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Abstract

We study Klyachko models of SL(n, F ), where F is a nonarchimedean local field. In
particular, using results of Klyachko models for GL(n, F ) due to Heumos, Rallis, Offen and
Sayag, we give statements of existence, uniqueness, and disjointness of Klyachko models
for admissible representations of SL(n, F ), where the uniqueness and disjointness are up to
specified conjugacy of the inducing character, and the existence is for unitarizable represen-
tations in the case F has characteristic 0. We apply these results to relate the size of an
L-packet containing a given representation of SL(n, F ) to the type of its Klyachko model,
and we describe when a self-dual unitarizable representation of SL(n, F ) is orthogonal and
when it is symplectic.

1 Introduction

Let F be a field, let Um(F ) denote the group of m-by-m unipotent upper triangular matrices
over F , and let Mm,l(F ) be the set of m-by-l matrices over F (not necessarily invertible). For
each integer k satisfying 0 ≤ 2k ≤ n, define the subgroup Gk of GL(n, F ) by:

Gk =
{(

N X
S

) ∣∣∣N ∈ Un−2k, S ∈ Sp(2k, F ), X ∈Mn−2k,2k(F )
}
. (1.1)

Here we define, for k > 0, the symplectic group Sp(2k, F ) to be the stabilizer of the form

corresponding to the skew-symmetric matrix Jk =
(

−1k
1k

)
. Fix a nontrivial additive

character θ : F+ → C, and for each k, define a character ψk on Gk as follows:

If g ∈ Gk, g =
(
N X

S

)
, and N = (aij), then define ψk(g) = θ

(
n−2k−1∑
i=1

ai,i+1

)
. (1.2)

In other words, ψk is only non-trivial on the unipotent factor of Gk. When n = 2m, then
ψm is just the trivial character on the subgroup Gm = Sp(2m,F ), and when k = 0, ψk is a
nondegenerate character of the unipotent subgroup Un(F ) of GL(n, F ).

Suppose that F = Fq is a finite field, let G = GL(n,Fq), and for each k, 0 ≤ 2k ≤ n,
define the induced representation Tk = IndGGk(ψk). Klyachko [8] claimed that for any complex
irreducible representation (π, V ) of G, dimC HomG(π, Tk) ≤ 1 for every k, and there exists a
unique k, 0 ≤ 2k ≤ n, such that dimC HomG(π, Tk) = 1. After Klyachko’s original paper, Inglis
and Saxl [7] gave the first complete proof to Klyachko’s claim.

We call an embedding of the representation (π, V ) in the induced representation Tk a Kly-
achko model of the representation π. Klyachko’s original result states that every irreducible
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representation of GL(n,Fq) has a unique Klyachko model, and in particular, all of the induced
representations Tk are multiplicity-free, and Tk and Tl have no isomorphic sub-representations
when k 6= l.

Now consider the case that F is a nonarchimedean local field, with G = GL(n, F ). For each
k, 0 ≤ 2k ≤ n, define the representation Tk by

Tk = IndGGk(ψk),

where Ind denotes the ordinary (non-normalized) induced representation for a locally compact
totally disconnected group. In this case, there is the following result on Klyachko models of
representations of GL(n, F ).

Theorem 1.1 (Heumos and Rallis, Offen and Sayag). Let G = GL(n, F ), where F is a nonar-
chimedean local field. Let (π, V ) be any irreducible admissible representation of G. We have the
following:

(1)
bn/2c∑
k=0

dimC HomH(π, Tk) ≤ 1.

(2) If F has characteristic 0 and (π, V ) is unitarizable, then there exists a unique k such that
dimC HomG(π, Tk) = 1.

Heumos and Rallis [6] proved that, if n = 2m, then for any π, dimC HomH(π, Tm) ≤ 1; that is,
any irreducible admissible representation has a unique symplectic model if one exists. They also
proved that in this case, the set of admissible representations of GL(n, F ) which have symplectic
models is disjoint with the set of representations which have Whittaker models. Finally, Heumos
and Rallis proved statements (1) and (2) of Theorem 1.1 for n ≤ 4 and conjectured that these
statements hold for all n. Theorem 1.1 was proved completely by Offen and Sayag in a series of
papers [9, 10, 11].

Now notice that the groups Gk are also subgroups of the special linear group SL(n, F ). In
this paper, we study Klyachko models of the group SL(n, F ) when F is a nonarchimedean local
field. Since there is more than one orbit of nondegenerate characters of the unipotent subgroup
of SL(n, F ), we must consider conjugates of the characters ψk in (1.2) in these models. Our
main result, Theorem 2.1, is the analogue of Theorem 1.1 for the special linear group. The main
difference in the result is in the statement of uniqueness and disjointness of Theorem 2.1, where
we can only obtain uniqueness and disjointness of Klyachko models up to conjugation of the
character ψk by an element of a certain group.

We give two applications of Theorem 2.1. In the first, Corollary 2.1, we relate the type of
the Klyachko model of a representation of SL(n, F ) to the size of the L-packet containing that
representation. In the second, Corollary 3.1, we describe when a self-dual unitarizable represen-
tation of SL(n, F ) is orthogonal and when it is symplectic.

Acknowledgments. Both authors thank the referee for suggestions and corrections to im-
prove this paper, and Alan Roche for helpful comments. The first-named author was supported
by NSF grant DMS-0854844, and the second-named author was supported by NSF grant DMS-
0854849.

2 Klyachko models of special linear groups

From now on, we let F be a nonarchimedean local field, let G = GL(n, F ), let H = SL(n, F ),
and let Gk be as in (1.1) for each k such that 0 ≤ 2k ≤ n. Note that G ∼= HnD, where D ∼= F×
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is the group of matrices of the form diag(x, 1, . . . 1) for x ∈ F×. We will often identify G/H
with D and hence with F×. Note that H contains each Gk, and D normalizes Gk whenever
0 ≤ 2k < n.

Let (ρ,W ) be an irreducible admissible representation of H. By [14, Prop. 2.2], there is
an H-embedding of (ρ,W ) as a direct summand of some irreducible admissible representation
(π, V ) of G. From results in [2, 14], we know that if ρ is unitarizable then (π, V ) can also be
taken to be unitarizable.

Given any g ∈ G, define gρ to be the representation of H on W given by gρ(h) = ρ(g−1hg).
Denote by G(ρ) the subgroup {g ∈ G|gρ ∼= ρ} of G. By [14, Cor. 2.3], G(ρ) is an open normal
subgroup of finite index in G. Since ρ is stable under conjugation by G(ρ), we may extend ρ to
a representation of the group G(ρ). We let D(ρ) = D ∩G(ρ).

If g ∈ G normalizesGk, and ψ is a character ofGk, denote by gψ the character α 7→ ψ(g−1αg).
In this case, if g has image x ∈ F× under the map G 7→ G/H ∼= D ∼= F×, we have (in the
notation of (1.2))

gψk(g) = θ

(
x−1a1,2 +

n−2k−1∑
i=2

ai,i+1

)
when 0 ≤ 2k < n− 1.

If n is odd and 2k = n− 1, then ψk is trivial, hence unaffected by conjugation. If n is even and
2k = n, then ψk is again trivial, although Gk = Sp(2k, F ) is no longer normalized by non-trivial
elements of D. In this case, given γ ∈ D, γGk = γGkγ

−1 is the symplectic group defined by the
skew-symmetric matrix γJkγ. So, in general, γψk is a character of γGk, and Gk = γGk in all
cases except when 2k = n. We first prove a result which relates representations of H, G(ρ), and
G.

Lemma 2.1. Let (ρ,W ) be an irreducible admissible representation of H and let (π, V ) be an
irreducible admissible representation of G that contains (ρ,W ) upon restriction. Consider (ρ,W )
as an irreducible representation of G(ρ). Then IndGG(ρ)(ρ) ∼= π.

Proof. Since the restriction of (π, V ) to G(ρ) contains (ρ,W ), it follows that IndGG(ρ)(ρ) is con-
tained in

IndGG(ρ)(π) = IndGG(ρ)(π ⊗ 1) = π ⊗ IndGG(ρ)(1),

which is completely reducible. Therefore, IndGG(ρ)(ρ) is completely reducible, and the number of
irreducible components therein is given by

dimC

(
EndG(IndGG(ρ)(ρ))

)
.

An application of Mackey’s theorem [1, Exer. 4.5.5] shows this dimension is 1.

The following lemma relates models for representations of G with those of H.

Lemma 2.2. Let (ρ,W ) be an irreducible admissible representation of H and let (π, V ) be an
irreducible admissible representation of G that contains (ρ,W ) upon restriction. Suppose that
for some γ ∈ D and some k with 0 ≤ 2k ≤ n, (ρ,W ) embeds in IndHγGk(γψk). Then (π, V )
embeds in Tk = IndGγGk(γψk) = IndGGk(ψk).

Proof. Since ρ embeds in IndHγGk(γψk), we have by Frobenius reciprocity,

HomG(ρ)(ρ, IndG(ρ)
γGk

(γψk)) 6= (0), (2.1)
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where we view ρ as a representation of G(ρ) and have applied transitivity of induction in
that IndG(ρ)

γGk
(γψk) = IndG(ρ)

H (IndHγGk(γψk)). Note that if σ1 and σ2 are any two representa-
tions of G(ρ) with HomG(ρ)(σ1, σ2) nonzero, an application of Mackey’s theorem shows that
HomG(IndGG(ρ)(σ1), IndGG(ρ)(σ2)) is also nonzero. Thus (2.1) implies that

HomG(ρ)

(
IndGG(ρ)(ρ), IndGG(ρ)(IndG(ρ)

γGk
(γψk))

)
6= (0).

Using Lemma 2.1 and the transitivity of induction, this becomes

HomG(π, IndGγGk(γψk)) 6= (0),

as desired.

We now prove our main result.

Theorem 2.1. Let H = SL(n, F ), where F is a nonarchimedean local field. Let (ρ,W ) be an
irreducible admissible representation of H. We have the following:

(1) For any collection Dρ of representatives of the cosets D/D(ρ),

bn/2c∑
k=0

∑
γ∈Dρ

dimC HomH(ρ, IndHγGk(γψk)) ≤ 1. (2.2)

(2) If F has characteristic 0 and ρ is unitarizable, then there exists a unique integer k and a
unique element γ ∈ Dρ such that dimC HomH(ρ, IndHγGk(γψk)) = 1.

Proof. Let (ρ,W ) be an irreducible admissible representation of H and let γ ∈ D. Let (π, V )
be an irreducible admissible representation of G in which (ρ,W ) embeds as a direct summand.
If π has no Klyachko model, then HomH(ρ, IndHγGk(γψk)) must be trivial for all integers k by
Lemma 2.2, so (2.2) holds. Hence suppose from now on that π embeds in Tk for some integer k
with 0 ≤ 2k ≤ n.

Viewing ρ as a representation of G(ρ), Mackey’s theorem implies that we have an isomor-
phism

HomG

(
IndGG(ρ)(ρ), Tk

)
∼=

⊕
δ∈G/G(ρ)

HomGk(δρ, ψk). (2.3)

By Lemma 2.1 and Theorem 1.1, the dimension of the space on the left-hand side of (2.3) is 1.
Now consider the right-hand side of (2.3). The preceding paragraph implies that∑

δ∈G/G(ρ)

dimC

(
HomGk(δρ, ψk)

)
= 1. (2.4)

Note that we may assume that our representatives for the cosets in G/G(ρ) lie in D. Then we
have, for any δ ∈ D in our set of coset representatives,

HomGk(δρ, ψk) = Homδ−1Gk
(ρ, δ

−1
ψk) = HomH(ρ, IndHδ−1Gk

(δ
−1
ψk)),

where we have applied Frobenius reciprocity in the last equality. Letting Dρ be our set of coset
representatives for D/D(ρ), we can now rewrite (2.4) to obtain∑

γ∈Dρ

dimC
(
HomH(ρ, IndHγGk(γψk))

)
= 1.
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This forces HomH(ρ, IndHγGk(γψk)) to be one-dimensional for a unique choice of γ ∈ Dρ.
Now suppose ρ also embeds in IndHδGk(δψl) for some integer l and δ ∈ D. Then Lemma 2.2

implies that π also embeds in Tl, which forces l = k by the uniqueness of the Klyachko model
of π. This concludes the proof of (1) in the case that π has a Klyachko model, and shows that
in this case (2.2) is an equality.

Now suppose that ρ is unitarizable. Note that statement (2) now follows from (1) as soon
as it is shown that the representation π has a Klyachko model. But by [14, Prop. 2.2, 2.7], we
may assume that π is itself unitarizable. Hence by Theorem 1.1, π has a Klyachko model.

We will say that the representation ρ ofH possesses a Klyachko model if HomH(ρ, IndHγGk(γψk))
is nontrivial for some integer k and some γ ∈ D. Note that Theorem 2.1 can be adjusted to be
a statement for Klyachko models for the finite group SL(n,Fq), which sharpens the results in
[15, Prop. 1].

We will need the following for an application of Theorem 2.1.

Lemma 2.3. Let k be an integer, 0 < 2k < n and let d = (2k, n). Suppose ψ is a character

of Gk that is trivial on
{(

1n−2k X
12k

) ∣∣∣X ∈Mn−2k,2k(F )
}

. Then the equivalence class of

IndHGk(ψ) is stable under conjugation by Dd.

Proof. Suppose δ ∈ Dn, and say δ = diag(xn, 1, . . . , 1). Then

δ = diag(xn−1, x−1, . . . , x−1)diag(x, x, . . . , x) ∈ HZ,

where Z is the center of G. Thus

δ(IndHGk(ψ)) ∼= IndHGk(ψ).

Thus Dn stabilizes the equivalence class of IndHGk(ψ).
Now suppose δ ∈ Dn−2k so that δ = diag(an−2k, 1, . . . , 1) for some a ∈ F×. Let α =

diag(a, . . . , a, 1, . . . , 1) ∈ G, where the blocks of a’s and 1’s have respective lengths n − 2k and
2k. Note that δ ∈ αH and that conjugation by α fixes ψ. Thus

δ(IndHGk(ψ)) = α(IndHGk(ψ)) = IndHGk(αψ) = IndHGk(ψ).

Therefore, Dn−2k stabilizes the equivalence class of IndHGk(ψ).
It follows from the preceding paragraphs that the group generated byDn andDn−2k stabilizes

the equivalence class of IndHGk(ψ). To complete the proof, note that this group is precisely
Dd.

The Local Langlands Correspondence for GL(n) [4, 5] gives a bijection from the set of equiv-
alence classes of irreducible representations of G to a set consisting of certain n-dimensional
complex representations of the Weil-Deligne group W ′F of F . The existence of the Langlands
Correspondence for SL(n) follows from this by the work of Gelbart and Knapp [3]. Here the
equivalence classes of irreducible representations of H are parameterized by certain homomor-
phisms from W ′F to PGL(n,C). Moreover, in the case of SL(n), the correspondence is now
many-to-one; the fibers of the parameterization are the L-packets of H. In [3, Thm. 4.1], it is
shown that the L-packets of H coincide with the orbits of G on equivalence classes of irreducible
representations of H. Thus if ρ is an irreducible admissible representation of H, the size of
the L-packet containing ρ is precisely (G : G(ρ)) = (D : D(ρ)). The following result gives a
relationship between the Klyachko model of a representation ρ of H and the size of the L-packet
containing ρ.
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Corollary 2.1. Let k be an integer, 0 < 2k < n. Let d = (2k, n). If the irreducible admissible
representation ρ of H occurs in IndHGk(γψk) for some γ ∈ D, then Dd ⊂ D(ρ). In particular,
the size of the L-packet of ρ is at most the index of (F×)d in F×. Thus if d = 1, then ρ must
be stable, that is, the L-packet containing ρ is a singleton.

Proof. Recalling that D ∼= F×, the second and third statements follow immediately from the
first, which we now verify. It follows from Lemma 2.3 that Dd stabilizes IndHGk(γψk). Let δ ∈ Dd.
Then ρ occurs in IndHGk(γδψk). By the uniqueness statement in Theorem 2.1, we must then have
that γδ ∈ γD(ρ) so δ ∈ D(ρ).

3 Self-dual representations

Let G be a totally disconnected locally compact group with (π, V ) an irreducible admissible
representation of G, and ι a continuous automorphism of G such that ι2 is the identity. Let
(π̂, V̂ ) denote the smooth contragredient of (π, V ), where V̂ is the smooth dual of V , and define
the representation (ιπ, V ) by ιπ = π ◦ ι. From Schur’s Lemma, the representation π satisfies
ιπ ∼= π̂ if and only if there exists a nondegenerate bilinear form, unique up to scalar multiple,
say B : V × V → C, such that

B(π(g)v, ιπ(g)w) = B(v, w) for all v, w ∈ V, g ∈ G. (3.1)

It follows that B must be either symmetric, in which case we write ει(π) = 1, or skew-symmetric,
in which case we write ει(π) = −1. If ιπ 6∼= π̂, then we let ει(π) = 0. When ι is the trivial
automorphism, then ιπ = π ∼= π̂ just means that π is self-dual. In this case, we simply write
ε(π) for ει(π). If π is self-dual and ε(π) = 1, we say π is orthogonal, and if ε(π) = −1, we say π
is symplectic.

We begin with the following, which is a slight generalization of [13, Lemma 2.1]. Since the
proof is virtually identical to the proof in [13], we just give an outline.

Lemma 3.1. Let (π, V ) be an irreducible, admissible, and unitarizable representation of the
totally disconnected locally compact group G, and let ι be a continuous automorphism of G such
that ι2 is the identity. Then ει(π) = 1 if and only if there exists a conjugate linear automorphism
ϕ : V → V such that ϕ2 = 1, and ϕ(ιπ(g)v) = π(g)ϕ(v) for all v ∈ V and all g ∈ G.

Proof. Since (π, V ) is unitarizable, there is a positive definite Hermitian form 〈·, ·〉 on V which
is G-invariant. First assume there exists a conjugate linear automorphism ϕ on V with the
above properties. If we define a bilinear form B by B(v, w) = 〈v, ϕ(w)〉, then it follows that B
is nondegenerate and satisfies (3.1). To prove that B is symmetric, it is enough to show that
〈v, w〉 = 〈ϕ(v), ϕ(w)〉, which follows from the uniqueness of 〈·, ·〉 up to positive scalar multiple.

Conversely, suppose that B is a nondegenerate symmetric form on V which satisfies (3.1).
Any element of the smooth dual V̂ of V is of the form 〈·, w〉, for a unique w ∈ V . For any w ∈ V ,
the map u 7→ B(u,w) is a smooth linear functional of V , and so there is a unique w′ such that
B(u,w) = 〈u,w′〉. This defines a conjugate linear map w 7→ w′ on V . Now, we must have
〈v, w〉 = λ〈v′, w′〉, for all v, w ∈ V and for some positive real number λ, by uniqueness of the
Hermitian form 〈·, ·〉. If we define ϕ(v) =

√
λv′, then ϕ : V → V has the desired properties.

The next result is a generalization of [13, Cor. 2.2], and we again use an argument very
similar to the one appearing there.
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Lemma 3.2. Let (π, V ) be an irreducible, admissible, and unitarizable representation of G, let
ι be a continuous automorphism of G such that ι2 is the identity, and let H be a closed subgroup
of G which is stable under ι. Let ψ be a one-dimensional representation of H such that ιψ = ψ̄,
and such that dimC HomH(π, ψ) = 1. If ιπ ∼= π̂, then ει(π) = 1.

Proof. Let 〈·, ·〉 denote the G-invariant Hermitian form on V . We know that ιπ ∼= π̂, and
say T : V → V̂ is the corresponding intertwining operator. There is also a conjugate linear
isomorphism L : V → V̂ given by L(w) = 〈·, w〉, and note that L satisfies L(π(g)v) = π̂(g)L(v)
for all g ∈ G, v ∈ V . Then η = L−1 ◦ T is a conjugate linear automorphism of V satisfying
η(ιπ(g)v) = π(g)η(v) for all g ∈ G, v ∈ V . By Schur’s lemma, we must have η2 = α, where α is
some nonzero complex scalar.

Now, let ` ∈ HomH(π, ψ), with ` 6= 0, and define ˜̀ : V → C by ˜̀(v) = `(η(v)). Then, for any
h ∈ H, v ∈ V , we have

˜̀(π(h)v) = `(ιπ(h)η(v)) = ιψ(h)`(η(v)) = ψ(h)˜̀(v),

since η(π(h)v) = ιπ(h)η(v) and ιψ = ψ̄. So, ˜̀∈ HomH(π, ψ), and we must have ˜̀= λ` for some
nonzero complex scalar λ. Since we then have `(η(v)) = λ`(v) for all v, then by substituting
η(v) for v, and from the fact η2(v) = αv, we obtain α`(v) = λ̄λ`(v). We now have α = λ̄λ, and
we define ϕ = λ−1η. Now, ϕ : V → V is a conjugate linear automorphism such that ϕ2 = 1 and
ϕ(ιπ(g)v) = π(g)ϕ(v) for all g ∈ G, v ∈ V . By Lemma 3.1, we have ει(π) = 1.

If (π, V ) is an irreducible admissible representation of G, and z is an element of the center
of G, then it follows from Schur’s lemma that π(z) acts as a scalar on V , which we denote by
ωπ(z). The next result follows directly from [15, Prop. 2].

Lemma 3.3. Let s ∈ G such that s2 = z is in the center of G. Define the automorphism ι on G
by ι(g) = s−1gs, so ι2 is the identity. Then for any irreducible admissible representation (π, V )
of G, we have ε(π) = ωπ(z)ει(π).

In [12, Sec. 3, Ex. (2)], Prasad describes when a generic self-dual representation of SL(n, F )
is orthogonal and when it is symplectic (excluding the case that n is 2 mod 4 and F does not
contain a square root of −1). Here, we extend these results to include any self-dual irreducible
admissible representation which is unitarizable.

Corollary 3.1. Let F be a nonarchimedean local field of characteristic 0, and let (π, V ) be a
self-dual, irreducible, admissible, and unitarizable representation of H = SL(n, F ). Then

(1) If n is odd or n ≡ 0(mod 4), then ε(π) = 1.

(2) If n ≡ 2(mod 4) and F contains a square root of −1, then ε(π) = 1 if and only if the
central element −I of SL(n, F ) acts trivially on V , that is, ε(π) = ωπ(−I).

Proof. By Theorem 2.1(2), there exists a k, 0 ≤ 2k ≤ n, and a γ ∈ D, such that

dimC HomG(π, IndHγGk(γψk)) = dimC HomGk(π, γψk) = 1.

First suppose that 2k < n, so that we may assume γGk = Gk.
If n ≡ 0(mod 4), then define s = diag(−1, 1, . . . ,−1, 1); if n ≡ 3(mod 4) then define

s = diag(−1, 1, . . . , 1,−1); and if n ≡ 1(mod 4), then define s = diag(1,−1, . . . ,−1, 1). In each
case, s ∈ H and s2 = I. If we define ι on H by ι(g) = s−1gs, then we must check that Gk is
stable under ι. In general, if we conjugate the symplectic group defined by the skew-symmetric
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matrix J by a matrix a, the result is the symplectic group defined by the skew-symmetric matrix
(ta−1)J(a−1). In these cases, we are conjugating Sp(2k, F ), defined by Jk, by the diagonal matrix
s2k with entries given by the last 2k entries of s. Since s2kJks2k = Jk in each case, it is indeed
true that Gk is fixed by ι. Now, we have γψk(s−1hs) = γψk(h) for every h ∈ Gk, and ιπ ∼= π ∼= π̂,
since π is self-dual. By Lemma 3.2, we have ει(π) = 1, and by Lemma 3.3 we have ε(π) = 1, as
desired.

Now suppose that n ≡ 2(mod 4), and that F contains a square root of −1, and say β ∈ F
such that β2 = −1. Define s = diag(β,−β, . . . , β,−β), and define ι on H by ι(g) = s−1gs. Then
s ∈ H and s2 = −I. In this case, defining s2k as above, we have s−1

2k Jks
−1
2k = −Jk, and since

the symplectic group defined by the skew-symmetric matrix Jk is the same as the one defined
by −Jk, we again have that Gk is stable under ι. Like before, we have γψk(s−1hs) = γψk(h) for
every h ∈ Gk, and also ιπ ∼= π̂. By Lemmas 3.2 and 3.3, we conclude that ε(π) = ωπ(−I).

In the case that 2k = n, we have ψk is trivial, so that s(γψk) = ψk, but we must check that
γGk is fixed by ι. In this case, if γ = diag(x, 1, . . . , 1), then γGk is the symplectic group defined

by the skew-symmetric matrix J̃ =
(

−A
A

)
, where A is the k-by-k matrix diag(x, 1, . . . , 1).

In each case for ι and s above, for n even, ι(γGk) is the symplectic group defined by the
skew-symmetric matrix s−1J̃s−1. It follows that γGk is fixed by each ι by observing this skew-
symmetric matrix defines the same symplectic group as J̃ .

Remarks. In [15, Sec. 6], the second-named author studies the values of ει(π), where π is an
irreducible admissible representation of GL(n, F ), and ι is the transpose-inverse automorphism
composed with conjugation by the longest Weyl element. The statement in [15, Thm. 8] that
ει(π) = 1 for all such π does not have a complete proof there. What is actually proved is that
if π is an irreducible admissible representation of GL(n, F ), and there exists a character ψ of
the maximal unipotent subgroup such that ιψ = ψ̄ and π has a unique ψ-degenerate Whittaker
model, then ει(π) = 1. Also, the conclusion cannot be made in [15, Sec. 3] using similar methods
that ει(π) = 1 for every irreducible representation π of the finite group GL(n,Fq). However,
this statement is already known to be true for the finite group GL(n,Fq), while this is still an
open question for the p-adic group GL(n, F ).

For the statement in [15, Thm. 8] that ε(π) = 1 for every self-dual, irreducible, admissible
representation π of GL(n, F ), the proof is complete. It is possible that similar methods could be
used to extend Corollary 3.1 to all self-dual irreducible admissible representations of SL(n, F ).
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