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Abstract. We prove that if G is a finite simple group, then all ir-
reducible complex representations of G may be realized over the real
numbers if and only if every element of G may be written as a prod-
uct of two involutions in G. This follows from our result that if q is a
power of 2, then all irreducible complex representations of the orthogo-
nal groups O±(2n,Fq) may be realized over the real numbers. We also
obtain generating functions for the sums of degrees of several sets of
unipotent characters of finite orthogonal groups.
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1. Introduction

Suppose G is a finite group and π : G→ GL(d,C) is an irreducible com-
plex representation of G. Then π may be realized over the real numbers if
and only if there exists a non-degenerate G-invariant symmetric form B on
V = Cd. That is, a basis for V = Cd exists such that every resulting matrix
for π(g) has real entries precisely when π maps G into an orthogonal group
Od(B) defined by B. Thus such representations are called orthogonal, and
if G has the property that all of its irreducible complex representations are
orthogonal then G is called totally orthogonal. While an irreducible repre-
sentation of G with real-valued character may or may not be orthogonal, it
is known that the number of real-valued irreducible characters of G is equal
to the number of real conjugacy classes of G, which are conjugacy classes
of elements which are conjugate to their own inverses. Brauer asked [3,
Problem 14] whether the number of irreducible orthogonal representations
of a finite group G can be expressed in terms of group-theoretical data. A
sub-question of this is whether we can give a group-theoretical condition
which is equivalent to G being totally orthogonal. It is the latter question
which we answer in this paper for the case that G is a finite simple group.

An element g ∈ G is strongly real if there exists some h ∈ G such that
h2 = 1 and hgh−1 = g−1, that is if g = h1h2 for some h1, h2 ∈ G such
that h2

1 = h2
2 = 1. A finite group G is strongly real if every element of G is

strongly real. It was stated as a conjecture in [15], attributed to P. H. Tiep,
that a finite simple group G is totally orthogonal if and only if it is strongly
real. The verification of this conjecture is the main result of this paper:

Theorem (Theorem 8.4). Let G be a finite simple group. Then G is totally
orthogonal if and only if G is strongly real.
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We note it is pointed out by Kaur and Kulshrestha [15] that the above
result does not hold for finite groups in general. A brief recent history of
the progress on this result is as follows. Tiep and Zalesski [29] classified
precisely which finite simple groups are real, that is, have the property that
all conjugacy classes are real. A program then began of classifying which
finite simple groups are strongly real, which was concluded in the papers
[30, 25]. This program yielded the somewhat surprising result that all real
finite simple groups are strongly real. Other than two alternating groups and
two sporadic groups, the rest of the groups on the list of strongly real finite
simple groups are groups of Lie type. When one considers whether these
groups are totally orthogonal, as explained in [27, Section 3], this follows for
many of the groups from previous work, like the paper of Gow [13] which
covers the simple symplectic and orthogonal groups in odd characteristic.
The only cases which do not follow from previous results are the symplectic
groups Sp(2n,Fq) when q is a power of 2, which this author proved in [31],
and the special orthogonal groups Ω±(4m,Fq) = SO±(4m,Fq) when q is a
power of 2, which we complete here in Theorem 8.3. This statement follows
from our result in Theorem 8.2 that the full orthogonal group O±(2n,Fq)
is totally orthogonal when q is a power of 2. Since every real finite simple
group is strongly real, and so totally orthogonal from our main result, then
a finite simple group is real if and only if it is totally orthogonal. This
translates into a curious behavior of the Frobenius-Schur indicators of finite
simple groups, which we give in Corollary 8.1.

An outline of this paper and the main argument is as follows. We give
background on the finite orthogonal and special orthogonal groups in Sec-
tion 2.1. In Section 2.2, we give background on the standard and twisted
Frobenius-Schur indicator, including the (twisted) involution formula which
says that the character degree sum for a finite group is equal to the num-
ber of (twisted) involutions if and only if all (twisted) indicators are 1. In
Section 3 we give the generating functions for the number of involutions in
the finite orthogonal groups due to Fulman, Guralnick, and Stanton [10],
and for the number of involutions in the finite special orthogonal groups
or in its other coset in the orthogonal groups, from [27]. These gener-
ating functions motivate our main method in the following way. When
q is odd, the Frobenius-Schur indicators of O±(2n,Fq), SO±(4m,Fq), and
SO±(4m+2,Fq) (a twisted indicator in the last case) are known to be 1. We
may thus equate the generating functions for the relevant sets of involutions
with a generating function for the character degree sum of the associated
group. Moreover, such an equality holds for q even if and only if the indi-
cators of interest are all 1 for the q even case. To take advantage of these
two facts, our main goal for the bulk of the paper is to directly calculate a
generating function for the character degree sums of these groups through
the character theory of finite reductive groups. The crux of the argument
is that we are able to obtain generating functions for the character degree
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sums of O±(2n,Fq) and SO±(2n,Fq), where only a factor involving unipo-
tent character degrees for these groups is not expanded as a nice infinite
product. But, the degrees of unipotent characters are the same polynomials
in q whether q is even or odd, and since we have another generating function
for these character degree sums when q is odd through the involution count,
we are able to solve for the generating function for sums of unipotent char-
acter degrees. Using this, we are able to conclude the character degree sums
in the case q is even match those for the desired involution counts, giving
the main results. This is the same method which is employed for the case of
Sp(2n,Fq) with q even (and SO(2n+ 1,Fq) with q odd) in [31], although in
the cases at hand there are several obstructions of order 2 which make the
calculation more complicated which we now explain.

First, we deal with both the split and non-split orthogonal and special
orthogonal groups by considering them both simultaneously, as the count for
the number of involutions in both of these groups takes a nice form, and the
combinatorics of their unipotent characters taken together is well-behaved.
Secondly, the groups SO±(4m,Fq) are totally orthogonal, while the groups
SO±(4m + 2,Fq) are not. We take care of this by indicators twisted by
the graph automorphism in the latter case. These cases are also unified
when considering the full orthogonal group, which are all totally orthogo-
nal, although this introduces an order 2 obstruction again since the groups
O±(2n,Fq) are the Fq-points of a disconnected algebraic group with 2 com-
ponents, as do the centralizers in these groups of the semisimple elements
in the special orthogonal groups, which are discussed in Section 4. We must
also understand the unipotent characters of these centralizers, which are dis-
cussed in Section 5. Through the Jordan decomposition of characters, the
topic of Section 6, we can obtain all character degrees of connected finite
reductive groups through the orders of centralizers of semisimple elements,
and the degrees of their unipotent characters. Despite the disconnected-
ness of O±(2n,Fq), a Jordan decomposition of characters was obtained by
Aubert, Michel, and Rouquier [2] from the equivariance of the same map for
SO±(2n,Fq) under the order 2 graph automorphism (see Proposition 6.1),
and a formula for character degrees results in Proposition 6.2.

After the calculations made in the above steps, we are able to com-
pute generating functions for the sums of (modified) character degrees of
O±(2n,Fq) and SO±(2n,Fq) in Section 7. The main results are then fi-
nally obtained in Section 8, including combinatorial identities for the sums
of (modified) character degrees of several sets of unipotent characters of
SO±(2n,Fq), and while SO±(4m + 2,Fq) is not totally orthogonal, we do
show that all real-valued characters are orthogonal in Theorem 8.6.

Acknowledgements. The author thanks Mandi Schaeffer Fry and Jay
Taylor for helpful correspondence regarding Proposition 6.1. The author was
supported in part by a grant from the Simons Foundation, Award #280496.
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2. Preliminaries

2.1. Orthogonal groups over finite fields. We follow the construction
of the even-dimensional orthogonal groups over finite fields as given in [22,
Example 22.9]. Let q be a power of a prime p, and let Fq be a finite field with

q elements with fixed algebraic closure Fq. On the Fq-vector space V = F2n
q ,

where v ∈ V is given by coordinates v = (x1, . . . x2n), define the quadratic
form Q by

Q(v) = x1x2n + · · ·+ xnxn+1.

The stabilizer of the form Q in the general linear group GL2n = GL(2n,Fq) is

the orthogonal group with respect toQ, denoted O2n = O2n(Q) = O(2n,Fq).
This is a disconnected group, and the connected component O◦2n is defined
to be the special orthogonal group with respect to Q, so O◦2n = SO2n =
SO(2n,Fq).

Now take F to be the standard Frobenius endomorphism on GL2n with
respect to Fq, so if g = (aij) ∈ GL2n, then F (g) = (aqij). Restrict this map
to O2n, and the fixed points define the orthogonal group over Fq of +-type,
and the F -fixed points of SO2n form the special orthogonal group over Fq of
+-type:

O+(2n,Fq) = OF
2n, SO+(2n,Fq) = SOF

2n.

These are also called the split orthogonal and special orthogonal groups over
Fq.

Now take the element h ∈ O2n defined by

h =


In−1

0 1
1 0

In−1

 .

Then h ∈ O2n \SO2n (whether q is even or odd). Let σ denote the automor-
phism on O2n and SO2n defined by conjugation by h. This defines a graph
automorphism of order 2 on the Dynkin diagram of SO2n. Now the map
F̃ = σF defines a twisted Frobenius morphism (or a Steinberg morphism)
on the groups O2n and SO2n. The orthogonal and special orthogonal goups
over Fq of −-type are defined to be the groups of F̃ -fixed points of O2n and
SO2n:

O−(2n,Fq) = OF̃
2n, SO−(2n,Fq) = SOF̃

2n,

also called the non-split orthogonal and special orthogonal groups over Fq.
When speaking of either the split or non-split orthogonal or special or-

thogonal groups, we will use the notation O±(2n,Fq) or SO±(2n,Fq), re-
spectively. Note that we have

(2.1) O±(2n,Fq) = 〈SO±(2n,Fq), h〉 ∼= SO±(2n,Fq) o 〈σ〉.
In the case that q is even, the groups SO±(2n,Fq) are finite simple groups,

and are also denoted by Ω±(2n,Fq) (and are the derived groups of the finite
orthogonal group in this case).



TOTALLY ORTHOGONAL FINITE SIMPLE GROUPS 5

The orders of the groups defined above are as follows, for n ≥ 1:

|O±(2n,Fq)| = 2qn
2−n(qn∓1)

n−1∏
i=1

(q2i−1) and |SO±(2n,Fq)| =
1

2
|O±(2n,Fq)|.

While we do not define these groups in the case n = 0, we will several times
need to define notions for the n = 0 case for the purpose of constant terms
in power series.

2.2. Indicators. Let G be a finite group with ι an automorphism of G
satisfying ι2 = 1. Suppose (π, V ) is an irreducible complex representation of

G satisfying ι.π ∼= π̂, where (π̂, V̂ ) is the dual representation of (π, V ), and
the representation (ι.π, V ) is defined by ι.π = π ◦ ι. It follows from Schur’s
Lemma that there exists a non-degenerate bilinear form B on V , unique up
to scalar multiple, which satisfies

(2.2) B(ι.π(g)v, π(g)w) = B(v, w),

for all g ∈ G and all v, w ∈ V . By the uniqueness of B and exchanging the
variables, it follows that B must be either a symmetric or an alternating
form. We define the twisted Frobenius-Schur indicator of π with respect to
ι, denoted ει(π), as the sign which appears when exchanging the variables
of B. That is,

(2.3) B(v, w) = ει(π)B(w, v)

for all v, w ∈ V . If ι.π 6∼= π̂, then we define ει(π) = 0.
For the case that ι has order 2, the twisted Frobenius-Schur indicator was

defined by Kawanaka and Matsuyama [16], and further investigated and
generalized by Bump and Ginzburg [4], and all of its basic properties we
give in this section can be found in those papers. When ι = 1 is the trivial
automorphism, then ει(π) = ε(π) is the classical Frobenius-Schur indicator,
and the properties in this case can be found in standard references, for
example [14, Chapter 4].

Let χ be the irreducible character of the representation (π, V ), and we let
Irr(G) denote the set of all irreducible characters ofG. The condition ι.π ∼= π̂
is equivalent to ι.χ = χ̄, where ι.χ = χ ◦ ι. We also write ει(χ) = ει(π),
and refer to the twisted Frobenius-Schur indicator of the character χ. Given
some C-basis B of V , let [π]B denote the resulting matrix representation
corresponding to (π, V ). The twisted Frobenius-Schur indicator also has the
following characterization:

ει(χ) =

 1 if there is some B such that [ι.π]B = [π(g)]B,

−1 if ι.χ = χ̄ but there is no B such that [ι.π]B = [π]B,
0 if ι.χ 6= χ̄.

In the classical case when ι = 1, this says that ε(χ) = ±1 if and only if χ is
a real-valued character, and ε(χ) = 1 exactly when (π, V ) may be realized
as a real representation. By (2.2) and (2.3), ε(χ) = 1 is equivalent to being
able to embed the image of π in an orthogonal group (defined by B). As
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mentioned in the introduction, for this reason we say that the finite group G
is totally orthogonal if ε(χ) = 1 for all χ ∈ Irr(G). The condition ει(χ) = ±1
for all χ ∈ Irr(G) is equivalent to ι(g) being G-conjugate to g−1 for all g ∈ G.
We say G is a real group if g and g−1 are G-conjugate for all g ∈ G, since
this is equivalent to all χ ∈ Irr(G) being real-valued.

Given χ ∈ Irr(G), one may compute ει(χ) with the following formula:

ει(χ) =
1

|G|
∑
g∈G

χ(g ι(g)).

From this formula and orthogonality relations for characters, we obtain the
following generalization of the classical Frobenius-Schur involution formula:∑

χ∈Irr(G)

ει(χ)χ(1) = #{g ∈ G | ι(g) = g−1}.

We may immediately conclude the following, which is crucial to our main
arguments in this paper.

Lemma 2.1. Let G be a finite group, and ι an automorphism of G satisfying
ι2 = 1. Then ει(χ) = 1 for all χ ∈ Irr(G) if and only if∑

χ∈Irr(G)

χ(1) = #{g ∈ G | ι(g) = g−1}.

In particular, G is totally orthogonal if and only if∑
χ∈Irr(G)

χ(1) = #{g ∈ G | g2 = 1}.

Consider the specific case of a finite group G with [G : H] = 2, such that
G is a split extension of H. That is, we have G = 〈H, y〉 for some y ∈ G \H
such that y2 = 1. We may then define the order 2 automorphism ι on H
by ι(h) = yhy−1, and we may consider the indicators ει(χ) for χ ∈ Irr(H).
The following result is given in [27, Lemma 2.3], and will be relevant to our
main groups of interest, as in (2.1).

Lemma 2.2. Let G be a finite group with H ≤ G such that [G : H] = 2,
with G = H ∪ yH = 〈H, y〉 and y2 = 1. Define ι on H by ι(h) = yhy−1.
Then the following hold.

(i) If G is totally orthogonal and H is a real group, then H is totally
orthogonal.

(ii) If G is totally orthogonal, and ι(h) is H-conjugate to h−1 for all
h ∈ H, then for all χ ∈ Irr(H) we have ει(χ) = 1 and ε(χ) ≥ 0.

3. Involutions in orthogonal groups

We define an involution in a group G to be any element g ∈ G such
that g2 = 1, where we include the identity element as an involution for
convenience. For any subset X of a finite group G, we let I(X) denote the
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number of involutions in X. For any finite group G, we let Σ(G) denote the
sum of the degrees of the irreducible characters of G.

From results of Fulman, Guralnick, and Stanton [10, Theorems 2.11 and
2.12, and Lemma 5.1] the number of involutions in O±(2n,Fq) for q odd
may be obtained by the generating function

a±0 +
∑
n≥1

I(O±(2n,Fq))
|O±(2n,Fq)|

qn
2
zn

=
1

2(1− zq)
∏
i≥1

(1 + z/q2(i−1))2

1− z2/q2(i−1)
± 1

2

∏
i≥1

(1 + z/q2i−1)2

1− z2/q2(i−1)
,

where a+
0 = 1 and a−0 = 0. It then follows, by replacing z with z/q and

taking the sum of the two resulting generating functions for the split and
non-split orthogonal groups, that when q is odd,

I(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
I(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

(1 + z/q2i−1)2

1− z2/q2i
.

Very similarly, when q is even it follows from [10, Theorems 2.14, 2.15, and
5.6] that

a±0 +
∑
n≥1

I(O±(2n,Fq))
|O±(2n,Fq)|

qn
2
zn

=
1

2(1− zq)
∏
i≥1

1 + z/q2(i−1)

1− z2/q2(i−1)
± 1

2

∏
i≥1

1 + z/q2i−1

1− z2/q2(i−1)
,

with a±0 as above. When replacing z with z/q and adding the two generating
functions, we have that when q is even,

I(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
I(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

1 + z/q2i−1

1− z2/q2i
.

It is a result of Gow [13, Theorem 1] that when q is odd, the groups
O±(2n,Fq) are totally orthogonal. From this result, the generating functions
just given, and Lemma 2.1, we obtain the following result, which motivates
the methods in this paper.

Proposition 3.1. The following hold:
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(i) For any odd q, the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

(1 + z/q2i−1)2

1− z2/q2i

is given by

Σ(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

.

(ii) For q even, the groups O±(2n,Fq) are totally orthogonal for all n > 0
if and only if the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

1 + z/q2i−1

1− z2/q2i

is given by

Σ(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

.

It will be convenient to define e = e(q) to be the following for the remain-
der of the paper:

(3.1) e = e(q) =

{
1 if q is even,
2 if q is odd.

We now consider involutions in the special orthogonal groups. By apply-
ing [27, Theorems 6.1(1) and 6.5], substituting z with z/q and multiplying
by 2, we have

b±0 +
∑
n≥1

I(SO±(2n,Fq))
|SO±(2n,Fq)|

qn
2−nzn =

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i−2
±
∏
i≥1

(1 + z/q2i)e

1− z2/q2i

=
1

1− z2

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i
±
∏
i≥1

(1 + z/q2i)e

1− z2/q2i
,(3.2)

where b+0 = 2 and b−0 = 0. By [27, Theorems 6.2 and 6.6], and again
substituting z with z/q and multiplying by 2, we obtain∑

n≥1

I(O±(2n,Fq) \ SO±(2n,Fq))
|SO±(2n,Fq)|

qn
2−nzn = z

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i−2

=
z

1− z2

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i
.(3.3)

If we take only the even terms of (3.2) and add this to only the odd terms
of (3.3), we obtain

1

2

 1

1− z2

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i
±
∏
i≥1

(1 + z/q2i)e

1− z2/q2i
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+
1

1− z2

∏
i≥1

(1− z/q2i−1)e

1− z2/q2i
±
∏
i≥1

(1− z/q2i)e

1− z2/q2i

+
z

1− z2

∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i
+

z

1− z2

∏
i≥1

(1− z/q2i−1)e

1− z2/q2i

 .

Taking the sum of the above for +-type and −-type groups, we obtain the
generating function

(3.4)
1

1− z
∏
i≥1

(1 + z/q2i−1)e

1− z2/q2i
+

1

1− z
∏
i≥1

(1− z/q2i−1)e

1− z2/q2i
.

That is, if we define for n > 0

J(SO±(2n,Fq)) =

{
I(SO±(2n,Fq) if n is even,
I(O±(2n,Fq) \ SO±(2n,Fq)) if n is odd,

then the generating function (3.4) has as its coefficient of zn, n > 0, the
expression

J(SO+(2n,Fq))
(qn − 1)

∏n−1
i=1 (q2i − 1)

+
J(SO−(2n,Fq))

(qn + 1)
∏n−1
i=1 (q2i − 1)

.

It was proved by Gow [13, Theorem 2] that when q is odd, SO±(4m,Fq) is
totally orthogonal. It was proved by G. Taylor and this author [27, Theorem
5.1(ii)] that when q is odd, εσ(χ) = 1 for all complex irreducible characters
χ of SO±(4m + 2,Fq), where σ is the order 2 automorphism as in Section
2.1, and it follows that the character degree sum for SO±(4m+ 2,Fq) with
q odd is exactly I(O±(4m+ 2,Fq) \ SO±(4m+ 2,Fq)).

From the discussion in the above paragraphs, together with Lemma 2.1,
we have the next result.

Proposition 3.2. The following hold:

(i) For q odd, the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

(1 + z/q2i−1)2

1− z2/q2i
+

1

1− z
∏
i≥1

(1− z/q2i−1)2

1− z2/q2i

is given by

Σ(SO+(2n,Fq))
(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(SO−(2n,Fq))

(qn + 1)
∏n−1
i=1 (q2i − 1)

.

(ii) For q even, the groups SO±(4m,Fq) are totally orthogonal, and every
irreducible character χ of SO±(4m+2,Fq) satisfies εσ(χ) = 1, if and
only if the coefficient of zn, n > 0, in the generating function

1

1− z
∏
i≥1

1 + z/q2i−1

1− z2/q2i
+

1

1− z
∏
i≥1

1− z/q2i−1

1− z2/q2i
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is given by

Σ(SO+(2n,Fq))
(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(SO−(2n,Fq))

(qn + 1)
∏n−1
i=1 (q2i − 1)

.

Given Propositions 3.1 and 3.2, our main goal through the next several
sections will be to compute the generating functions involving Σ(O±(2n,Fq))
and Σ(SO±(2n,Fq)) directly, using the character theory of these groups.

4. Centralizers of semisimple elements

The conjugacy classes of the orthogonal groups O±(2n,Fq), and the corre-
sponding centralizers, were described by G. E. Wall. The case that q is odd
is covered in [32, Sec. 2.6 Case (C)], and the q even case is covered in [32,
Sec. 3.7]. One may obtain the description of the semisimple classes which
are contained in SO±(2n,Fq) and their centralizers in both O±(2n,Fq) and
SO±(2n,Fq) from this resource. For the case that q is odd, much of this
information can also be found in [5, Chapter 16], and some details for the q
even case can be found in [11, Sec. 2.4].

In order to describe the semsimple conjugacy classes of SO±(2n,Fq) or
O±(2n,Fq), we recall the notion of self-dual polynomials. If f(t) ∈ Fq[t]
is a monic polynomial of degree d with nonzero constant term, say f(t) =
td + ad−1t

d−1 + · · · + a1t + a0, then the dual polynomial of f(t), which we
denote by f∗(t), is

f∗(t) = a−1
0 tdf(t−1),

and f(t) is self-dual if f(t) = f∗(t). Then f(t) is self-dual if and only if,

for any root α ∈ F×q of f(t) with multiplicity m, α−1 is also a root of f(t)

with multiplicity m. The elementary divisors of any element of O±(2n,Fq)
are all self-dual. We let N (q) denote the set of monic irreducible self-dual
polynomials with nonzero constant in Fq[t], and we let N (q)′ = N (q) \ {t+
1, t−1}. If f(t) ∈ N (q)′, then deg(f) is even, by [12, Lemma 1.3.16]. Denote
byM(q) the set of unordered pairs {g, g∗} of monic irreducible polynomials
with nonzero constant in Fq[t] such that g(t) 6= g∗(t).

In the following description of semisimple classes, there is the sign ± cor-
responding to the split or non-split orthogonal or special orthogonal group,
and there will often be a sign associated with 1 or −1 eigenvalues. For the
rest of the paper, whenever there is a ± or ∓ in an expression, it will denote
the difference between the cases of the split and non-split groups. When
there is a term which could be associated with elementary divisors which
are powers of t+ 1 or t− 1, we will denote the sign possibility as +/−.

We first describe semisimple classes (s) of G = O±(2n,Fq) which are
contained in H = SO±(2n,Fq). First assume that q is odd, so that s has
−1 as an eigenvalue with even multiplicity. Then the semisimple class (s) is
determined by the elementary divisors of s unless s has both 1 and −1 as
eigenvalues, in which cases there are two classes with the same elementary
divisors. In particular, the elementary divisors of s must be of the form
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f(t)mf with f(t) ∈ N (q)′, or g(t)mg and g∗(t)mg for {g(t), g∗(t)} ∈ M(q),
or (t+ 1)2m+ or (t− 1)2m− . By adapting [5, Proposition 16.8], we have that
the semisimple class (s) of O±(2n,Fq) depends on a pair of functions

(4.1) Φ : N (q) ∪M(q)→ Z≥0, η : {t− 1, t+ 1} → {+,−},

where we write Φ(f) = mf for f ∈ N (q)′, Φ({g, g∗}) = mg for {g, g∗} ∈
M(q), Φ(t+ 1) = m+, η(t+ 1) = η(+), Φ(t−1) = m−, and η(t−1) = η(−),
such that we have

(4.2) |Φ| :=
∑

f∈N ′(q)

mf deg(f)/2 +
∑

{g,g∗}∈M(q)

mg deg(g) +m+ +m− = n,

where

(4.3) η(+/−) = + if m+/− = 0,

and such that

(4.4) η(+)η(−)1
∏

f∈N ′(q)

(−1)mf = τ1,

where τ is the sign ± associated to the reference orthogonal group G =
O±(2n,Fq) = Oτ (2n,Fq). Given the semisimple class (s) determined by
the pair of functions (Φ, η), the centralizer of s in G = O±(2n,Fq) has
isomorphism type given by

CG(s) ∼=
∏

f∈N (q)′

U(mf ,Fqdeg(f)/2)×
∏

{g,g∗}∈M(q)

GL(mg,Fqdeg(g))(4.5)

×Oη(+)(2m+,Fq)×Oη(−)(2m−,Fq),

where U(n,Fq) denotes the full unitary group defined over Fq (or n-by-n
unitary matrices with entries from Fq2).

When q is even, the description of semisimple classes (s) of O±(2n,Fq)
(all of which are contained in SO±(2n,Fq)) is very similar to the case that
q is odd, except 1 and −1 eigenvalues are the same. In particular, such a
semisimple class is determined by a pair of functions (Φ, η) which satisfies
(4.1) if we omit Φ(t − 1), (4.2) if we omit m−, (4.3) if we replace η(+/−)
with η(+) and m+/− with m+, (4.4) if we omit η(−), and with centralizer

structure as in (4.5) if we omit the factor Oη(−)(2m−,Fq). When discussing
the case of general q, we will always assume these omissions in the case that
q is even.

Note that in the general case, if we choose a pair of functions (Φ, η) which
satisfies the conditions (4.1), (4.2), and (4.3), then this specifies a unique
semisimple class of exactly one type of orthogonal group Oτ (2n,Fq), where
the sign τ ∈ {+,−} is determined by the condition (4.4).

Now consider the centralizer of the semisimple element s in the special
orthogonal group H = SO±(2n,Fq). Supposing that q is odd and s has both
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1 and −1 eigenvalues, then the structure of the centralizer CH(s) is given
by (see [2, Sec. 1B]) as

CH(s) ∼=
∏

f∈N (q)′

U(mf ,Fqdeg(f)/2)×
∏

{g,g∗}∈M(q)

GL(mg,Fqdeg(g))(4.6)

× (SOη(+)(2m+,Fq)× SOη(−)(2m−,Fq)) o 〈σs〉,
where σs acts as the outer automorphism σ simultaneously on the two fac-
tors. In the case that there are either no 1 eigenvalues or no −1 eigenvalues,
then there is only a single factor SOη(+/−)(2m+/−,Fq), and no 〈σs〉 fac-
tor, and when there are no 1 nor −1 eigenvalues, there are only general
linear and unitary factors. In the case q is even, we only have the factor
SOη(+)(2m+,Fq) if there are 1 eigenvalues.

Note that in all cases described above, if s ∈ SO±(2n,Fq) = H, then we
have

[CG(s) : CH(s)] =

{
2 if s has any 1 or − 1 eigenvalues,
1 otherwise.

This implies that, given a semisimple class (s) of O±(2n,Fq) such that
s ∈ SO±(2n,Fq) described by the pair of functions (Φ, η) as in (4.1), this
class splits into two classes of SO±(2n,Fq) if and only if s has no 1 nor −1
eigenvalues. In the case that the class splits, then we have s and σ(s) are
not conjugate in SO±(2n,Fq), where σ(s) = hsh−1 with h ∈ G \H.

5. Unipotent characters

Let G be any reductive group over Fq (connected or disconnected), defined
over Fq with Frobenius or Steinberg morphism F , and let G = GF .

First assume that G is connected. Let T be a maximal F -stable torus
of G, with T = TF , and let θ be a linear complex character of T . Let
RGT (θ) denote the Deligne-Lusztig virtual character of G corresponding to
(T, θ), first defined in [7]. A unipotent character of G is any irreducible
character which appears as a constituent in the virtual character RGT (1),
where 1 denotes the trivial character.

Consider now the case that G is disconnected, with connected component
G◦. A unipotent character of the group GF is defined to be any irreducible

constituent of an induced character IndGF

(G◦)F (ψ), where ψ is a unipotent

character of (G◦)F as in the previous paragraph.

5.1. Unipotent characters for special orthogonal groups. We now
discuss the unipotent characters of SO±(2n,Fq), which are parameterized
by symbols, introduced in [17]. The description of unipotent characters
of SO±(2n,Fq) and their degrees for all q is given in detail in [17, 18, 1].
Following [6, Section 13.8], a symbol in this case is an unordered pair of finite
sets of non-negative integers, Λ = [µ, ν], with µ = (µ1 < µ2 < · · · < µr),
ν = (ν1 < ν2 < · · · < νk), such that µ1 and ν1 are not both 0, r ≥ k, and in
the case µ = ν there are two distinct symbols Λ and Λ′ both corresponding
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to [µ, ν]. The number r − k is the defect of the symbol Λ, and the rank of
the symbol Λ, which we denote by |Λ|, is defined as the non-negative integer

(5.1) |Λ| =
r∑
i=1

µi +
k∑
i=1

νi −

⌊(
r + k − 1

2

)2
⌋
.

The two symbols Λ and Λ′ corresponding to the pair [µ, ν] with µ = ν
(and so of defect 0) are called degenerate symbols, while all other symbols
are called non-degenerate. The set of all degenerate symbols (all of which
have even rank and defect 0), will be denoted by G, and R will denote
the set of all non-degenerate symbols of even defect. We take the symbols
[∅,∅], [∅,∅]′ ∈ G to be the only symbols of rank 0 and even defect.

The unipotent characters of SO+(2n,Fq) are then parameterized by sym-
bols of rank n and with defect which is 0 mod 4, while unipotent characters of
SO−(2n,Fq) are parameterized by symbols of rank n and with defect which
is 2 mod 4. We let S+ denote the set of all symbols of non-negative rank
with defect divisible by 4 (note G ⊂ S+), while S− will denote the set of all
symbols with defect congruent to 2 mod 4. We define S = S+∪S− = R∪G
to be the set of all symbols with even defect and non-negative rank. Given
Λ ∈ S with |Λ| = n > 0, we denote by ψΛ the unipotent character of
SO±(n,Fq) which corresponds to the symbol Λ.

Given Λ ∈ S+ with |Λ| = n > 0, the degree of ψΛ is given by

ψΛ(1) = (qn − 1)
n−1∏
i=1

(q2i − 1) · δ(Λ),

where

δ(Λ) =

∏
i<j(q

µi − qµj )
∏
i<j(q

νi − qνj )
∏
i,j(q

µi + qνj )

2d+(Λ)qc(Λ)
∏r
i=1

∏µi
j=1(q2j − 1)

∏k
i=1

∏νi
j=1(q2j − 1)

,

with c(Λ) =
∑(r+k−2)/2

i=1

(
r+k−2i

2

)
, and

d+(Λ) =

{
(r + k − 2)/2 if µ 6= ν,
r = k if µ = ν.

.

For Λ ∈ S− with |Λ| = n > 0, the degree of ψΛ is

ψΛ(1) = (qn + 1)
n−1∏
i=1

(q2i − 1) · δ(Λ),

where

δ(Λ) =

∏
i<j(q

µi − qµj )
∏
i<j(q

νi − qνj )
∏
i,j(q

µi + qνj )

2(r+k−2)/2qc(Λ)
∏r
i=1

∏µi
j=1(q2j − 1)

∏k
i=1

∏νi
j=1(q2j − 1)

.

For Λ = [∅,∅] or Λ = [∅,∅]′, we define δ(Λ) = 1.
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5.2. Unipotent characters for orthogonal groups. To describe unipo-
tent characters of O±(2n,Fq), we must describe the irreducible constituents

of the induced characters Ind
O±(2n,Fq)
SO±(2n,Fq)

(ψΛ) for unipotent characters ψΛ of

SO±(2n,Fq) just described. Since O±(2n,Fq) ∼= SO±(2n,Fq) o 〈σ〉, this
boils down to describing which unipotent characters of SO±(2n,Fq) are in-
variant under the action of σ. The action of σ on unipotent characters of
SO±(2n,Fq) is given in [21, Proposition 3.7(a)]. In particular, if Λ ∈ S,
then ψΛ is invariant under the action of σ unless Λ is degenerate. If Λ is
degenerate, with Λ′ the other symbol corresponding to the pair [µ, ν] with
µ = ν, then σ.ψΛ = ψΛ′ .

Thus in the case H = SO+(2n,Fq) with G = O+(2n,Fq), if Λ,Λ′ ∈ G
are two degenerate symbols of rank n corresponding to the same pair [µ, ν]
with µ = ν, then IndGH(ψΛ) = IndGH(ψΛ′) are the same irreducible unipotent
character of O+(2n,Fq), with degree twice that of ψΛ. For all non-degenerate

Λ ∈ R, with H = SO±(2n,Fq) and G = O±(2n,Fq), we have IndGH(ψΛ) is
the direct sum of two distinct irreducible extensions of ψΛ from H to G,
each with the same degree as ψΛ.

We now define orthogonal symbols as ordered pairs Ξ = (µ, ν), with µ =
(µ1 < µ2 < · · · < µr), ν = (ν1 < ν2 < · · · < νk), and such that µ1 and
ν1 are not both 0. Define the defect of Ξ = (µ, ν) as |r − k|, and the
rank of an orthogonal symbol is still defined by (5.1). We let O+ denote the
orthogonal symbols with non-negative rank and defect divisible by 4, O− the
orthogonal symbols with defect congruent to 2 mod 4, and O = O+ ∪ O−
the set of all orthogonal symbols of non-negative rank and even defect.
We have (∅,∅) is the only orthogonal symbol of rank 0 and even defect.
By the discussion of the previous paragraphs, the unipotent characters of
O+(2n,Fq) are parameterized by the orthogonal symbols in O+ of rank n,
and the unipotent characters of O−(2n,Fq) are parameterized by those of
rank n in O−. For any Ξ ∈ O of positive rank, we let ψΞ denote the
corresponding unipotent character.

When µ 6= ν, the two orthogonal symbols (µ, ν) and (ν, µ) correspond to
the two distinct irreducible extensions of ψΛ to the orthogonal group, where
Λ = [µ, ν] ∈ R. In this case, we say that Ξ = (µ, ν) is a non-degenerate
orthogonal symbol, and we write [Ξ] = Λ = [µ, ν]. When µ = ν 6= ∅, the
orthogonal symbol (µ, ν) corresponds to the irreducible character obtained
by inducing either ψΛ or ψΛ′ where Λ,Λ′ ∈ G are the two degenerate symbols
corresponding to [µ, ν]. We will call Ξ = (µ, ν) with µ = ν a degenerate
orthogonal symbol, and we write [Ξ] and [Ξ]′ for the two degenerate symbols
in S+ corresponing to it. We will denote by Ra and Ga the sets of orthogonal
non-degenerate and orthogonal degenerate symbols of non-negative rank and
even defect, respectively.

Given any non-degenerate orthogonal symbol Ξ ∈ Ra of rank n, it follows
from the above that the degree of the corresponding unipotent character of
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O±(2n,Fq) has degree

ψΞ(1) = ψ[Ξ](1) = (qn ∓ 1)

n−1∏
i=1

(q2i − 1) · δ([Ξ]).

If Ξ ∈ Ga is a degenerate orthogonal symbol, and Λ = [Ξ] is one of the
degenerate symbols corresponding to it, then the unipotent character ψΞ of
O+(2n,Fq) has degree

ψΞ(1) = 2ψΛ(1) = (qn − 1)

n−1∏
i=1

(q2i − 1) · 2δ(Λ).

That is, if Ξ = (µ, ν) ∈ O is any orthogonal symbol of positive rank n
with Λ = [Ξ] ∈ S, then we define

δ(Ξ) =

{
δ(Λ) if µ 6= ν,
2δ(Λ) if µ = ν

,

so that we have

ψΞ(1) = (qn ∓ 1)
n−1∏
i=1

(q2i − 1) · δ(Ξ),

with

δ(Ξ) =

∏
i<j(q

µi − qµj )
∏
i<j(q

νi − qνj )
∏
i,j(q

µi + qνj )

2(r+k−2)/2qc(Λ)
∏r
i=1

∏µi
j=1(q2j − 1)

∏k
i=1

∏νi
j=1(q2j − 1)

,

since in the case µ = ν we have d+(Λ) − 1 = r − 1 = (r + k − 2)/2. In the
case Ξ = (∅,∅), we define δ(Ξ) = 2.

5.3. Unipotent characters for centralizers of semisimple elements.
We next consider the unipotent characters of the centralizers in O±(2n,Fq)
and SO±(2n,Fq) of semisimple classes (s) which are contained in SO±(2n,Fq),
as described in (4.5).

Let G = O2n, G = O±(2n,Fq), H = SO2n, and H = SO±(2n,Fq). By
a slight abuse of notation, we let F denote either the standard Frobenius
map or the twisted Frobenius F̃ , depending on the type ± of the orthogonal
group. If s ∈ H is a semisimple element with conjugacy class specified by
the pair (Φ, η) in (4.1), then we have

(CG(s)◦)F = (CH(s)◦)F

∼=
∏

f∈N (q)′

U(mf ,Fqdeg(f)/2)×
∏

{g,g∗}∈M(q)

GL(mg,Fqdeg(g))(5.2)

× SOη(+)(2m+,Fq)× SOη(−)(2m−,Fq).

Recall that the unipotent characters of GL(n,Fq) and U(n,Fq) are each
parameterized by the set of partitions of n, denoted by Pn. Given a parti-
tion λ ∈ Pn (where we also write |λ| = n), we let ψGL,λ and ψU,λ denote
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the unipotent characters of GL(n,Fq) and U(n,Fq), respectively, parame-
terized by λ. A unipotent character ψ◦ of (CG(s)◦)F = (CH(s)◦)F thus has
structure given by

(5.3) ψ◦ =
⊗

f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg ⊗ ψΛ+ ⊗ ψΛ− ,

where ψU,λf is a unipotent character of U(mf ,Fqdeg(f)/2) with |λf | = mf ,

ψGL,λg is a unipotent character of GL(mg,Fqdeg(g)) with |λg| = mg, and

ψΛ+/− is a unipotent character of SOη(m+/−)(2m+/−,Fq) with |Λ+/−| =

m+/− (but there is no m− or Λ− when q is even).
To describe the unipotent characters of CG(s), we must describe the irre-

ducible constituents of Ind
CG(s)

(CG(s)◦)F
(ψ◦). Note that we have

Ind
CG(s)

(CG(s)◦)F
(ψ◦) =

⊗
f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg

⊗ Ind
Oη(+)(2m+,Fq)
SOη(+)(2m+,Fq)

(ψΛ+)⊗ Ind
Oη(−)(2m−,Fq)
SOη(−)(2m−,Fq)

(ψΛ−).

It follows from Section 5.2 that a unipotent character of CG(s) has general
structure given by

(5.4) ψ =
⊗

f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg ⊗ ψΞ+ ⊗ ψΞ− ,

where ψΞ+/− is a unipotent character of Oη(+/−)(2m+/−,Fq) with |Ξ+/−| =
m+/−.

For the unipotent characters of CH(s), we must describe the irreducible

consituents of Ind
CH(s)

(CH(s)◦)F
(ψ◦). Given the structure of CH(s) in (4.6), as-

suming s has both 1 and −1 eigenvalues, we have

Ind
CH(s)

(CH(s)◦)F
(ψ◦) =

⊗
f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg

⊗ Ind
(SOη(+)(2m+,Fq)×SOη(−)(2m−,Fq))o〈σs〉
SOη(+)(2m+,Fq)×SOη(−)(2m−,Fq)

(ψΛ+ ⊗ ψΛ−).

Because σs acts as σ simultaneously on both of the factors SOη(+)(2m+,Fq)
and SOη(−)(2m−,Fq), we have ψΛ+ ⊗ ψΛ− is invariant under σs precisely
when both Λ+ and Λ− are non-degenerate symbols (from Section 5.2). That
is, we have the following two cases:

• If Λ+,Λ− ∈ R, then ψΛ+⊗ψΛ− induces to a direct sum of two distinct
characters, each of which has the same degree as ψΛ+ ⊗ ψΛ− . We
label these two induced characters as ψ[Λ+,Λ−],i with i = 1, 2.
• If Λ+ ∈ G or Λ− ∈ G, then ψΛ+ ⊗ψΛ− (and σ.ψΛ+ ⊗ σ.ψΛ−) induces

to an irreducible character with degree twice that of ψΛ+⊗ψΛ− . We
label this induced character as ψ[Λ+,Λ−],0.
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In the above, we let [Λ+,Λ−] denote the orbit of σ acting on both characters
of the ordered pair (Λ+,Λ−), so in the first case this orbit contains just this
ordered pair, while in the second the orbit contains two.

In summary, the unipotent characters of CH(s), when s has both 1 and
−1 eigenvalues, are all of the form

(5.5) ω =
⊗

f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg ⊗ ψ[Λ+,Λ−],i,

where either Λ+ ∈ G or Λ− ∈ G with i = 0, or Λ+,Λ− ∈ R with i = 1 or 2.
In the case s does not have both 1 and −1 eigenvalues (including the case
that q is even), then (CH(s)◦)F = CH(s), and the unipotent characters of
CH(s) are all of the form

(5.6) ω =
⊗

f∈N ′(q)

ψU,λf ⊗
⊗

{g,g∗}∈M(q)

ψGL,λg ⊗ ψΛ+/− .

6. Jordan decomposition of characters for orthogonal groups

Let G be a connected reductive group over Fq with Frobenius morphism F

and G = GF , and G∗ a dual group with dual Frobenius F ∗ with G∗ = G∗F
∗
.

Given an F ∗-stable semisimple class (s) of G∗, one may associate a conjugacy
class of pairs (T, θ), where T is a maximal F -stable torus of G and θ is a
multiplicative complex character of TF (see [9, Proposition 13.12]). The
rational Lusztig series of GF associated to a G∗-conjugacy class (s) of a
semisimple element s ∈ G∗ is the set of all irreducible characters χ of G
which appear as a constituent of a Deligne-Lusztig character RGT (θ), where
T = TF , and the G∗-conjugacy class (s) is associated with the class of the
pair (T, θ) as referenced above. The rational Lusztig series corresponding
to the G∗-semisimple class (s) will be denoted by E(G, (s)).

A Jordan decomposition map for the rational Lusztig series E(G, (s)) is a
bijection

(6.1) Js : E(G, (s)) −→ E(CG∗(s)
F ∗ , 1),

(after choosing some s from the class (s)) such that, for any χ ∈ E(G, (s)),
if χ is a constituent of RGT (θ) and T∗ is the F ∗-stable maximal torus of G∗

in duality with T, then

(6.2) 〈χ,RGT (θ)〉 = ±〈Js(χ), R
CG∗ (s)F

∗

T∗F∗
(1)〉.

Lusztig [19] proved the existence of a Jordan decomposition map whenever
the center Z(G) is connected, and the existence when the center is discon-
nected was proved by both Lusztig [20] and Digne and Michel [8]. We note
that in the case Z(G) is disconnected, then there will be disconnected cen-
tralizers CG∗(s), in which case the notion of unipotent character given at
the beginning of Section 5 is used, and we define

R
CG∗ (s)F

∗

T∗F∗
(1) = Ind

CG∗ (s)F
∗

(CG∗ (s)◦)F∗

(
R

(CG∗ (s)◦)F
∗

T∗F∗
(1)

)
.
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In the general case, the Jordan decomposition map also has the following
property regarding character degrees (see [9, Remark 13.24]). If Js(χ) = ψ,
then

(6.3) χ(1) = [G∗ : CG∗(s)]p′ψ(1),

where p = char(Fq) and [G∗ : CG∗(s)]p′ denotes the prime-to-p part.
Now consider the case that H = SO2n with Frobenius morphism given

by either F or F̃ as in Section 2.1, so that H = SO±(2n,Fq). In this case,
we have H ∼= H∗ and H ∼= H∗, and so we will identify H with H∗ and
H with H∗. We need an additional property of the Jordan decomposition
map with respect to the action of the automorphism σ. In particular, if χ ∈
E(H, (s)), then σ.χ ∈ E(G, (σ(s))), which follows from [23, Corollary 2.4] or
[28, Proposition 7.2]. It will be very useful to choose a Jordan decomposition
map which is equivariant with respect to this action of σ. The following was
first claimed in the last line of [2, Proof of Proposition 1.7], but also a proof
is forthcoming in a paper of A. Schaeffer Fry and J. Taylor [26].

Proposition 6.1. When H = SO±(2n,Fq) = H∗, for any semisimple class
(s) of H∗, there exists a Jordan decomposition map (after choosing a rep-
resentative s of (s)), Js : E(H, (s)) −→ E(CH∗(s), 1), such that for any
ρ ∈ E(H, (s)) with Js(ρ) = ω, we have Jσ(s)(σ.ρ) = σ.ω.

Aubert, Michel, and Rouquier [2, Proposition 1.7] used Proposition 6.1
to build a Jordan decomposition map for the groups G = O±(2n,Fq), where
now G = O2n is a disconnected group. We give some details of this map
from [2] below, and we will also prove a character degree property of this
Jordan decomposition map which we need. We take G∗ = O±(2n,Fq) = G
and H = SO±(2n,Fq) = H∗ as above. Because of (2.1), any irreducible
character χ of G is obtained by inducing an irreducible character from H,
where if ρ is an irreducible of H and σ.ρ = ρ, then IndGH(ρ) = χ1 + χ2 is
the sum of two distinct irreducible characters of G, while if σ.ρ 6= ρ, then
IndGH(ρ) = χ = IndGH(σ.ρ) is irreducible. Given a semisimple element s
of H, we define the Lusztig series E(G, (s)) of G, corresponding to the G-
conjugacy class (s), as the collection of all irreducible χ of G which appear
as a constituent of some IndGH(ρ) for some ρ ∈ E(H, (s)).

Proposition 6.2. For any semisimple class (s) of G = O±(2n,Fq) which
is contained in H = SO±(2n,Fq), there exists a bijection

JGs : E(G, (s)) −→ E(CG∗(s), 1)

such that, if χ ∈ E(G, (s)) with JGs (χ) = ψ, then

χ(1) =
2[H∗ : CH∗(s)]p′

[CG∗(s) : CH∗(s)]
ψ(1)

=

{
2[H∗ : CH∗(s)]p′ψ(1) if s has no 1 nor − 1 eigenvalues,
[H∗ : CH∗(s)]p′ψ(1) otherwise.
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Proof. Given s ∈ SO±(2n,Fq) = H, we let Js denote the Jordan decom-
position map in Proposition 6.1 for H. We consider ρ ∈ E(H, (s)) and
χ ∈ E(G, (s)) such that χ appears in the induction of ρ to G.

First suppose s has no 1 nor −1 eigenvalues, and so as in Section 4
we have (s)H 6= (σ(s))H . Since ρ ∈ E(H, (s)) and σ.ρ ∈ E(H, (σ(s))),
then we have ρ 6= σ.ρ, and so χ = IndGH(ρ) = IndGH(σ.ρ). In particular,
χ(1) = 2ρ(1) = 2[H∗ : CH∗(s)]p′ψ(1). We also have CH∗(s) = CG∗(s)
from Section 4, so if Js(ρ) = ψ, then ψ ∈ E(CG∗(s), 1). So we may define
JGs (χ) = ψ in this case and the statement follows.

Now suppose s has some 1 or −1 eigenvalue, and we fix some s in the
H-conjugacy class (s)H such that σ(s) = s (as in [2, Proof of Proposition
1.7 and Sec. 1.B]). In this case, we have [CG∗(s) : CH∗(s)] = 2, and if
Js(ρ) = ω, then Js(σ.ρ) = σ.ω since σ(s) = s. First suppose σ.ρ 6= ρ,
in which case σ.ω 6= ω. Then we have χ = IndGH(ρ) = IndGH(σ.ρ), and

Ind
CG∗ (s)
CH∗ (s)(ω) = Ind

CG∗ (s)
CH∗ (s)(σ.ω) =: ψ is irreducible, and ψ(1) = 2ω(1). Then

we may define JGs (χ) = ψ, and we have

χ(1) = 2ρ(1) = 2[H∗ : CH∗(s)]p′ω(1) = [H∗ : CH∗(s)]p′ψ(1).

Finally, suppose σ.ρ = ρ, where we still have σ(s) = s. Then IndGH(ρ) = χ+
χ′, where χ and χ′ are irrreducible, and χ(1) = χ′(1) = ρ(1). If Js(ρ) = ω,

then σ.ω = ω, and Ind
CG∗ (s)
CH∗ (s)(ω) = ψ + ψ′, where ψ and ψ′ are irreducible

and ω(1) = ψ(1) = ψ′(1). We now define JGs (χ) = ψ and JGs (χ′) = ψ′

(where some choice is made here), and we have

χ(1) = ρ(1) = [H∗ : CH∗(s)]p′ω(1) = [H∗ : CH∗(s)]p′ψ(1),

which concludes the last case. �

7. Character degrees and generating functions

The main purpose of this section is to write down expressions for degrees
of arbitrary irreducible characters of SO±(2n,Fq) and O±(2n,Fq), and gen-
erating functions for the sums of these degrees.

From the previous section, the irreducible characters ofH = SO±(2n,Fq) =
H∗ are in bijection with H∗-conjugacy classes of pairs (s, ω), where s ∈ H∗
is semisimple and ω is a unipotent character of CH∗(s), and if ρ corre-
sponds to the class of (s, ω), then ρ(1) = [H∗ : CH∗(s)]p′ω(1). By Propo-
sition 6.2, the irreducible characters of G = O±(2n,Fq) = G∗ correspond
to G∗-classes of pairs (s, ψ), where s ∈ H∗ is semisimple, ψ is a unipo-
tent character of CG∗(s), and if χ corresponds to the class of (s, ψ), then

χ(1) =
[H∗:CH∗ (s)]p′

[CG∗ (s):CH∗ (s)]ψ(1).

If ψU,λ is the unipotent character of U(n,Fqd) parameterized by λ, then
we write

ψU,λ(1) =
n∏
i=1

(qdi − (−1)i) · δU(λ, 2d),
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and if ψGL,λ is the unipotent character of GL(n,Fqd) parameterized by λ,
then write

ψGL,λ(1) =
n∏
i=1

(qdi − 1) · δGL(λ, d).

The expressions δU(λ, 2d) and δGL(λ, d) are given explicitly in [31, Sec. 3.3],
although we will not need them here. When n = 0, we take λ = ∅ to be the
only partition of size 0, and we define in this case δU(λ, 2d) = δGL(λ, d) = 1
for any d ≥ 1.

First consider an irreducible character χ of G = O±(2n,Fq), correspond-
ing to the class of pairs (s, ψ), and the class G∗-class (s) corresponds to the
pair (Φ, η) satisfying (4.1), (4.2), and (4.3). In the general case, we have
CG∗(s) given by (4.5), and a unipotent character ψ of that centralizer is
given by (5.4), where the degree of ψ is given by

ψ(1) = PO(s)
∏

f∈N (q)′

δU(λf ,deg(f))
∏

{g,g∗}∈M(q)

δGL(λg, deg(g)) ·δ(Ξ+)δ(Ξ−),

where PO(s) is the expression

PO(s) =
∏

f∈N (q)′

mf∏
i=1

(qideg(f)/2 − (−1)i)
∏

{g,g∗}∈M(q)

mg∏
i=1

(qideg(g) − 1)

· (qm+ − η(+)1)

m+−1∏
i=1

(q2i − 1) · (qm− − η(−)1)

m−−1∏
i=1

(q2i − 1),

where either of the last two terms involving m+ and m− are left off when
m+ = 0 or m− = 0, respectively.

From (4.6) and the sentences following it, we have

[H∗ : CH∗(s)]p′ =


(qn∓1)

∏n−1
i=1 (q2i−1)

2PO(s) if m+ 6= 0 and m− 6= 0,
(qn∓1)

∏n−1
i=1 (q2i−1)

PO(s) otherwise,

where we note in the first case we always have p 6= 2. From this and
Proposition 6.2, if the character χ of O±(2n,Fq) corresponds to (s, ψ), then
the modified character degree of χ is given by

χ(1)

2(qn ∓ 1)
∏n−1
i=1 (q2i − 1)

=
∏

f∈N (q)′

δU(λf , deg(f))
∏

{g,g∗}∈M(q)

δGL(λg,deg(g))·

(7.1) ·


1 if s has no 1 nor − 1 eigenvalues,
1
2δ(Ξ+/−) if s has 1 or − 1 eigenvalues, but not both,
1
4δ(Ξ+)δ(Ξ−) otherwise,

where the last case only occurs for p 6= 2.
Based on the above, we define the power series

(7.2) T(z) =
∑
Ξ∈O

1

2
δ(Ξ)z|Ξ|.
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Note that the constant term of T(z) is 1, since for the only Ξ = (∅,∅) ∈ O
of rank 0, we have defined δ(Ξ) = 2.

We also define N∗(q; d) to be the number of polynomials in N (q) of degree
d, and M∗(q; d) to be the number of unordered pairs {g, g∗} in M(q) such
that deg(g) = d. Recall Σ(G) denotes the sum of the irreducible character
degrees of a finite group G, and that e = e(q) is defined to be 2 if q is odd
and 1 if q is even.

Proposition 7.1. For any n > 0, the expression

Σ(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn, in the generating function

∏
d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

T(z)e,

which has constant term 1, and where e = e(q) is as in (3.1).

Proof. The generating function we seek has, as the coefficient of zn for
n > 0, the sum of the modified character degrees given in (7.1) over all
possible classes of pairs (s, ψ) which parameterize irreducible characters of
O+(2n,Fq) or O−(2n,Fq). When specifying the semisimple class (s) by
choosing the functions Φ and η in (4.1) which satisfy (4.2), (4.3), and (4.4),
first note that if m+ = m− = 0, then the character corresponding to (s, ψ)
depends only on (4.2) and the choice of partitions λf of mf for f ∈ N (q)′

and λg of mg for {g, g∗} ∈ M(q). If m+ or m− is nonzero, then as in
(5.4) we must choose unipotent characters ψΞ+/− , where Ξ+/− are orthog-
onal symbols of rank m+/−, and with defect modulo 4 depending on the
signs from the function η satisfying (4.4). However, if we only specify Φ
satisfying (4.2), and choose partitions λf of mf , λg of mg, and orthogonal
symbols Ξ+/− ∈ O of rank m±, then the function η will then be determined
by the defects of the chosen orthogonal symbols Ξ+/−. This determines a

pair (s, ψ) corresponding to a unique character of O+(2n,Fq) or O−(2n,Fq).
That is, an irreducible character of O+(2n,Fq) or O−(2n,Fq) and its degree
is determined by a choice of the function Φ satisfying (4.2), partitions λf of
mf and λg of mg, and orthogonal symbols Ξ+/− of rank m+/−.

Given the above argument together with the expression for the modified
character degree in (7.1), the generating function we want is given by

∏
f∈N (q)′

∑
λf∈P

δU(λf ,deg(f))z|λf |deg(f)/2


·

∏
{g,g∗}∈M(q)

∑
λg∈P

δGL(λg, deg(g))z|λg |deg(g)


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·

 ∑
Ξ+∈O

1

2
δ(Ξ+)z|Ξ+|

 ∑
Ξ−∈O

1

2
δ(Ξ−)z|Ξ−|

 ,

where the last factor is not included in the case p = 2. The last two factors
can thus be replaced by T(z)e, while in the first two factors the expressions
only depend on the degrees of the polynomials f(t) and g(t), and not the
polynomials themselves. The generating function can thus be written as

∏
d≥2

(∑
λ∈P

δU(λ, d)z|λ|d/2

)N∗(q;d) ∏
d≥1

(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

T(z)e,

where we note N (q)′ contains no polynomials of degree 1. As stated in
Section 4, all polynomials in N (q)′ have even degree, and so we may replace
d with 2d in the first product, and index it over all d ≥ 1. Noting that the
constant term of this generating function is 1 since the same is true of each
factor, the result follows. �

We next consider the degrees of characters of SO±(2n,Fq). Let ρ be
such a character, and suppose it corresponds to the pair (s, ω) via the Jor-
dan decomposition. First suppose that the semisimple class (s) of H∗ =
SO±(2n,Fq) does not contain both 1 and −1 eigenvalues. In this case, as in
Section 4, the centralizer CH∗(s) has structure

CH∗(s) ∼=
∏

f∈N (q)′

U(mf ,Fqdeg(f)/2)×
∏

{g,g∗}∈M(q)

GL(mg,Fqdeg(g))

× SOη(+/−)(2m+/−,Fq),

where the last factor does not appear if m+ = m− = 0. Then we have

[H∗ : CH∗(s)]p′ =
(qn∓1)

∏n−1
i=1 (q2i−1)

PO(s) , as above. A unipotent character ω of

CH∗(s) here is given by (5.6) with degree

ω(1) = PO(s)
∏

f∈N (q)′

δU(λf ,deg(f))
∏

{g,g∗}∈M(q)

δGL(λg,deg(g)) · δ(Λ+/−).

By (6.3), the modified character degree of ρ in this case is given by

ρ(1)

(qn ∓ 1)
∏n−1
i=1 (q2i − 1)

=
∏

f∈N (q)′

δU(λf , deg(f))
∏

{g,g∗}∈M(q)

δGL(λg,deg(g))·

(7.3) ·
{

1 if s has no 1 nor − 1 eigenvalues,
δ(Λ+/−) if s has 1 or − 1 eigenvalues, but not both.

Now consider the case that the semisimple class (s) has both 1 and −1
eigenvalues (so q is necessarily odd). The centralizer CH∗(s) is then given

by (4.6), and [H∗ : CH∗(s)]p′ =
(qn∓1)

∏n−1
i=1 (q2i−1)

2PO(s) as above. An arbitrary
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unipotent character ω of CH∗(s) is given by (5.5). By the description in
Section 5.3, the degree of the factor ψ[Λ+,Λ−],i is given by

ψ[Λ+,Λ−],i(1) =

{
2ψΛ+(1)ψΛ−(1) if i = 0, that is, if Λ+ ∈ G or Λ− ∈ G,
ψΛ+(1)ψΛ−(1) if i = 1, 2, that is, if Λ+,Λ− ∈ R.

That is, the degree of ω is given by

ω(1) = PO(s)
∏

f∈N (q)′

δU(λf ,deg(f))
∏

{g,g∗}∈M(q)

δGL(λg, deg(g))·

·
{

2δ(Λ+)δ(Λ−) if Λ+ ∈ G or Λ− ∈ G,
δ(Λ+)δ(Λ−) if Λ+,Λ− ∈ R.

It follows from these facts and (6.3) that the modified character degree of
ρ in this case is given by

ρ(1)

(qn ∓ 1)
∏n−1
i=1 (q2i − 1)

=
∏

f∈N (q)′

δU(λf , deg(f))
∏

{g,g∗}∈M(q)

δGL(λg,deg(g))·

(7.4) ·
{
δ(Λ+)δ(Λ−) if Λ+ ∈ G or Λ− ∈ G,
1
2δ(Λ+)δ(Λ−) if Λ+,Λ− ∈ R.

We recall that in the first case above, when Λ+ ∈ G or Λ− ∈ G, the same
character is obtained if we choose Λ′+ and Λ′−, where Λ′ = Λ when Λ ∈ R.
In the second case, there are two distinct characters for every choice of
Λ+,Λ− ∈ R.

Since the set of orthogonal symbols is the disjoint union O = Ra ∪ Ga of
orthogonal non-degenerate and degenerate symbols, then if we define

R(z)a =
∑

Ξ∈Ra

1

2
δ(Ξ)z|Ξ| and G(z)a =

∑
Ξ∈Ga

1

2
δ(Ξ)z|Ξ|,

then we have T(z) = R(z)a + G(z)a. Now define

R(z) =
∑
Λ∈R

1

2
δ(Λ)z|Λ| and G(z) =

∑
Λ∈G

1

2
δ(Λ)z|Λ|.

As in Sections 5.1 and 5.2, for each non-degenerate symbol Λ = [µ, λ] ∈ R,
there are two non-degenerate orthogonal symbols Ξ = (µ, λ) ∈ Ra and
Ξ′ = (λ, µ) ∈ Ra, where δ(Ξ) = δ(Ξ′) = δ(Λ). It follows that 2R(z) = R(z)a.
For each pair of degenerate symbols Λ,Λ′ ∈ G corresponding to [µ, λ] with
µ = λ, there is a single degenerate orthogonal symbol Ξ = (µ, λ) ∈ Ga, and
we have δ(Ξ) = 2δ(Λ) in this case. It follows that G(z)a = G(z). Now we
have

(7.5)
∑
Λ∈S

δ(Λ)z|Λ| = 2R(z) + 2G(z) = R(z)a + G(z)a + G(z) = T(z) + G(z).

We note that T(z) + G(z) has constant term 2, since T(z) and G(z) each
have constant term 1.
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Proposition 7.2. The expression

Σ(SO+(2n,Fq))
(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(SO−(2n,Fq))

(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn, n > 0, in the generating function

∏
d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

(T(z)e +G(z)e),

which has constant term 2, and where e = e(q) is as in (3.1).

Proof. We prove the statement for the cases that q is even or odd separately.
Given all possible pairs (s, ω) which correspond to irreducible characters of
SO+(2n,Fq) or SO−(2n,Fq), we need the sum of the modified character
degrees to be the coefficient of zn in our generating function.

First suppose that q is even. Consider a character corresponding to the
pair (s, ω). Assume first that (s) is a semisimple class which has 1 as an
eigenvalue. Similar to the proof of Proposition 7.1, once we specify the func-
tion Φ in (4.1), and the unipotent factor ψΛ for some Λ ∈ S with |Λ| = m+,
then the sign η in (4.1) is determined, as is the sign corresponding to the type
of special orthogonal group with a character to which (s, ω) corresponds. In
the case (s) has no 1 eigenvalues, then we recall that there are two semisimple
classes corresponding to the choice of Φ as in the last paragraph of Section
4, and the sign of the corresponding special orthogonal group is determined
by (4.4). Thus in this case, the choice of the function Φ and the unipotent
character ω determines two distinct characters of SO±(2n,Fq) of the same
degree. It follows from this and (7.3) that in the case that q is even, the
generating function we seek is given by

∏
f∈N (q)′

∑
λf∈P

δU(λf ,deg(f))z|λf | deg(f)/2



·
∏

{g,g∗}∈M(q)

∑
λg∈P

δGL(λg, deg(g))z|λg |deg(g)

 ·(∑
Λ∈S

δ(Λ)z|Λ|

)
,

noting that the constant term in the last factor is 2, corresponding to the
two irreducible characters corresponding to the choice of Φ and ω when (s)
has no 1 eigenvalues. From the argument in Proposition 7.1, together with
(7.5), this simplifies to the claimed generating function,

∏
d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

(T(z) + G(z)).

We now assume q is odd. As in the previous arguments of this section,
the modified degree of an irreducible character of SO±(2n,Fq) boils down
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to the choice of Φ and a unipotent character ω. It follows as before that the
generating function we need is of the form

∏
d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

· F(z),

where F(z) corresponds to the choice of the unipotent factor of ω coming
from the 1 and −1 eigenvalues of (s). Note that F(z) should have constant
term 2, since there are two distinct semisimple classes (s) corresponding to
Φ when s has no 1 or −1 eigenvalues. We now describe the factor F(z).

If we are choosing the unipotent factor corresponding to (s) having a
nonzero number of both 1 and −1 eigenvalues, then we consider the terms
in (7.4). For every choice with Λ+ ∈ G or Λ− ∈ G, we get the same character
for the choices Λ′+ and Λ′−, and so a factor of 1/2 should be included in the
generating function for the corresponding sums accounting for these terms.
On the other hand, when Λ+,Λ− ∈ R, we obtain two characters of the same
degree corresponding to this choice, but this factor of 2 when considering
the resulting modified character degree is cancelled by the factor of 1/2 in
(7.4). This suggests that F(z) should have the following form:

F(z) =
1

2

∑
Λ+∈G

δ(Λ+)z|Λ+|

 ∑
Λ−∈R

δ(Λ−)z|Λ−|

(7.6)

+

 ∑
Λ+∈R

δ(Λ+)z|Λ+|

∑
Λ−∈G

δ(Λ−)z|Λ−|


+

∑
Λ+∈G

δ(Λ+)z|Λ+|

∑
Λ−∈G

δ(Λ−)z|Λ−|


+

 ∑
Λ+∈R

δ(Λ+)z|Λ+|

 ∑
Λ−∈R

δ(Λ−)z|Λ−|

 .

That is, all terms obtained in the above by taking non-constant terms in
each sum account for the unipotent factor when there are both 1 and −1
eigenvalues. We now explain why (7.6) also accounts for the cases that (s)
does not have both 1 and −1 eigenvalues. As already mentioned, for the case
that s has neither 1 nor −1 eigenvalues we only need that F(z) has constant
term 2. This follows from the fact that each sum in (7.6) indexed by G has
constant term 2, and each indexed by R has constant term 0. In the case
that s has either 1 or −1 eigenvalues, but not both, we must consider the
factor (7.3). We can have Λ+ ∈ R or Λ− ∈ R, and these terms are obtained
by considering the first two products of sums in (7.6), by taking the product
of the terms in the sums of R with the constant term for the sums over G.
Since the constant term for sums indexed by G is 2, the factor of 1/2 in F(z)
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yields coefficients given by the corresponding factor in (7.3). If Λ+ ∈ G or
Λ− ∈ G, these terms are obtained from the third product of sums in (7.6)
by taking the constant term in one factor, and again the 1/2 in front gives
terms in (7.6). Note that since both sums in the fourth product of sums in
(7.6) has 0 as the constant term, all resulting term coefficients have already
been accounted for in the case s has both 1 and −1 eigenvalues. Thus F(z)
given by (7.6) is the needed factor in the generating function.

From (7.6) and the definitions of G(z) and R(z), we now have

F(z) =
1

2
[2G(z) · 2R(z) + 2R(z) · 2G(z) + 2G(z) · 2G(z))] + 2R(z) · 2R(z)

= 4R(z)2 + 4G(z)R(z) + G(z)2 + G(z)2 = (2R(z) + G(z))2 + G(z)2

= T(z)2 + G(z)2.

The result in the case that q is odd follows. �

The following result is obtained in [31, Proposition 4.1], which we state
here since we will apply it in several calculations in the next section.

Proposition 7.3. We have the following identity of power series, where
e = e(q) is as in (3.1):

∏
d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

=
1

1− z
∏
i≥1

(1− z/q2i−1)e

1− z2/q2i

∏
1≤i<j
i+j odd

(1− z2/qi+j)e.

8. Main results

We may now prove the main results of the paper. In the following, we
apply the generating functions in the previous section to give an infinite
product expansion for T(z), which was defined in (7.2) to have 1/2 of the
sum of all modified character degrees of unipotent characters of O+(2n,Fq)
and O−(2n,Fq) as the coefficient of zn for n > 0, and constant term 1.

Theorem 8.1. For any prime power q, we have

T(z) =
∏
i≥1

1 + z/q2i−1

1− z/q2i−1

∏
1≤i<j
i+j odd

1

1− z2/qi+j
.

Proof. When q is odd, we have by Propositions 3.1(i) and 7.1 with e = 2
that ∏

d≥1

(∑
λ∈P

δU(λ, 2d)z|λ|d

)N∗(q;2d)(∑
λ∈P

δGL(λ, d)z|λ|d

)M∗(q;d)

T(z)2
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=
1

1− z
∏
i≥1

(1 + z/q2i−1)2

1− z2/q2i
.(8.1)

Substituting the identity in Proposition 7.3 with e = 2 into (8.1) and sim-
plifying gives∏

i≥1

(1− z/q2i−1)2
∏

1≤i<j
i+j odd

(1− z2/qi+j)2 · T(z)2 =
∏
i≥1

(1 + z/q2i−1)2.

Solving for T(z) and noting that the coefficients must be positive yields the
claim when q is odd. Since the unipotent characters have degrees which are
the same expressions in q whether q is even or odd, then the result also holds
for q even. �

We may immediately apply Theorem 8.1 to show that every irreducible
character of O±(2n,Fq) has Frobenius-Schur indicator 1 when q is even.

Theorem 8.2. When q is a power of 2, the groups O±(2n,Fq) are totally
orthogonal for all n.

Proof. By Propositions 7.1 and 7.3 with e = 1, together with Theorem 8.1,
we have that for n > 0,

Σ(O+(2n,Fq))
2(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(O−(2n,Fq))

2(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn in the generating function

1

1− z
∏
i≥1

1− z/q2i−1

1− z2/q2i

∏
1≤i<j
i+j odd

(1− z2/qi+j)
∏
i≥1

1 + z/q2i−1

1− z/q2i−1

∏
1≤i<j
i+j odd

1

1− z2/qi+j

=
1

1− z
∏
i≥1

1 + z/q2i−1

1− z2/q2i
.

The result now follows from Proposition 3.1(ii). �

Rämö proved [25, Theorem 1.1] that when q is even, all elements of
SO±(4m,Fq) are strongly real. In particular, since O±(4m,Fq) is totally
orthogonal and SO±(4m,Fq) is a real group, then the next result follows
immediately from Lemma 2.2(i).

Theorem 8.3. When q is a power of 2, the groups SO±(4m,Fq) are totally
orthogonal for all m.

We finally have the following result, which follows from Theorem 8.3 and
the other cases summarized in [27, Theorem 3.2].

Theorem 8.4. Let G be a finite simple group. Then G is totally orthogonal
if and only if G is strongly real.
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The classification of all finite simple groups which are real is given by Tiep
and Zalesski [29], and the classification of strongly real finite simple groups
completed in [30, 25] yields that every real finite simple group is also strongly
real. We obtain the following interesting behavior of the Frobenius-Schur
indicators of characters of finite simple groups.

Corollary 8.1. Let G be a finite simple group. If G has an irreducible
character χ such that ε(χ) = −1, then G also has an irreducible character
which is not real-valued.

Proof. Since every finite simple group which is real is also strongly real, then
from Theorem 8.4 every real finite simple group is totally orthogonal. That
is, there are no finite simple groups which are real and which have irreducible
characters with Frobenius-Schur indicator −1. The result follows. �

We may also find an infinite product expression for the generating function
G(z) by applying Proposition 8.5 and Theorem 8.1, as follows.

Theorem 8.5. For any prime power q, we have

G(z) =
∏

1≤i<j
i+j odd

1

1− z2/qi+j
.

Proof. For q odd, by Propositions 8.5 and 7.3 with e = 2, together with
Proposition 3.2(i), we have

1

1− z
∏
i≥1

(1− z/q2i−1)2

1− z2/q2i

∏
1≤i<j
i+j odd

(1− z2/qi+j)2 · (T(z)2 + G(z)2) =

=
1

1− z
∏
i≥1

(1 + z/q2i−1)2

1− z2/q2i
+

1

1− z
∏
i≥1

(1− z/q2i−1)2

1− z2/q2i
.

After substituting in the expression in Theorem 8.1 for T(z) and some sim-
plification, we obtain∏

i≥1

(1− z/q2i−1)2
∏

1≤i<j
i+j odd

(1− z2/qi+j)2 · G(z)2 =
∏
i≥1

(1− z/q2i−1)2.

Solving for G(z) gives the result for q odd. Since G(z) is defined in terms of
unipotent character degrees which are expressions in q independent of the
parity of q, the result holds for all q. �

We note that the expressions for T(z) and G(z) given in Theorems 8.1 and
8.5 strongly resemble the identity in [31, Theorem 4.1] for the generating
function for the sum of the modified character degrees of the unipotent
characters of the symplectic and odd-dimensional special orthogonal groups.

Lastly, we describe the twisted Frobenius-Schur indicators for the groups
SO±(4m+ 2,Fq). The next result is proved in the case that q is odd in [27,
Theorem 5.1(ii)], and so the statement holds for all q.
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Theorem 8.6. Let q be a power of 2. For any m ≥ 0 and any irreducible
character χ of SO±(4m+ 2,Fq), we have εσ(χ) = 1 and ε(χ) ≥ 0.

Proof. By Propositions 8.5 and 7.3 with e = 1, we have that when q is even
and n > 0, the expression

Σ(SO+(2n,Fq))
(qn − 1)

∏n−1
i=1 (q2i − 1)

+
Σ(SO−(2n,Fq))

(qn + 1)
∏n−1
i=1 (q2i − 1)

is the coefficient of zn in the generating function

(8.2)
1

1− z
∏
i≥1

1− z/q2i−1

1− z2/q2i

∏
1≤i<j
i+j odd

(1− z2/qi+j) · (T(z) + G(z)).

Substituting the expressions for T(z) in Theorem 8.1 and for G(z) in Theo-
rem 8.5, (8.2) becomes

1

1− z
∏
i≥1

1 + z/q2i−1

1− z2/q2i
+

1

1− z
∏
i≥1

1− z/q2i−1

1− z2/q2i
.

The fact that εσ(χ) = 1 for any irreducible character of SO±(4m + 2,Fq),
m ≥ 0, now follows from Proposition 3.2(ii). In particular, we have σ(h) is
conjugate to h−1 in SO±(4m+ 2,Fq) for every h ∈ SO±(4m+ 2,Fq). Since
O±(4m+2,Fq) is totally orthogonal by Theorem 8.2, it follows from Lemma
2.2(ii) that ε(χ) ≥ 0 for all irreducible characters χ of SO±(4m+ 2,Fq). �
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