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Abstract

A known result for the finite general linear group GL(n,F,) and for the finite unitary
group U(n,F,2) posits that the sum of the irreducible character degrees is equal to the
number of symmetric matrices in the group. Fulman and Guralnick extended this result
by considering sums of irreducible characters evaluated at an arbitrary conjugacy class of
GL(n,F,). We develop an explicit formula for the value of the permutation character of
U(2n,F,2) over Sp(2n,F,) evaluated an an arbitrary conjugacy class and use results con-
cerning Gelfand-Graev characters to obtain an analogous formula for U(n,F,2) in the case
where ¢ is an odd prime. These results are also given as probabilistic statements.

1 Introduction

An important topic of interest in probabilistic group theory is the study of the statistical behavior
of random conjugacy classes. Fulman and Guralnick study this question for the finite general
linear group by evaluating several character sums at arbitrary elements [8]. One of the main
tools used there is a model for the group GL(n,F,), which is a way of writing the sum of all
of the irreducible characters of the group as a sum of characters which are induced from linear
characters of subgroups. The model for GL(n,F,;) is obtained by a sum of Harish-Chandra
induction of Gelfand-Graev characters and permutation characters of the finite symplectic group
in various Levi subgroups. Values of the Gelfand-Graev characters of the finite general linear
group are known, and the values of the permutation character of the finite symplectic group are
obtained using results of GL(2n,F,)-conjugacy in Sp(2n,F,) due to Wall [22].

The purpose of this paper is to make the parallel computations for the finite unitary group
U(n,F,2), which involve several structural differences from [8]. As in [8], we rely on a model for
the finite unitary group, and the values for the permutation character of the finite symplectic
group. The model for the finite unitary group involves replacing Harish-Chandra induction
by the more general Deligne-Lusztig induction, and can be found in [20]. To compute the
permutation character, we use [22] and [7] to translate the conjugacy class information from
Sp(2n,Fy) to U(2n,F2) (in the case of GL(n,F;), the corresponding results are explicitly in
[22]). The main results obtained are only proven for odd ¢, because the decomposition of the
permutation character of U(2n,F,2) on Sp(2n,F,) is not known for the case that ¢ is even. An
analogous decomposition for the case ¢ even would immediately imply the results here extend
to all q.

The organization of the paper is as follows. Section 2 reviews definitions and results on par-
titions and symmetric functions, with a particular emphasis on the Hall-Littlewood symmetric
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functions. Section 3 describes the conjugacy classes of the finite general linear, unitary, and
symplectic groups, and gives the sizes of centralizers in terms of the combinatorial information
which parameterize these conjugacy classes.

The main results are in Section 4. In particular, Theorem 4.3 computes the value of the

permutation character
U(2TL7IFq2 )

Indsp(Qanq) ( )

at an arbitrary class of U(2n,F ), and Theorem 4.3 evaluates the sum

>oox

XGIrr(U(n,]Fqg )

evaluated at an arbitrary class of U(n, qu). Finally, we translate these main results into prob-
abilistic statements in Section 5.

Acknowledgements. Both authors thank the referee for helpful comments.

2 Partitions and symmetric functions

This section will review some fundamental definitions and results used in this paper, including
partitions, Hall polynomials, and symmetric functions.

2.1 Partitions

Let
P = U P, where P, = {partitions of n}.
n>0
For v = (v1,v9,...,1) € Py, the length ¢(v) of v is the number of parts [ of v, and the size |v|

of v is the sum of the parts n. Let v/ denote the conjugate of the partition v. We also write
v=(1m@gm) .y, where mi(v) = [{j € Z>1 | v; =i}

Let o(v) denote the number of odd parts of v, and define n(v) to be

n(v) =Y (j— .

J

The following will be used in calculating a sign in one of the main results.

Lemma 2.1. Let v € P be such that either m;(v) € 2Z>¢ whenever i is even, or m;(v) € 2Z>g
whenever 1 is odd. Then

(W] = o())/2 = [Iv]/2] + n(v) (mod 2).

Proof. An alternate statement of the Lemma is if v satisfies one of the conditions above and |v|
is even, then n(v) + o(r)/2 is even, and if v satisfies the first condition above and |v| is odd,
then n(v) + (o(v) — 1)/2 is even.

First suppose that m;(v) is even whenever 7 is odd, so that |v| and o(v) are both even. This
implies that exactly half of the odd parts of v are of the form v5;. Consequently,

n(w) +o(v)/2=" (j—j+o(v)/2

J



is even, giving the result.

Now suppose that m;(v) is even whenever i is even, and further suppose that |v| is even, so
that o(v) is even as well. Then exactly half of the even parts of v are of the form vy;, which
implies that exactly half of the odd parts of v are of this form as well. Again we have that
n(v) + o(v)/2 is even.

Finally, suppose that m;(v) is even whenever i is even, but that |v| is odd, so that o(v) is
odd. This implies that ¢ = ¢(v) is also odd. Now choose an odd number k such that k& < vy, and
define a new partition ¥ by

v=(1,va,...,vpk).

Now, v satisfies the condition that m;(7) is even whenever 7 is even, except now we have that |7|
is even and o(7) = o(v) + 1 is even as well. From the previous case, we have that n(2) + o(7)/2
is even. We also have

n(v) —n(v) =¢k and o(r)/2— (o(v)—1)/2=1
are odd. Therefore n(v) 4+ (o(v) — 1)/2 is even. O

2.2 Hall polynomials

Let R be a discrete valuation ring with maximal ideal g, and with finite residue field of size q.
Finite R-modules are then parameterized by partitions, where the module M of type A € P is

isomorphic to
178y

)
R/,

i=1
Given a finite R-module M of type A, the number of submodules N of type p such that M/N
is of type v is a polynomial in ¢ (see [17, Chapter II]), and is the called the Hall polynomial,
written gl/)y(q). We may thus consider the Hall polynomial in some indeterminate ¢, g,’)l,(t). Note
that we have

gﬁy(t) =0 wunless |u|+ |v|=|A and p,v CA.

In particular, we have

1 ifvr=2A
A ’
¢ 2.1
%o (1) {0 otherwise, (1)

where () denotes the empty partition.

2.3 The ring of symmetric functions

A symmetric polynomial f € Z[x1,x2,...,xy,] is a polynomial which is invariant under the action
of the symmetric group S, permuting the variables. Let A, be the set of symmetric polynomials
in Z[z1,z2,...,xy], so that

A, =Zlxy, 29, . .. ,xn}S".

Following [17, 1.2], let A¥ denote the homogeneous elements in A, of degree k, and for m > n,
we have the natural projection map

k k
Pt A

k
m_>An’

which may be used to form the inverse limit

AP =lim A},



We then define A, the ring of symmetric functions over Z in the countably infinite list x =
{x1,x9,...} of independent variables, to be
SYRS
k

and for t € C*, let
All) = ZIt] @7 A.

2.4 Hall-Littlewood symmetric functions

A symmetric function over Z[t] of central importance here is the Hall-Littlewood symmetric
function Py(x;t), where A € P. A thorough discussion of Hall-Littlewood functions may be
found in [17, Chapter III], but we give the definition here for completeness.

Let A € P such that ¢(\) < n, where we let \; = 0 if i« > ¢(\). For any o € S, and
polynomial f in z1,...,2,, let o(f) denote the action of o on f by permuting the variables.
The Hall-Littlewood symmetric polynomial is defined to be

qu(/\)l_t N )\ T t:BJ
Paaranit) = [[ [T 7255 2 0 o(a}r sz_x)

i>0 j=1 €Sy

Then the Hall-Littlewood symmetric function Py(x;t) is obtained by finding the image of the
Hall-Littlewood symmetric polynomials through the limiting process described above. The set
of functions Py(z;t), as A ranges over all partitions, forms a Z[t]-basis of A[¢] ([17, I11.2.7]).

Hall polynomials show up as coefficients when products of Hall-Littlewood functions are
expressed as a sum of Hall-Littlewood functions, as given in the following result, found in [17,
I11.3].

Lemma 2.2.
" Py (s )" P, (2 t) = > g, (/)" Py (5 1)
AEP
We will use the following identity, which is obtained in [17, IIL.3, Example 1].

Lemma 2.3.
o(N)

1+zy
n( 1-j5 J
E t || +t y)Py(x;t) = || 1_%.
AEP Jj=1 jz1

We may also view a partition A € P as a set of ordered pairs (i, j) of positive integers, where
1<j<Nand1<: < )\;. For a parameter ¢, we define the function c)(¢) as

at) = J[ -5, (2.2)

(4,9)EXNN; =]
)\;—i even

For the pair (7, j) € A, the quantity A; — j is called the arm of (4, j), and X} —i is called the leg
of (i,7). Note that we also have
=11 I] a-o. (2.3)
i jodd
F<mi(N)

The following identity involving Hall-Littlewood functions and the function ¢, (¢) was proven by
Kawanaka in [13], and a purely combinatorial proof was later given by Fulman and Guralnick
in [8].



Theorem 2.1 (Kawanaka).

1—zz;
LOO=IN/2 0 1\ P (e ) — TT L= %i
m (A%’Pm)en i<
ﬁ)'rk odd

The next identity, also involving Hall-Littlewood functions and c¢(¢), is due to Fulman and
Guralnick [8, Theorem 2.8], and is crucial to obtaining our main result.

Theorem 2.2 (Fulman, Guralnick

)-
( (/\)+|/\|)/2 CAl g MLy et
mk?)?)Zven i21 i<

for k even

3 The groups and their conjugacy classes

After reviewing the definitions of the finite classical groups and their orders, this section analyzes
how their conjugacy classes interact and computes the corresponding centralizer subgroup sizes.
3.1 The finite classical groups

Let G,, = GL(n, Fq) be the general linear group with entries in the algebraic closure of the finite
field F, with g elements. Let
F: G, — G,
(aij) = (af))
be the usual Frobenius homomorphism. Then the finite general linear groups are given by
GL(n,F ) = Stabg, (F¥).

The finite unitary groups are given by

U(n,Fp) = {(aij) € Gn | (af)"" = (aij)}.

Let

0 -1

0
-1 0
T=17 1 ’
0
1 0

and let w = (w;;) € G, be an element such that (w?i)_l(wij)_l = J, whose existence is

guaranteed by the Lang-Steinberg Theorem. Then the finite symplectic groups are given by

Sp(2n,Fy) = {(aij) € GL(2n,Fy) | (ai;)J(azi) = J}
= {(ai;) € U(2n,Fpe) | (ai)w ' Jw(aj;) = wt Jw, w(a;j)w™t € GL(2n,F,)}.

Using the second definition above, we see that Sp(2n,F,;) may be viewed as a subgroup of
U(2n,IE‘q2).



We will only deal with finite orthogonal groups (see, for example, [9] for a definition) in the
case that ¢ is odd. When m is even, O"(m,F,) and O~ (m,F,) are the split and non-split finite
orthogonal groups, respectively, and when m is odd, O(m,F,) is the unique finite orthogonal
group.

The orders of the groups of interest in this paper are

IGL(n,Fo)| = ¢"" V2" = 1) (g™ Y —1)--- (¢ - 1)
U, B = ¢ D/2(g" — (—1)) (gD — (—1)D) - g+ 1)
Sp(2n, Fo)l = ¢ (¢*" = D@D —1) - (¢* = 1)
0% (20, Fy)| = 2¢" (1 £ ¢7")(¢*" ) = )" — 1) (¢* - 1)
020+ 1,F,)| = 2¢" (¢*" — 1)(¢2"V —1) - (¢* — 1).

3.2 Conjugacy classes

This section examines the conjugacy classes of the following groups, and the behavior of conju-
gacy classes when considering one group as it is contained in another:

GL(2n,F,»)
GL(2n,F,) U(2n,F,»)
Sp(2n,Fy)
Define sets,
® =&,  where for k € Z>1, &, = {F"-orbits in G1},
and
= . 3 — D)
Py ={~- P h _ _
2 = {~ -orbits in &,}, where s={s1,....s} — §={s7%....5, Y}
* d — d
®* = {x-orbits in ®}, where . _ _
{ } s={s1,...,s,} = s ={s7h ... s}

Note that there is an injective map

{Subsets of G} — F,[X]
s={s1,82,...,8k} +— fs=(X—51)(X —s2) (X —sp),
that sends @y, to the F k-irreducible polynomials in Fx [X]. Thus, we can identify the sets of
orbits @, P, and ¢* with sets of polynomials in the variable X. Also, for s = {sy,..., sk}, we
write s = {s{,..., st}
A ®-partition XA : & — P is a function which assigns a partition A®) to each orbit s € ®.
We may also think of a ®-partition as a sequence of partitions indexed by ®. The size of A is

Al= IslIAC)],
sedP
where |s| is the size of the orbit s. Let

® = U Pfa where 73,? = {®-partitions of size n}.
n>0



We can define ®-partitions, ‘ig—partitions, and ®*-partitions similarly.
By Jordan rational form (see [17, IV.2]),

Conjugacy classes o,
{ of GL(n,Fpe) [ Pn

such that the conjugacy class corresponding to A € P®* has characteristic polynomial

[T 2

EIS0%

Furthermore, Wall [22] and Ennola [5] established

Conjugacy classes &
{ e B

such that the conjugacy class corresponding to A € PP has characteristic polynomial

[T A,

Seéz

The following Lemma addresses the relationship between the conjugacy classes of these
groups. By a slight abuse of notation, we will write

1={1}ed and —1={-1} € ®.
So, s = 1 corresponds to the polynomial X — 1, and s = —1 to X + 1.

Lemma 3.1.

(a) The element gx € GL(n,F2), in the conjugacy class given by X € P22 is conjugate to an
element of GL(n,F,) if and only if

pUst) = X0, for (sUs?) e @,
defines a ®-partition .

(b) The element gx € GL(n,Fy2), in the conjugacy class given by X € P22 is conjugate to an
element in U(n,F,2) if and only if

plUs) = A\ for (sU3) € By,
defines a ®-partition 1.

(c) Let q be odd. The element gx € GL(2n,F,), in the conjugacy class given by X € Pg,, is
conjugate to an element in Sp(2n,Fy) if and only if

plUs) = A6, for (sUs") € ¥,

defines a ®*-partition p and mj()\(l)),mj(/\(*l)) € 2Z>q for all odd j € Z>1.



(d) Let q be odd. The element gx € U(2n,F2), in the conjugacy class given by A € Pé%f, is
conjugate to an element in Sp(2n,Fy) if and only if

Vs = A6, for (sUs™) € F,
defines a ®*-partition pu and mj()\(l)),mj()\(*l)) € 2Z>q for all odd j € Z>1.

Proof. Part (a) follows from considering Jordan rational forms, or elementary divisors, as in [17,
IV.2], while parts (b) and (c) are due to Wall [22].

(d) Suppose gx € U(2n,F2), p is well-defined, and and mj()\(l)),mj()\(_l)) € 27> for all
odd j € Z>1. Since gx € GL(2n,F,2), (b) implies there exists v € P;Dn? such that

AG) = (1) for s = (rur) € ®,.
However, by assumption there is a ®-partition ~ such that
A=) — () for (rur?) € @,

is well-defined. Thus, gx is conjugate to an element in GL(2n,F,) and the result follows from
(c).

Suppose ga € U(2n,F,2) is conjugate to an element in Sp(2n,F,). Since Sp(2n,F,) C
GL(2n,F,), we have that gx is conjugate to an element of GL(2n,F,), and the result follows
from (c). O

We note that in each of these groups, the corresponding conjugacy class is unipotent exactly
when A is the only nonempty partition of the ®j-partition or ®o-partition.

For the rest of this section, we let ¢ be odd. The conjugacy classes of Sp(2n,F,) are not
parameterized by ®*-partitions X of size 2n such that mj()\(l)),mj()\(*l)) € 2Z>g for all odd
Jj € Z>1, as might be suggested by Lemma 3.1. Instead, we need to distinguish between some
classes in Sp(2n, F,) that may be conjugate in GL(2n,F,;). The development we give here follows
[7].

A symplectic signed partition is a partition A\ with a function
0: {2’L € 2Z21 ‘ mgl()\) 75 O} —_— {:l:l}

such that m;(\) € 2Z>¢ for all odd j € Z>1.
For example,

v=(5,5,4",4",3,3,3,3,27,27 2% 1,1) = (5%,472,3% 273 1?),

is a symplectic signed partition, where the parts of size 4 are assigned the sign — and the parts
of size 2 the sign 4. For even i, the multiplicity of 7 in v, m;(y), will be given the sign that the
parts i are assigned. In the example above, we have m4(y) = —2, sgn(my(v)) = —, ma(y) = +2,
and sgn(ma(7y)) = +. Let P* denote the set of all symplectic signed partitions.

If v is a symplectic signed partition, we let v° denote the partition obtained by ignoring the
signs of the sets of even parts of v. We define various functions on symplectic signed partitions
as its value on 7°, for example, we define |y| and n(vy) as |7°| and n(~°), respectively. Define
PE as the set of symplectic signed partitions of size n.

Let P*®" denote the set of functions X : ®* — P U P* such that

(a) AW AED € PE are symplectic signed partitions,



(b) A € P for r € ®*, r # +1.
For A € P*®", define

Al= D Ir[AT7,

red*

and let
PEY = (A e PEY | |\ =2n}.

Then from results of Wall [22],

Conjugacy classes e
{ of Sp(2n,F,) ST

such that the conjugacy class corresponding to A € P*®" has characteristic polynomial

[T 227

red*
Alternatively, we may consider the set P*® of functions v : ® — P U P*, such that
(a) v, (=D e P* are symplectic signed partitions,
(b) 4" =~U") for all r € @,
(c) v e P for r € ®, r # £1.

If we define || and P;ff) analogously, then the set 7723?? also parameterizes the conjugacy classes
of Sp(2n,F,). In this case, if g is an element of Sp(2n,F,) in the conjugacy class corresponding
toy € P;;D, then the conjugacy class of g in GL(2n,F,) is given by A € P2, where A = ~()°
for r = +1, and A" = ~(") otherwise.

3.3 Centralizers

For g in a group G, let
Calg) ={h € G | gh=hg},

denote the centralizer of g in G.

Theorem 3.1 (Ennola, Wall). Let g, € U(n,F2) be in the conjugacy class indeved by p € 77;%2.
The order of the centralizer of g, in U(n,Fp2) is

ay = (—1)lH H ) ((—q)|5|), where a,(x) = plH+2n ) H 1_1(1 — (1/x)7),

sedy iog=l1
for = (1m2m23ms...) ¢ P.

Let g be odd, and let v € P=®. For each r € ®, define A*(r,4("),4) as follows, where we let
m; = mz(fy("))

‘U(mi,qu) if r= 7“*, r 7'5 :|:1,
1/2 . X
A*(T,’Y(r), Z) — ‘GL(mi,qu) if r 75 re,rTr 7& +1, (31)
‘Sp(mi,IF‘q) if r =41, 7 odd,

gmil/2|osen(m) (Imy|, Fy)| if r = +1, i even.

9



In the case that » = £1 and ¢ and m; are both even, sgn(m;) says whether to take the split
or non-split orthogonal group, and when m; is odd, this will always give the unique orthogonal
group regardless of the sign of m;. For each r € ®, we define B*(r,~(") as

B*(T,’Y(T)) — qlT\(I'Y(”I/2+n('Y(”)*Zi m?/2) H A*(r,n)f)/(T)J), (32)

1

These factors are defined in order to state the following result of Wall [22], which tells us the
size of a given conjugacy class of Sp(2n,F,).

Theorem 3.2 (Wall). Let g € Sp(2n,F,) be in the conjugacy class parameterized by v € P;L(D.
Then the order of the centralizer of g in Sp(2n,Fy) is given by

‘CSp(2n,]Fq)(g)‘ = H B*(T77(r))'
red

Remark. We have applied the following identity for partitions in order to state the results of
Wall in the form given in Theorem 3.2. For any v € P, we have

S ima(y)m;(1) + 5 32 = () = bl/2 + ) = S mi()?/2

1<J %

Note that an elemept s e ‘i)g satisfies either s € ®o, or s = v U U where v, € ®o with v # 0.
For v € P®2 and s € & \ {£1}, let

‘U(mz‘anmsl)‘I/z if |s| is odd,

A(s, v i) = ’GL(mian\s\)‘l/Q if |s] is even, s # s*,
’U(m’ian\S\)’ ifS:”UU177’U:U*7
L, Fyy)| i s =00 0= 5.

B(s, u¥)) = el /2en )= m2/2) TT As, ), ), (3.3)

where m; = m;(v®).

Theorem 3.3. Let g € Sp(2n,F,) be in the U(2n,F 2)-conjugacy class parameterized by v €

73%, and in the Sp(2n,F,)-conjugacy class parameterized by v € 73;[;1). Then the order of the
centralizer of g in Sp(2n,Fy) is given by

‘CSp(Zn,IFq)(g)‘ - B*(laﬂy(l))B*(_laﬂy(il)) H B(Svy(S))'
sedo\{£1}
Proof. From Theorem 3.2, we just need to prove that

H B*(r,y™) = H B(s,v®). (3.4)

red®d\{+1} sedo\{*1}

Suppose s € ®y \ {£1} satisfies s € ®5. Note that since |s| is odd, the relation s* = s would
imply the existence of some s; € s such that s;° L— g, However, £1 ¢ s, so such an s; cannot
exist. Thus, s* # s. Let r = sUs* so that € ®, r* = r and |r| = 2|s|. Then y(") = v(*) = (")
and by definition

B*(r,vM) = B(s,v®)B(s*,0*")).

10



Suppose that s = v U0 with v # ¥ € ®9, and that s # s*. Let r = v U 0, so that
7 =v*U® # 7. Then we have r € ®, |r| = |s|, v(®) = ~() and

B'(ry") = B(s,p”) and B*(r",4") = B(s",v)).

Finally, suppose that s = v U9 with v # © € ®3 and s = s*. Either v = v* or v = v*. If
v = v*, then in fact we have §* = s, so that s € ®. Letting r = s, we have 'y(r) =) and

B*(r,y\") = B(s,v").

If v = ¥%, then we have v € ®, and v # v*. Letting r = v, we have |r| = |s|/2, and v(8) = ~(") =
~™) | so that
B*(r, ™) B*(r*,4")) = B(s,v¥).

This exhausts all factors in both sides of (3.4), and the desired result is obtained. O

4 Character sums

This section contains our main results, including formulas for

U(2n,F 2)
In dsp(2n Fj) (1)(g), forgeU(2n,Fpe), and Z x(g), for geU(n,Fp.),
xEIrr(U(n,]Fqg))

in Theorem 4.3 and Theorem 4.4, respectively.

4.1 Deligne-Lusztig induction and a model for U(n,Fz2)

For any class function x of U(n,F,2), and any conjugacy class of U(n,F2) corresponding to

v € P¥2 we let x(v) denote the value of y evaluated on any element of the conjugacy class
corresponding to v.

Let T'(,y denote the Gelfand-Graev character of U(n,[F,2), which by [21] takes values given
by the character formula

_2A T (1~ (—¢))) if p is unipotent and u = pV,
P = 4 COPATES (0= (=) if o is wnipotent and jo = o m
0 otherwise.

Let
C = @ Ch, where Cpn = {class functions of U(n,F2)},

n>0
be the ring of class functions with multiplication given by Deligne-Lusztig induction
xon =Ry 5 (x®8). (4.2)

where y € C), and & € C),. See [2], for example, for a discussion of Deligne-Lusztig induction.
This ring structure is studied in [4], and it turns out to be exactly the same structure induced
by a product on class functions of U, using Hall polynomials, which was studied by Ennola [6].

In particular, given p, v, A € P®2, we define the Hall polynomial gz‘y(t) by

A
gy,u H g“(s),,m (4.3)
sEDy

The following result is proven in [20], but also seems to be implicit in [4].

11



Theorem 4.1. Let x € Cy,, n € Cy, and let A € Pﬁin. Then the value of xo& on the conjugacy
class X of U(m +n,F2) is given by

o)X= > gr—xmiw).

d d
MEP2 VEP,, 2

In the case that ¢ is odd, Henderson [10] has decomposed the permutation character Indgzgn (1)
into irreducible constituents, and proved that it is multiplicity free. It is well known that the
Gelfand-Graev character is multiplicity free (see [19], for example), and the decomposition into
irreducibles for the finite unitary group is given in terms of Deligne-Lusztig characters in [3] and
in terms of irreducibles in [18]. Using these results, along with the characteristic map of the
finite unitary group, the following result is proven in [20].

Theorem 4.2. Let q be odd, and let U, = U(n,F,2), Spar = Sp(2k,F,) and let 1 be the trivial
character. The sum of all distinct irreducible complex characters of U, is given by

Y x= Y Tuohdd (1).

XEIrr(Un) k+2l=n

Giving the sum of all distinct irreducible characters of a group as a sum of one-dimensional
characters induced from subgroups is called a model for the group. In Theorem 4.2, Deligne-
Lusztig induction is used in place of subgroup induction, so this is a slight variant from the
classical situation. Note that since Deligne-Lusztig induction does not, in general, produce
characters, it is somewhat surprising that all of these products do in fact result in characters.
A model for the group GL(n,F,) was first found by Klyachko [15], and made more explicit
by Inglis and Saxl [12], and the result for that case is analogous to Theorem 4.2, except with
Deligne-Lusztig induction replaced by parabolic induction.

4.2 Values of the permutation character

Let U, = U(n,F2) and Spa, = Sp(2n,F,). The goal of this section is to use results from Section
3 to give a closed formula for the value of

Uann  _ Uan
15127271 - IndS;Qn(l)

evaluated at an arbitrary conjugacy class of Us,. Throughout this section, we let ¢ be the power
of an odd prime.
Let g € Uy,. From the formula for an induced character, we have

€ Uz | ugu™ € Span}|  [Cu, (9)] ,
W () 1L = YU heSpoy | heginUs}|. (44
Spgn( ) ‘Sp2n‘ |Sp2n| H P2 ‘ g 2 }‘ ( )

If ¢ is in the conjugacy class indexed by v € 77;1)712, then the value of |Cy,, (9)| = av, as given by
Theorem 3.1. So, we need to know the number of elements h in Sps, which are conjugate to g
in Ugn. _

Let s € {£1}, and let v € P®2. Writing m; = m;(v(®)), define A(s,v®), i) and B(s,v)) as
follows.

Lmi/2]
A(s, v i) = [ (1= 1/q%) = g 2m/2D = mi/2li8p (2| my /2|, F,)|,
j=1
B(s,v®) = g2t O) o) /2 HA(S’ v ). (4.5)

12



Theorem 4.3. Let v € Py2, and let q be odd. Then lg;Zn(V) = 0 unless
(i) For every s € @y, v(®) = p(s"),

(i) For every odd j > 1, m;(vM), m;(v(-1) € 2Z,.

If both (i) and (ii) are satisfied, then

ay

Hseéz B(s, 1/(8)) )

where a,, is as defined in Theorem 3.1, and B(s,v\®)) is defined as in (3.3) and (4.5).

Uzn
1S§2n (’/) =

Proof. Lemma 3.1 (d) and (4.4) imply that 1%’21”(1/) = 0 if v does not satisfy (i) and (ii) (else
the conjugacy class parameterized by v is not conjugate to an element in Spay,).

Let h € Span, and suppose h is in the Us,-conjugacy class parameterized by v € 7351;. Thus,
by Lemma 3.1 (d), if h is in the Spo,-conjugacy class parameterized by p € 77;?*, then

p" =@ EDT =D and pbY) = p) forall sUs* € &%\ {£1}.

From (4.4) and Theorem 3.3, we have

Span|
Span |Span| Mze;ﬁ B*(1, 1) B*(=1,7) [sed,\ (13 B(s, v(s))
pe=v(1) yo—p(=1)

. Gy Z 1
Hseég\{il} B(s,v) = B*(1, 1) B*(—1,7)

po—u (D) Ho—y(=1)

So we want to show

1 1
= . 4.6
BT, v0)B(—1,v) 2 FpBCL) (49)
HYEP
po—p (D) Joy (1)

Note that we can think of the set of symplectic signed partitions P+ as

PE={(v,0) e PxS,}, where Sl,:{ d:{i€2Z> | vj=1ifor some j} — {£1} }’

so that if y = ™M) and v = V(*l), then equation (4.6) becomes

1
BLWB(17) 2 B A B (L (o)
TGS—Y

From (3.1) and (3.2), we have for s € {1} and (u,0) € P+,

B*(S, (Iu’ 5)) |,u|/2+n m2/2 HA*
|u|/2+n 2/2 H ‘Sp mg, q)‘ H qm1/2‘061 (mia Fq)‘a
i odd i even

where m; = m;(u). For ¢ odd,

m; /2 m;/2
mm“\wMﬂl 1) = g2 T (- 1/%).
j=1

13



Note that

T ¢/ = o2

i odd
From (4.6) and (4.5), it suffices to show

q Z’L cvcn ( ) / Zz Cvcn Z H 1
HZ even A(]‘7 /’L? Z)A( 77’ A* )A*( (7? T)7Z) .

SESy 1 even
TESy

(4.7)

Let s € {#1} and (u,6) € PE. For i even, and m; = m;(u) odd,

[mi/2] [m:/2]
A*(s, (1,8), 1) = ¢™/2|O(my, Fy)| = 9gmi/AHL/A H (g% — 1) = 2¢™i/? H —1/¢%).
j=1

For i even and m; even,

A*(Sa (:uv 5)7 Z) = qmi/Q‘O(Si (mzan)‘

mi/2—1
= 2q(mi)2/4(qmi/2 +6) H (qu —1)
j=1
m;/2—1
2 s ;
= 20" 21+ 57 [T (1—1/¢%).
j=1

Returning to (4.7), let M = Hz even | m;(u) # 0}} + ‘{1 even | m;(7y) # O}| Then

1
Z H A* )A*(_L('ya T)ai)

SESy 1 even
TESy

q Zzeven ( )/2 Zzeven ( )/22 M

H (1— 1/q|mi(u)|) H (1— 1/q|mi(v)|)

Hl even A<17/’L’ Z)A(_1777Z) i even i even
m,; () even m,; () even
1 1
| 5; 1l aosemorm 1 armmmerm (4.8)
7'65'\/ m,; () even m; () even

In the last sum there is a choice of signs for d; and 7; whenever i is even and the multiplicities
are nonzero, and so there are 2™ terms in the sum. Define

M, = |{i even | m;(1) # 0 and m;(p) is even}| + |{i even | m;(v) # 0 and m;(7) is even}|
M, = |{i even | m;(u) is odd}| + |{i even | m;(u) i

so that M = M, + M,. Since the choices of sign for m; odd do not affect the sum in (4.8), we
have

1 1
Z H (1+ 5iq—mi(ﬂ)/2) H (1+ Tiq—mi(’Y)/Q)

665# i even i even

TESH m; () even mi(7) even
> 1 1
- 2 [ rrmar I rrmmm (49
- gmi(p)/2 m;(v)/2’
5i77—j€{i1} i even 1 + 5l/q ( )/ § even 1 + 75 /q J /
ivmi(ﬂ)yjymj<’y) even m;(p) even mj('y) even

14



where there are exactly 2M¢ terms in the second sum.
For any set of numbers {a1,...,a;}, an induction argument gives us the identity

oo ok
Z H1+5jaj:Hk: (1—a?)

01,02,...,0p€{£1} j=1

Applying this identity to (4.9), we obtain

1 1
> 2 vgmor W v men

éi,rje{il} i even j even
’i,mi(u),j,mj(’\/) even ™M (n) even mj('y) even
2M
- | . (4.10)
Hi,mi(u) eVen(1 - 1/q|ml(#)|) Hi,mi('y) even(1 - 1/q|m,(’y)\)
Substituting (4.10) into (4.8), we obtain the desired result (4.7). O

Theorem 4.3 has an especially nice form when evaluated at unipotent elements.
Corollary 4.1. Let u, € U, be a unipotent element of type p. Unless m;(n) € 2Z>¢ whenever
1 15 odd, 1g§;n (uy) =0, and otherwise we have
(=1)¥la,(—q) -
1U2n =~ 2 2 B i tal=ew)/2 (—1/g).
szn( N) B(1,p) u( /)
Corollary 4.1 immediately follows from Theorem 4.3 and the following result.

Lemma 4.1. Let A € P. Then

ax(—q) Al n(A)+(|A|—o(N))/2
= (-1 —1/q).
B(1,)) (=1)"q e(=1/9)

Proof. Recall the definition of cy(t) as given in (2.2). From the form of this function given in
(2.3), we have

[LIL 0~ (<1/a))
m;(N)/2 N
LI (/)
The definitions of a)(—¢) in Theorem 3.1 and of B(1, ) in (4.5) now imply the result. O

ex(=1/q) =

4.3 Values of the full character sum
We now calculate the sum of all characters of U, at an arbitrary element.

Theorem 4.4. Let q be odd, and let A € 775)2. Then 3, cre(u,) X(A) = 0 unless
(i) For every s € ®y, Al8) = A7),

(ii) For every odd i, my(A"V) € 2Z .

(iii) For every even i, m;(AM) € 2Z.

If (1), (ii), and (iii) are satisfied, then

Yoy =

xE€Irr(Uy) HSE&)Q B(‘S? A(S))

o(A1)

where ay is as defined in Theorem 3.1, and B(s,A®)) is defined as in (3.8) and (4.5).

15



Proof. Let X € 73;1:) 2. From Theorems 4.1 and 4.2, we have

> N = Y (T omdi, (1))

X€E€Irr(Up) k+2l=n

Yo gp (0T (w1 (v)

k+2l=n HGP;DQ

P

”67321

From Equation (4.1), we have Tr) () = 0 unless p is unipotent, so we may assume p = u(l),
where |p| =k, and p(®) = () when s # 1. As in (4.3), we have,

As)
ga(=a) = 1 95000 ()",
sEDy

Since u®) = () when s # 1, then from (2.1) we have that if s # 1,

(s) s 1 ifv = )\(s),
2o (—a)) = { .

0 otherwise.

From these facts, and from the value of I'(; given in (4.1), we have

K(u)

POERCEIDDED DEED DR »RCIC e -1, ).

x€lrr(Uy,) k+2l=n pePy eP@Q L(D_, :1
21 -
v(8) = () s£1

Since || + || = |AM| and |v] is even in the above sum, we have
(=D)IA12) = Cpylel/2l /2 ang (—1)APT = (—1)ll,

and so we multiply the outside of the sum by the expressions on the left sides of the equations
above, and the inside of the sum by the expressions on the right sides. We have v = A
when s # 1, and from Theorem 4.3, 1U21 ,(v) = 0 unless A®) = XE) for s € By, mi(ATY) is

even when i is odd, and m;(v(!)) is even when ¢ is odd, and otherwise we have

o a0 (o) a(-g
Hseég B(S’V(S)) N Hs;«él B(SvA(s)) B(l,y)’

U.
15”;121 (V) =

where v = v(1). So, > xeln(Uy) X(A) = 0 unless A® = A6 for s € & and m(ATY) is even
when 7 is odd, and otherwise we have

Z XA = (- )LIA“)I/2J+I>\“)IH 1A 1sl g o (=)

xEIrr(Uy) 5;&1
Z g)\(l) Iul H (_1)|V|/2au(_Q)
w,veP g B(lvy) Hs;él B(37)‘(S))
" s
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From Lemma 2.2, with ¢ = —1/q, this expression is the coefficient of P,q)(z;—1/¢) in the
expansion of

(_q)n(k(l))( )LW”\/2 +I>\“>IH IA(S)IISI ayeo ((— g)*)

s#1
()
) Z Py(z; l/q Iul H Z Py(z;—1/q) (_1)|y‘/2au(—Q) .
2 (—a® (=" BLw) [y BsA)
"Eéf?fiin
By applying Lemma 2.3, with ¢ = —1/q and y = ¢, and replacing each z; with —z;, this
expression is the coefficient of Py)(2;—1/q) in the expansion of
) e e (s) — 24iq
(—q)" ) (=) LIATI/2 A IH 1Al g, \o (= q)" \) H !

porry 1+

3 P(x;—1/q)  (=1)"V2a,(—q)
veEP (_q)n(u) B(l,l/) Hs;él B('S’)‘(f))‘

my (v) even
for k odd

Applying Lemmas 4.1 and 2.1, this expression simplifies to

(g O )N IHA T (—1)A71 bl g () T A2

s£1 i>1 14z
—q)wl=ow)/2. (_
Z Py(x;—l/q)( Q) CV((S) I/Q)
veP Hs;ﬁl B(37 A )
"R oad

We may now apply Theorem 2.1, with ¢ = —1/¢, to change the last sum into a product, which
simplifies the above expression to

(_q)N(A“))( )L\A<1)I/2J+\>\<1)| H \A(S)H slq A\ )((_q)ISI)
s#1
H 1—mq 1— =z 1
1+ i<i 1+ zz5q [T B(s,A\®)

i>1
Finally, Theorem 2.2 with ¢ = —1/¢ implies that the coefficient of P, (z; —1/gq) of the above
expression is 0 unless my (A1) is even whenever k is even, in which case it is

7q)(o<A<1)>+\A<“\)/2

an(A® AD /2] 4+ A0 P\(SH\ sl CA(l)(*l/Q)(
(—g)"* (=)l axe ((—a)"™) ;
1= [T, B(s, AD)

Applying Lemmas 4.1 and 2.1 and simplifying gives the desired result. O

In the case that we are finding the sum of the characters of U,, at a unipotent element, we
obtain a result much like Corollary 4.1.

Corollary 4.2. Let u, € U, be a unipotent element of type p. Unless m;(p) € 2Z>¢ whenever
i 15 even, 3. er(u,) X(Uu) = 0, and otherwise we have

_1 “Lla/ _q qO(/.L) n o
S ) = Y B(Ml( M)) _ o) 26 (1 /).

Proof. This follows immediately from Theorem 4.4 and Lemma 4.1. O

x€Irr(Uy,)
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5 Probabilities and Frobenius-Schur indicators

Here we reinterpret the main results in Sections 4.2 and 4.3 as probabilistic statements, as the
corresponding results for GL(n,F,) are given in [8]. For the result in Theorem 4.3, we have the
following statement.

Corollary 5.1. Let q be odd. The probability that a uniformly randomly selected element of
Sp(2n,Fy) belongs to the conjugacy class in U(2n,F2) corresponding to v € P;I’nz s 0 unless
v = ") for every s € ®q, and mj(u(l)) and mj(u(_l)) are even for every odd 7 > 1, in

which case it is equal to
1

HsE(BQ B(87 V(S)) ‘

Proof. From Equation (4.4), we have, for any g € Usy,

Unn ICu,, (9)]
151202n (9) = |Sj02n|

‘{h € Span, | h~gin Ugn}{.

Taking g to be in the conjugacy class corresponding to v € P;I),f, we have |Cp,, (9)| = a, from

Theorem 3.1. So, the probability we want is exactly

Usn .
Lops, ) _ |{h € Span | h~ g in Uz}
Qv ’San’ .
The result now follows directly from Theorem 4.3. O

Interpreting the result for the full character sum in Theorem 4.4 as a probabilistic statement
is most easily accomplished using the twisted Frobenius-Schur indicator, originally defined in [14]
and further studied in [1]. Let G be a finite group, with automorphism ¢, which either has order
2 or is the identity. Let (m, V) be an irreducible complex representation of G, and suppose that
tm 2 7, where 7 is the contragredient representation of 7 and ‘ is defined by ‘7(g) = 7(‘g). The
equivalence of the representations ‘w and 7 implies that there exists a nondegenerate bilinear
form

(,):VxV—=C,
unique up to scalar by Schur’s Lemma, such that
(m(g)v, ‘m(g)w) = (v, w),

for every g € G, v,w € V.
Because the bilinear form is unique up to scalar, we have

<’U, w> = EL(T‘-)<w7 U>7

where ¢,(m) = 1 depends only on ¢ and 7. If ‘m 22 &, we define ¢,(7) = 0. Then ¢,(m) is the
twisted Frobenius-Schur indicator of (7, V') with respect to ¢. If x is the character corresponding
to 7, we also write ¢,(m) = ¢,(x). The following results are proven in [14] and [1], and show that
the twisted Frobenius-Schur indicator indeed generalizes the classical Frobenius-Schur indicator,
which is the case that ¢ is trivial.
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Theorem 5.1. Let G be a finite group with automorphism v such that * is the identity. Then
we have the formulas

sb(x)sz,ZX(ng), and Y e(x)x(g) =|{h€G|h'h=g}|

geG x€lrr(GQ)

Now consider the case G = U(n,F,2) and ¢ the transpose inverse automorphism. In [20], it
is proven that ¢,(m) = 1 for every irreducible complex representation (m, V) of U(n,Fz). By
Theorem 5.1, this is equivalent to [20, Corollary 5.2]

Z x(1) = [{g € U(n,F2) | g symmetric}|. (5.1)
XEIrr(U(n,Fqg))

We conclude with the following probabilistic version of Theorem 4.4.

Corollary 5.2. Let q be odd. Let u be a uniformly randomly selected element of U(n,F ),
and let v be the transpose inverse automorphism of U(n,F2). The probability that u‘u is in the

conjugacy class corresponding to v € 777%2 is 0 unless 1) = v for every s € Oy, m; (1/(1)) 18
even for every even j, and mj(u(_l)) is even for every odd j, in which case it is equal to

qo(A(”)

Hsei>2 B(s, )\(S))~

Proof. Let g € U, be an element from the conjugacy class corresponding to v. From Theorem
5.1, and the fact that ,(7) = 1 for every irreducible representation 7 of U,,, we have

S xw) = [{ue Uy | utu=g}|

X€Irr(Un)

We need to count each set on the right as g ranges over the conjugacy class corresponding to v,
which has size |Uay,|/ay, by Theorem 3.1. Multiplying by this quantity, and dividing by |Us,| to
get a probability, we find that the desired probability is

{u e Uy, | uu= g} _ 2 xeter(Un) X(V)
ay ay

The result now follows from Theorem 4.4. O
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