
tried to solve one of these problems by plane geometry. Of the same nature as the duplica-
tion of the cube, they require the help of a higher kind of geometry or the use of some
instruments other than the ruler and the compass” [Montucla, 1758, vol. 1, 193]. He
repeated these claims in the second edition [Montucla, 1799, 175, 177–178].

At the end of his book on the history of the quadrature of the circle, Montucla also sta-
ted that he had become convinced that James Gregory had proved the impossibility of this
third problem by ruler and compass [Montucla, 1754, 293]. However, when he appended a
condensed version of this book to the fourth volume of the second edition of his Histoire
des mathématiques, he admitted that this impossibility proof was generally considered
unconvincing, and the publisher of the volume, Joseph-Jérôme Lalande, added in a foot-
note: “Nevertheless, the author [Montucla] thought that Gregory was right about the quad-
rature, even the definite one. . .. But probably he had changed his opinion after 1754”
(Lalande in [Montucla, 1802, 633]). Lalande made no similar retraction of Montucla’s
claim concerning the alleged proof of the impossibility of the other two classical problems.

In the Histoire des mathématiques, Montucla’s claim that the impossibility of the two clas-
sical problems had been proved has the appearance of a common opinion, and its explicit
statement in his influential book may have contributed further to the acceptance of this
opinion. Thus, the year after Wantzel’s paper had appeared, A.-F. Montferrier, in his
Dictionnaire des Sciences Mathématiques Pures et Appliquées [Montferrier, 1838, vol. 1,
488], declared that all three classical problems were impossible to solve with ruler and
compass. He did not refer to Wantzel and seemed simply to have passed on a well-known fact.
6 For a masterful discussion of Descartes’ geometric problem-solving methods see Bos [2001].
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Moreover, at the beginning of the 19th century, there was another and better reason to
think that the impossibility of the two classical problems was an established fact. In his
influential Disquisitiones Arithmeticae of 1801, Gauss had shown how to construct all reg-
ular n-gons for n of the form 2ap1p2 . . . pn, where the pi’s are different Fermat primes, i.e.,
primes of the form 22k þ 1 ða; k 2 NÞ [Gauss, 1801, §365]. Gauss’s proof was a striking
application of the algebraic and number-theoretic ideas developed in the book. He also
claimed that one cannot construct regular n-gons with any other number of sides. He
included this claim in the Disquisitiones in order to save others the trouble of trying to con-
struct the impossible, but he did not include the proof of the impossibility statement, alleg-
edly due to lack of space.

Gauss later became notorious for such claims of priority and in some cases his claims
were rejected by influential mathematicians such as Adrien-Marie Legendre. However, as
far as I know, his claim to have proved the impossibility of the above-mentioned construc-
tions was not challenged, and from a modern perspective there is little doubt that Gauss
knew how to prove it. Indeed, as demonstrated by Wantzel, the proof is much simpler than
the constructive proofs found in Gauss’s Disquisitiones and uses only the techniques found
in this book and in Lagrange’s paper on equations [Lagrange, 1770–1771].

The impossibility result mentioned by Gauss is of the same kind as the impossibility of
the two classical problems, and the same techniques can easily apply to prove the latter.
Even more, the impossibility of the trisection of the angle is a consequence of Gauss’s pos-
tulated impossibility result. Indeed, according to the latter, it is impossible to construct a
regular 9-gon because 9 is the product of two equal Fermat primes. Thus, it is impossible
to construct its central angle of 40� and therefore impossible to trisect the constructible
angle of 120�. Thus, for a mathematician who believed Gauss’s claim, Wantzel’s paper
would not contain a new truth; it would rather contain a hitherto unpublished proof of it.

With hindsight we even know that the central part of Wantzel’s argument had already
been known and proved by Abel several years before Wantzel published his proof. In fact,
in an unfinished paper from about 1828, Abel proved the following theorem:
The degree of the irreducible equation which is satisfied by an algebraic expression is a
product of a certain number of the radical exponents that enter into the algebraic expres-
sion [Abel, 1839, 200, 232].
In the special case where all the radicals are square roots, this theorem states that the
irreducible equation of an irrational number that is expressed by square roots is a power
of 2. As we have seen, this was the central, difficult and not entirely satisfactory part of
Wantzel’s proof. However, Abel did not apply the theorem to the problem of geometric
constructions, and the fragment containing the theorem was not published until 1839, so
it was certainly unknown to Wantzel. Moreover, I have not found any public reference
to Abel’s priority in connection with the impossibility of the two classical construction
problems. Ludvig Sylow called Petersen’s attention to Abel’s priority in a letter written
in 1870 [Lützen, 1992, 447], but this claim seems to have remained unknown to the public.

6. Was the proof considered too trivial?

But even if Wantzel’s proof was considered a novelty, is it possible that it was considered
too simple to constitute a noteworthy breakthrough? Indeed, Wantzel’s proof is a relatively
straightforward use of the methods found in Gauss’s Disquisitiones and of the more recent
methods used by Abel in his proof of the impossibility of the solution of the quintic by rad-
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icals. For example, the algebraic characterization of the problems constructible with ruler
and compass were lifted directly from Gauss, and the discussion of irreducibility followed
ideas in Abel’s work. However, these novel algebraic techniques were probably not so well
assimilated in Wantzel’s day that his readers would consider his proof as trivial. And later
in the century, when such techniques were more well known, the proof of impossibility of
the classical construction problems was certainly considered as interesting. Thus we can
conclude that it was probably not the relative simplicity of Wantzel’s proof that made it
an overlooked contribution.

7. Was the result considered important? The changing paradigms

While some of the above reasons may have contributed to the lack of appreciation of
Wantzel’s proof, they are not in themselves serious enough to explain the neglect. Instead,
I shall argue that Wantzel’s result was not considered particularly important at the time
and that this was the main reason that it was overlooked. This may at first seem strange.
To us Wantzel provided a proof of a famous 2000-year-old problem, a contribution that
should have made a splash among his contemporaries. Indeed, when Lindemann, half a
century later, proved the transcendence of p, his result was immediately hailed as the final
settlement of the problem of the quadrature of the circle.

However, I will argue that most of Wantzel’s contemporaries would not have viewed his
proof in this light. Indeed, during the 18th century, mathematics was a constructive enter-
prise consisting of finding solutions to problems, and this view of mathematics was still
shared by most of Wantzel’s contemporaries. The classical problems fit nicely into this par-
adigm, but Wantzel’s proof does not provide a solution. A solution would have been a
construction, but all Wantzel showed was that a particular type of solution does not exist.
This type of result is not really a mathematical result in the constructive paradigm, but a
metaresult saying that there is no reason to continue to look for a solution because there is
none. If a result is not a mathematical theorem proper, it is not clear that one should ask
for a proof. To be sure, impossibility results had been formulated and proved earlier. For
example, Pierre de Fermat formulated several theorems of this type in number theory, but
as pointed out by Catherine Goldstine [1995, 134–135], they were not well received by his
contemporaries.

Ever since Pappus it had generally been believed that the two classical problems were not
constructible by ruler and compass, and many mathematicians including Pappus had
believed that this was due to the nature of the problems. However, until Descartes, no one
had suggested that this was a theorem that could or even should be proved. And even after
Descartes the problem seems to have attracted little attention. A similar tendency can be seen
in the investigation of the solution of the quintic by radicals. Lagrange [1770–1771, 355, 357,
403] explicitly indicated that this problem might be unsolvable, but while he expressed the
hope that his methods would be of help for later attempts at finding a solution, he did not indi-
cate that they could be used in a proof of the impossibility. And when this was successfully
attempted by Paolo Ruffini (1799 and later) [Ruffini, 1915], his result was hardly noticed.7

Gauss’s way of dealing with the impossibility result concerning regular polygons also
suggests that he did not attach much importance to it, or at least that he thought that
7 See Ayoub [1980]. As pointed out by Ayoub, Ruffini was only rediscovered toward the end of the
19th century by Burkhardt [1892].
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his contemporaries would not value it highly. His excuse for not including the proof was
that the book was already long enough. Of course, if he had thought that the result was
as important as the positive construction of the possible regular n-gons (as we tend to think
to day), he would have been able to add the necessary 10–20 pages to the book. He did not
even bother to formulate the impossibility result explicitly. He merely stated that for the
values of n that are not of the Gaussian form, he could show that one could not avoid equa-
tions of degree higher than the second [Gauss, 1801, §365]. He let his reader infer the result
that one cannot construct regular n-gons by ruler and compass unless n is of the Gaussian
form. His stated reasons for including the claim at all was that it would prevent people
from wasting their time trying to construct the impossible.

These events are in agreement with the constructive paradigm that considers the only
real solution to a problem to be a construction of a solution and considers an impossibility
result as a metastatement.

In the history of the quintic, Abel explicitly tried to change this view of impossibility
results. As emphasized by Sørensen [2004, 174–175], Abel suggested that one ought to
rephrase the problem as a problem that always has an answer. Instead of asking for a solu-
tion by radicals, one should first ask if the quintic has a solution of this kind, and only if the
answer turns out to be yes would one proceed to the question of finding such a solution
constructively [Abel, 1839, 217]. By formulating the existence question as a mathematical
problem, Abel had allowed the impossibility result to be a solution of a problem, not just
a statement about the impossibility of finding an answer to a problem. Thus impossibility
statements became proper theorems in mathematics.

Several younger mathematicians continued along the same line as Abel. Evariste Galois
is the most obvious example, but also Joseph Liouville’s investigations of integrability of
functions and differential equations in finite form follow this lead. Indeed, Liouville was
the first to show that certain integrals cannot be expressed in finite terms [Lützen, 1990,
Chapter IX]. Wantzel’s result fits this trend. In fact Wantzel seems to have been particularly
fond of impossibility results. He published a simplified proof of Abel’s theorem concerning
the impossibility of solving the quintic by radicals [Wantzel, 1845a]. According to Cajori
[1918, 339], this proof became quite well known because it was reproduced by Joseph Serret
in his widely read Algèbre Supérieure ([Serret, 1849, 292–296] and later editions). As men-
tioned in the quote above from Cajori’s paper, Wantzel also showed that it is impossible to
avoid the irreducible case in the solution of cubic equations. More precisely, he proved the
following theorem: “It is impossible to express the roots of a cubic equation by real radicals
when the roots are all real” [Wantzel, 1843, 127]. Moreover, Wantzel published a paper
about the “impossibility of expressing the roots of an algebraic equation by transcendental
functions” [Wantzel, 1845b] as well as a note about Fermat’s last theorem [Wantzel, 1847].

These new tendencies relative to impossibility results went hand in hand with a new focus
on existence theorems, and can be viewed as two sides of the same coin. In particular,
Cauchy insisted that before finding the sum of an infinite series or the solution of a differ-
ential equation, one should prove their existence. And both trends were parts of a change
from a constructive to a conceptual paradigm in mathematics. Another instance of this
change was the emergence in the 1830s of Sturm–Liouville theory where the (qualitative)
properties of solutions to certain differential equations were investigated without solving
the equation in analytic form [Lützen, 1990, Chapter X].

However, in the 1830s and 1840s, these new ideas were mostly a young man’s game. The
majority of the mathematicians of the older generation seem to have continued in the more
constructive paradigm during the first half of the 19th century. And although some of the
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results, such as Abel’s impossibility result, received some attention, other of the theories
were mostly overlooked at the time. For example, it took until about 1870 before
Sturm–Liouville theory was developed further.

Wantzel’s proof may have been overlooked by his contemporaries because it was not a
proof of an important theorem in the still prevailing constructive paradigm. It did not con-
struct a solution of the two classical problems, but only stated that a solution was out of
reach. In this sense, it was not a mathematical theorem but a metamathematical result. This
at least suggests a reason that the settlement of the two classical problems remained anon-
ymous until the 20th century.
8. The rediscovery of the impossibility proofs

Towards the end of the 19th century impossibility results became an integrated part of
mathematics. In his famous talk on mathematical problems in 1900, David Hilbert stated:
“In recent mathematics (der neueren Mathematik) the question as to the impossibility of
certain solutions plays a preeminent role” [Hilbert, 1901, 297]. In particular, Hilbert
emphasized that the problems of the proof of the parallel axiom, the squaring of the circle,
and the solution of the quintic by radicals “have finally found fully satisfactory and rigor-
ous solutions, although in another sense than that originally intended” [Hilbert, 1901,
p. 297 of collected works]. When Hilbert spoke of a new “sense” of the concept of solution,
he clearly referred to a reformulation of the problems in the vein suggested by Abel, where
instead of asking “find the solution,” one asks “does a solution exist?” It is this reformu-
lation that allowed Hilbert to declare that in mathematics all problems can be solved: there
is no ignorabimus. In the later editions of the Grundlagen der Geometrie [e.g., Hilbert, 1922,
111], Hilbert repeated his remarks about the importance of impossibility results in modern
mathematics. For Hilbert such results were important because they show how far one can
get with a prescribed method or within a given axiomatic system.

The quotes reveal that Hilbert was aware that the importance he attributed to impossi-
bility results was of a recent date. Indeed as the previous account of the literature on the
classical problems reveals, the next persons after Wantzel to publish a proof of the impos-
sibility of the two classical problems may have been Petersen [1871, 77] followed by Klein
[1895]. To be sure, Saint-Venant, in his biography of Wantzel, mentions that “Since then
(i.e., since 1837), M. Sturm has simplified this type of demonstration, but he has published
nothing on it” [Saint-Venant, 1848, 329]. This simplification is also mentioned in the
biography of Charles Franc�ois Sturm in The MacTutor History of Mathematics Archive
[O’Connor and Robertson, 2008], but nothing seems to be known about it. It seems to have
vanished from view, together with Wantzel’s published contribution. Indeed, at the end of
the 19th century, when the impossibility proofs began to take their place among the impor-
tant theorems of mathematics, Wantzel was so completely forgotten that even a historically
interested mathematician such as Klein did not know of his name, or at least was ignorant
of its connection with the classical problems.

After 1880 there was an increased interest in the constructability of the two classical
problems in the mathematical and historical literature. As I pointed out above, the priority
question was at first dealt with in a somewhat vague way, but it is clear that the new prom-
inence of the problems raised the question. Therefore it is not surprising that Wantzel’s
name eventually resurfaced. As I indicated, we may be indebted to Cajori [1918] for the
rediscovery and dissemination of Wantzel’s proof.
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9. Conclusions

Wantzel’s proof of the impossibility of constructing the trisection of the angle and the
duplication of the cube by ruler and compass was forgotten for almost a century after
its publication in 1837. The obscurity of the author, and the fact that some of his contem-
poraries considered the result to be known, or even demonstrated, may have contributed to
this neglect, but of even greater importance was that the result was not considered an
important mathematical result at the time it was published. In the constructive and quan-
titative paradigm, which still dominated large parts of mathematics during the first half of
the 19th century, an impossibility result such as the one proved by Wantzel was not con-
sidered an important result within mathematics but rather a meta-result about mathematics,
in this case about the impotence of a particular method of construction.8 In Gauss’s words,
such results were of interest only in so far as they would prevent mathematicians from wast-
ing their time trying to do impossible mathematics.

Together with Abel’s proof of the impossibility of the solution of the quintic by radicals,
Augustin-Louis Cauchy’s work on analysis, and other works on qualitative and conceptual
questions, Wantzel’s result heralded a new qualitative and conceptual paradigm in mathe-
matics. However, when this paradigm prevailed towards the end of the 19th century,
Wantzel’s name had been so completely forgotten that even when his impossibility results
were re-proved and obtained their place at the center of mathematics, it took several dec-
ades before Wantzel’s name was attached to them.
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der mathematischen Wissenschaften, vol. III.1.2. Teubner, Leipzig, pp. 771–858.
Sørensen, Henrik Kragh, 2004. The mathematics of Niels Henrik Abel. Ph.D. Dissertation, History

of Science Department, University of Aarhus.
Sturm, Ambros, 1895. Das delische Problem. K.K. Gymnasiums Seitenstetten, Linz.
Sturm, Ambros, 1917. Geschichte der Mathematik. Göschen, Berlin.
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Elemente der Geometrie. Teubner, Leipzig.

Weber, Heinrich, Wellstein, Josef, 1934. Enzyklopädie der Elementar-Mathematik. Erster Band.
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