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Abstract. We study Shintani lifting of real-valued irreducible characters of finite reductive
groups. In particular, if G is a connected reductive group defined over Fq , and ψ is an irre-
ducible character of G(Fqm ) which is the lift of an irreducible character χ of G(Fq ), we
prove ψ is real-valued if and only if χ is real-valued. In the case m = 2, we show that if χ
is invariant under the twisting operator of G(Fq2 ), and is a real-valued irreducible character
in the image of lifting from G(Fq ), then χ must be an orthogonal character. We also study
properties of the Frobenius–Schur indicator under Shintani lifting of regular, semisimple,
and irreducible Deligne–Lusztig characters of finite reductive groups.

1. Introduction

Shintani [23] gave a bijection from the irreducible complex characters of the general
linear group GL(n,Fq) over a finite field Fq , to the Frobenius-invariant complex
irreducible characters of the general linear group GL(n,Fqm ) over an extension
field Fqm , through an identity of character values. This correspondence has come
to be known as Shintani lifting. The theory has been extended to other algebraic
groups over a finite field by Kawanaka [13–15] and Gyoja [12], as well as under-
stood in a more geometric context as Shintani descent, by Digne and Michel [7]
and Shoji [24], among others. Shintani lifting and descent have played a key role
in the development of the character theory of finite groups of Lie type, and has also
influenced the development of the lifting theory and base change of automorphic
forms and representations (see [15, Sect. 1.1]).

In this paper, we study Shintani lifting of real-valued irreducible complex
characters of finite reductive groups. There are classical results on the complex
characters of finite groups for which there are analogous theorems for real-valued
characters of finite groups, such as the results on degrees of real-valued characters
obtained by Navarro, Sanus, and Tiep [20]. Such results indicate that the theory
of real-valued characters of finite groups inherits many of the rich aspects of the
classical character theory. Because finite reductive groups are such an important
class of finite groups, and Shintani lifting is a fundamental part of their character
theory, it is a natural problem to investigate the behavior of real-valued characters
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under Shintani lifting. Furthermore, we expect that corresponding to our results for
Shintani lifting of real-valued characters of finite reductive groups, there should be
analogous results for the base change of self-dual representations of p-adic groups.

The main results and organization of this paper are as follows. In Sect. 2, we give
results and definitions regarding norm maps and Shintani lifting for finite reductive
groups. In Sect. 3, we obtain our first main result in Theorem 3.2, which states that
for G a connected reductive group defined over Fq , if an irreducible character χ
of G(Fqm ) is the Shintani lift of the character ψ of G(Fq), then χ is real-valued if
and only if ψ is real-valued. We apply Theorem 3.2 to obtain a set of irreducible
characters of the finite symplectic groups which have no even degree Shintani lifts
(Corollary 3.1), and to obtain a bijection between irreducible real-valued characters
of the finite general linear and unitary groups (Corollary 3.2).

In Sect. 4, we concentrate on quadratic lifting of characters, from G(Fq) to
G(Fq2). After giving the necessary results on Frobenius–Schur indicators, we prove
Theorem 4.2, which states that if χ is an irreducible character of G(Fq2), which is
both invariant under the twisting operator and the lift of a real-valued irreducible
character of G(Fq), then χ must be the character of a real representation.

Finally, in Sects. 5 and 6, we concentrate on real-valued characters which are
regular or semisimple, and irreducible Deligne–Lusztig characters. We begin by
showing that the central character of an irreducible character behaves well under
Shintani lifting (Lemma 5.1), and we use this to describe how the Frobenius–
Schur indicator of a real-valued semisimple or regular character is affected by
Shintani lifting, in Theorem 5.2. In Sect. 6, we describe a bijection from the irre-
ducible Deligne–Lusztig characters of G(Fq) to the irreducible Frobenius-invariant
Deligne–Lusztig characters of G(Fqm ) (where G is now assumed to have connected
center), which is known in many cases to coincide with Shintani lifting, by results
of Gyoja [12] and Digne [6]. We conclude with Theorem 6.1, which states that
this map restricts to give a bijection between the subsets of real-valued irreducible
Deligne–Lusztig characters of G(Fq) and G(Fqm ), and this map has the expected
effect on the Frobenius–Schur indicator.

2. Norm maps and Shintani lifting

Let G be a connected reductive group over F̄q , defined over Fq with some Frobe-
nius map σ . Let m be a positive integer, and define G = G(Fqm ) = Gσm

and
H = G(Fq) = Gσ . In particular, Gσ = H . Now, define G〈σ 〉 to be the split
extension of G by the cyclic group 〈σ 〉 of order m. That is,

G〈σ 〉 = 〈G, σ | σm = 1, σ−1gσ = σ g for all g ∈ G〉.

By a slight abuse of notation, we are letting σ denote both an automorphism of G,
and an element in the group G〈σ 〉.

Two elements x, y ∈ G are said to be σ -conjugate in G if there is an element
g ∈ G such that σ g−1xg = y. As can be checked, two elements x, y ∈ G are
σ -conjugate in G if and only if the elements σ x and σ y in the coset σG of G〈σ 〉
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are conjugate in G〈σ 〉. That is, the set of σ -conjugacy classes in G are in natural
bijective correspondence with the set of G〈σ 〉 conjugacy classes in the coset σG.

For any x ∈ G, by the Lang–Steinberg Theorem, there exists an αx ∈ G such
that σ α−1

x αx = x . It follows that x ∈ G if and only if the element αx (
σm
α−1

x ) is in
H = Gσ , where

αx (
σm
α−1

x ) = αx

(
m∏

i=1

(σ
m−i

x)

)
α−1

x .

This allows us to define a map from the σ -conjugacy classes of G (or G〈σ 〉 con-
jugacy classes in σG) to the set of conjugacy classes in H = Gσ . This map is
given in the following Proposition, which was proven by Shintani [23] in the case
of GL(n,Fq), and proven in the more general case by several authors, including
Kawanaka [13], Gyoja [12], and Digne and Michel [7]. We call this map the Shintani
norm map from G(Fqm ) to G(Fq).

Proposition 2.1 (Shintani norm map). Given a σ -conjugacy class [x]σ of G =
G(Fqm ), and thus a G〈σ 〉 conjugacy class [σ x]G〈σ 〉 in σG, let αx ∈ G be such that
σ α−1

x αx = x. Define the map NFqm /Fq by

NFqm /Fq ([x]σ ) = [αx (
σm
α−1

x )]H ,

where the right-hand side is a conjugacy class in H = G(Fq). Then NFqm /Fq is a
bijection from the set of σ -conjugacy classes of G to the set of conjugacy classes
of H, and is independent of the choice of αx ∈ G.

We may also consider the Shintani norm map from G(Fq) to G(Fq), where
NFq/Fq permutes the conjugacy classes of G(Fq). In this case, we denote NFq/Fq

by TFq , or simply by T if the field Fq is understood. If η is any complex-valued class
function on G(Fq), define the twisting operator on η, denoted by T ∗

Fq
, or simply

T ∗, by

T ∗(η) = η ◦ T .

It is a result of Asai [1,2] and Digne and Michel [7] that if χ is an irreducible char-
acter of G(Fq) which is uniform, that is, if χ is in the span of the Deligne–Lusztig
virtual characters of G(Fq), then T ∗(χ) = χ . Conversely, Asai proves in [2] that if
G is a classical group, and χ is an irreducible character of G(Fq)which is invariant
under the twisting operator, then χ must be uniform. This statement is conjectured
to hold for any reductive group G [15, Conjecture 1.3.3(ii)].

Now let m > 1, and letχ be a σ -invariant irreducible character of G = G(Fqm ).
Since χ is assumed to be σ -invariant, then χ may be extended to an irreducible
character of G〈σ 〉. Let ψ be an irreducible character of the group H = G(Fq). We
say that χ is a Shintani lift of ψ if there exists an irreducible character χ̃ of G〈σ 〉
extending χ such that

χ̃(σ [x]σ ) = ±ψ (N ([x]σ )) , for all x ∈ G, (2.1)
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where the sign ± is dependent only onχ (and is + if m is even), and N is the Shintani
norm map NFqm /Fq . Shintani [23] first defined this lifting map for G = GL(n, F̄q),
with σ the standard Frobenius map, and proved that lifting gives a bijection from
the irreducible characters of GL(n,Fq) to the irreducible Frobenius-invariant char-
acters of GL(n,Fqm ).

Kawanaka [14,15] has defined a variation of the norm map NFqm /Fq by replac-
ing it with (T ∗

Fq
)−r ◦ NFqm /Fq , where r is a positive integer depending on m and

properties of G. Kawanaka studied lifting [14] by replacing the Shintani norm by
this norm in the definition (2.1). This does not change anything in the case that
ψ is invariant under the twisting operator, and so by Asai’s result, when ψ is a
uniform character. It is conjectured [15, Conjecture 1.3.3(i)] that Shintani lifting
gives a bijection from irreducible characters of G(Fq) which are invariant under
the twisting operator T ∗

Fq
to σ -invariant irreducible characters of G(Fqm )which are

invariant under the twisting operator T ∗
Fqm

. If we replace the Shintani norm map

with Kawanaka’s norm map, then it is conjectured [15, Conjecture 1.3.1] that Shin-
tani lifting is a bijection from all irreducible characters of G(Fq) to all σ -invariant
irreducible characters of G(Fqm ), under the condition that m is an admissible inte-
ger for the pair (G, σ ) (see [14,15] for the definition of admissible). Kawanaka
has proven this statement for finite classical groups [13,14] in the case that the
characteristic p of Fq does not divide m.

It will be apparent that all of the results which we obtain in this paper hold
whether we use the Shintani norm map, or the norm map of Kawanaka, for the
definition of Shintani lifting in (2.1). The only place where this makes a difference
is when we apply specific results of Kawanaka for the finite symplectic group, in
the last paragraph of Sect. 5, where we are referring to Kawanaka’s definition of
lifting.

3. Lifting real-valued characters

Suppose that (π, V ) is an irreducible representation of G = G(Fqm )with character
χ , which is σ -invariant, and let ψ be an irreducible character of H = G(Fq) such
that χ is a Shintani lift of ψ . Then, we have σπ ∼= π , and so there is a linear
transformation J : V → V such that

σπ(g) ◦ J = J ◦ π(g), (3.1)

for every g ∈ G, and since we may extend π to an irreducible representation π̃
(with character χ̃ , say) of G〈σ 〉, we may choose J such that J m = I . By adjust-
ing J by a sign if necessary, the character definition of Shintani lifting in (2.1)
translates to the statement that there exists a transformation J : V → V satisfying
(3.1) such that J m = ±I , where J m = I if m is even, and

tr(J ◦ π(g)) = ψ(N ([g]σ )), (3.2)

for every g ∈ G.
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Using the representation version of Shintani lifting in (3.2), and applying Schur
orthogonality of matrix coefficients, Bump and Ginzburg [3, Theorem 12] proved
the following result. Although they only state the result for G = GL(n, F̄q) and
σ the standard Frobenius map, the exact same proof works for the more general
situation.

Theorem 3.1 (Bump and Ginzburg [3]). Let χ be an irreducible character of
G = G(Fqm ), and let ψ be an irreducible character of H = G(Fq). Then

1

|G|
∑
g∈G

χ(g)ψ(N ([g]σ )) =
{
ψ(1)/χ(1) if χ is a Shintani lift of ψ,
0 otherwise.

We apply Theorem 3.1 in a crucial way to prove the following, which is the
first main result.

Theorem 3.2. Let χ be an irreducible character of G = G(Fqm ) such that χ is a
Shintani lift of the irreducible character ψ of H = G(Fq). Then ψ is real-valued
if and only if χ is real-valued.

Proof. We first show that χ is the lift of at most one irreducible character of H ,
and the character ψ of H has at most one lift to G. These statements follow from
well-known results, but we prove them for the sake of completeness. If χ is a lift
of ψ1 and ψ2, then there are two extensions, χ̃ and ˜̃χ of χ to G〈σ 〉, such that

χ̃ (σ [x]σ ) = ±ψ1 (N ([x]σ )) and ˜̃χ(σ [x]σ ) = ±ψ2 (N ([x]σ )) ,
for every x ∈ G. By [23, Lemma 1.3], there must exist an m-th root of unity, say
ζ , such that χ̃(σ x) = ζ ˜̃χ(σ x) for every x ∈ G. This implies that we must have
ψ1(h) = ±ζψ2(h) for every h ∈ H (where the sign ± is independent of h). This
is impossible, unless ψ1 = ψ2, and thus χ must be a lift of a unique irreducible
character of H .

Now suppose χ1 = χ and χ2 are two Shintani lifts of ψ , with extensions χ̃1
and χ̃2 to G〈σ 〉 which satisfy (2.1). If we assume that χ1 = χ̃1|G �= χ̃2|G = χ2,
then by [23, Lemma 1.2], we have∑

g∈G

χ̃1(σg)χ̃2(σg) = 0. (3.3)

However, from the assumption that χ1 and χ2 are both Shintani lifts of ψ , we have
χ̃1(σg) = ±χ̃2(σg) for all g ∈ G, where the sign ± is independent of g. This
would imply ∑

g∈G

χ̃1(σg)χ̃2(σg) = ±
∑
g∈G

|χ̃1(σg)|2 �= 0,

which contradicts (3.3). Therefore, χ1 = χ2, and ψ can have at most one Shintani
lift to G.
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Now assume that χ is real-valued, and is a Shintani lift of ψ . By Theorem 3.1,
we have

1

|G|
∑
g∈G

χ(g)ψ(N ([g]σ )) = ψ(1)

χ(1)
. (3.4)

If we conjugate both sides of (3.4), then since χ is assumed to be real-valued, we
obtain

1

|G|
∑
g∈G

χ(g)ψ(N ([g]σ )) = ψ(1)

χ(1)
= ψ(1)

χ(1)
.

By Theorem 3.1 again, we must then have that χ is a Shintani lift of the irreduc-
ible character ψ . However, as we have shown above, χ is the lift of at most one
irreducible character of H , and so we must have ψ = ψ , and so ψ is real-valued.
Conversely, if we assume ψ is real-valued, then a similar argument shows that χ
and χ are both Shintani lifts of ψ , which implies that χ = χ is real-valued. 	


Gyoja and Lusztig (see [12, Section 9]) both pointed out that the group
Sp(4,Fq) has irreducible unipotent characters which do not have Shintani lifts to
Sp(4,Fq2). We may apply Theorem 3.2, along with reality results for Sp(2n,Fq),
to obtain a general class of characters of the finite symplectic groups which do not
have even degree Shintani lifts.

Corollary 3.1. Let m be even, q ≡ 3(mod 4), and ψ an irreducible character of
Sp(2n,Fq) which is not real-valued. Then ψ has no Shintani lift to Sp(2n,Fqm ).

Proof. It follows from [9, Lemma 5.3] that when q ≡ 3(mod 4), the group
Sp(2n,Fq) has irreducible characters which are not real-valued. If ψ is such a
character, then by Theorem 3.2, any lift of ψ to Sp(2n,Fqm ) must also take non-
real values. However, since m is even, qm ≡ 1(mod 4), and it follows from results
of Wonenburger [27, Theorem 2] that in this case, all irreducible characters of
Sp(2n,Fqm ) must be real-valued, and so ψ cannot have a Shintani lift. 	


Now consider the case G(F̄q) = GL(n, F̄q), with the standard Frobenius map
σ , defined by σ (xi j ) = (xq

i j ), and with the standard Frobenius map composed with
the inverse-transpose automorphism (or the twisted Frobenius), which we denote
by σ̃ , so σ̃ (xi j ) = (xq

ji )
−1. Then G(F̄q)

σ = GL(n,Fq) and G(F̄q)
σ̃ = U(n,Fq),

the finite unitary group, are both contained in G(F̄q)
σ 2 = G(F̄q)

σ̃ 2 = GL(n,Fq2).
By the original results of Shintani [23], lifting is a bijection from the irreducible
characters of GL(n,Fq) to the σ -invariant irreducible characters of GL(n,Fq2),
a map which we will denote by sh. By results of Kawanaka [13], Shintani lifting
gives a bijective map (when q is odd) from irreducible characters of U(n,Fq)

to the σ̃ -invariant irreducible characters of GL(n,Fq2), which we denote by s̃h.
By Theorem 3.2, both of these maps restrict to bijections of the subsets of real-
valued characters. Also, irreducible characters of GL(n,Fq2) which are invari-
ant under σ and σ̃ are invariant under the inverse-transpose map, which are thus
real-valued, since every element of GL(n,Fq2) is conjugate to its transpose, and

χ(g−1) = χ(g). From these observations, we obtain the following.
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Corollary 3.2. Let q be the power of an odd prime. Then the map s̃h
−1 ◦ sh is a

bijection from the irreducible real-valued characters of GL(n,Fq) to the irreduc-
ible real-valued characters of U(n,Fq).

We remark that Gow [10] showed that the number of irreducible real-valued
characters of GL(n,Fq) is equal to the number of irreducible real-valued charac-
ters of U(n,Fq), by giving a bijection between the real conjugacy classes of these
groups.

4. Quadratic Shintani lifting

For a finite group G, with a complex representation (π, V ), we say that π is a
real representation of G if there is a basis for V such that for every g ∈ G, the
matrix for π(g) with respect to this basis is a matrix with all real entries. For any
irreducible complex representation π of G with character χ , let ε(χ) (or ε(π))
denote the Frobenius–Schur indicator of χ , which takes the value 1 if (π, V ) is
a real representation, −1 if χ is real-valued but (π, V ) is not a real representa-
tion, and 0 if χ is not real-valued. If ε(χ) = 1, χ is called orthogonal, and if
ε(χ) = −1, χ is called symplectic. It is a classical result of Frobenius and Schur
that ε(χ) = (1/|G|)∑g∈G χ(g

2).

Now let τ be an automorphism of G such that τ 2 is the identity map. If χ is
an irreducible character of G, define the twisted Frobenius–Schur indicator of χ
with respect to τ , denoted by ετ (χ), to be the sum ετ (χ)= (1/|G|)∑g∈G χ(

τ gg).
When τ is the identity automorphism, we just have ετ (χ) = ε(χ). It is a result of
Kawanaka and Matsuyama [17] that the invariant ετ (χ) has the following charac-
terization, making it a natural generalization of the original indicator of Frobenius
and Schur. If χ is the character of the irreducible complex representation (π, V )
of G, then ετ (χ) = 1 if there exists a basis for V such that the matrix represen-
tation R for π with respect to this basis satisfies R(τ g) = R(g) for every g ∈ G,
ετ (χ) = −1 if τ χ = χ but there does not exist such a basis for V , and ετ (χ) = 0
if τ χ �= χ .

Consider the split extension G〈τ 〉 of G by an order 2 automorphism τ , and an
irreducible character χ of G. It follows from Frobenius reciprocity that the induced
character χG〈τ 〉 is reducible if and only if χ is τ -invariant, that is, τ χ = χ . In the
case that χ is τ -invariant, we have χG〈τ 〉 = χ̃ + ˜̃χ , where χ̃ and ˜̃χ are both irre-
ducible characters of G〈τ 〉 which extend χ . The following result comes directly
from these facts and the formulas for the standard and twisted Frobenius–Schur
indicators given in the previous paragraphs.

Lemma 4.1. Let χ be an irreducible character of G, and let τ be an order 2 auto-
morphism of G. If τ χ = χ , then for any irreducible extension χ̃ of χ to G〈τ 〉, we
have

ε(χ̃) = 1

2
(ε(χ)+ ετ (χ)).
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We now consider the situation when G = G(Fq2), and H = G(Fq) = Gσ ,
where G is a connected reductive linear algebraic group defined over Fq with
Frobenius map σ . Then σ is an order 2 automorphism of G, and we may consider
the indicator εσ (χ) of an irreducible character χ of G. We will need the following
result of Kawanaka [16], which relates the indicators εσ (χ) to the decomposition
of the permutation character of G on H .

Theorem 4.1 (Kawanaka [16]). Let χ be an irreducible character of G = G(Fq2)

which is invariant under the twisting operator T ∗
Fq2

, and let H = G(Fq). Then the

multiplicity of χ in the permutation character of G(Fq2) on G(Fq) is equal to

εσ (χ), that is, 〈χ, 1G
H 〉 = εσ (χ).

Theorem 4.1 was first proved in the case that G = GL(n,Fq2), and σ is either
the standard Frobenius or the twisted Frobenius, by Gow [10]. Lusztig [18]
improved on the results of Kawanaka [16] by finding multiplicities of any character
in the permutation character, while Prasad [21] proved results similar to Theorem
4.1, under a weaker assumption on the underlying algebraic group. Shoji and Sorlin
[25, Section 1] defined an indicator for an automorphism of degree m ≥ 2 (similar
to those considered by Bump and Ginzburg [3]), and related them to the permuta-
tion character of G(Fqm ) on G(Fq) through Shintani descent. In the quadratic case,
because of the close relationship between the twisted and standard Frobenius–Schur
indicators, we are able to obtain the following result.

Theorem 4.2. Let χ be an irreducible character of G(Fq2), invariant under the
twisting operator, which is the Shintani lift of an irreducible real-valued character
of G(Fq). Then ε(χ) = 1.

Proof. Let G = G(Fq2), H = G(Fq), and let ψ be the irreducible real-valued
character of H such that χ is the Shintani lift ofψ . By Theorem 3.2, χ must be real-
valued as well. Let χ̃ be the extension of χ to G〈σ 〉 such that χ̃(σg) = ψ(N ([g]σ ))
for all g ∈ G. Since ψ is real-valued, then χ̃ is real-valued on the coset Gσ , and
since χ̃ extends χ , which is real-valued as well, then χ̃ is real-valued, and so
ε(χ̃) = ±1.

Since χ is the Shintani lift of ψ , then in particular χ is σ -invariant, and since
χ is real-valued, then σχ = χ , and so εσ (χ) = ±1. By Theorem 4.1, since χ is
invariant under the twisting operator, then εσ (χ) is given by the multiplicity of χ in
1G

H , and thus must be non-negative. We must then have εσ (χ) = 1. From Lemma
4.1, we have

ε(χ̃) = 1

2
(ε(χ)+ 1).

We have shown that ε(χ̃) = ±1, and since ε(χ) = ±1 as well, the only possibility
is ε(χ̃) = 1 and ε(χ) = 1, as desired. 	


Theorem 4.2 may be paraphrased as saying that real-valued Frobenius-invari-
ant characters of G(Fq2) tend to be orthogonal. We do not know of an example
of an irreducible real-valued character of a group G(Fq2) which is in the image
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of Shintani lifting, not invariant under the twisting operator, and yet is symplectic
rather than orthogonal. If there is such an example, then it will most likely be a
character of an exceptional group (see Corollary 5.1 and the remarks preceding it).

5. Central elements, regular and semisimple characters

For any finite group K , we let Z(K ) denote the center of K . If (π, V ) is an irre-
ducible representation of K , then it follows from Schur’s Lemma that π(z) acts as
a scalar on V for any z ∈ Z(K ). We let ωπ(z) denote this scalar, or ωχ(z) where
χ is the character of π , so that ωχ : K → C

× is a multiplicative homomorphism
called the central character for π (or χ ). We first observe that the central character
behaves nicely under Shintani lifting.

Lemma 5.1. Let χ be an irreducible character of G(Fqm ) which is the Shintani lift
of the irreducible character ψ of G(Fq), and let z ∈ Z(G(Fq)). Then ωχ(z) =
ωψ(z)m.

Proof. Since χ is a Shintani lift of ψ , then there is an extension χ̃ of χ to G〈σ 〉
such that χ̃(σ x) = ±ψ(N ([x]σ )) for every x ∈ G. In particular, since N ([1]σ ) =
[1], then χ̃ (σ ) = ±ψ(1). By [4, Proposition 3.6.8], Z(G(F̄q))

σ = Z(G(Fq)), and
so z ∈ Z(G(F̄q)). If we choose αz ∈ G(F̄q) such that σ α−1

z αz = z, then

αz (
σm
α−1

z ) = αz

(
m∏

i=1

(σ
m−i

z)

)
α−1

z = αz zmα−1
z = zm .

That is, N ([z]σ ) = [zm], and so χ̃(σ z) = ±ψ(zm). Now, we have

±ψ(zm) = ±ωψ(zm)ψ(1) = χ̃ (σ z) = ωχ(z)χ̃(σ ),

and since χ̃ (σ ) = ±ψ(1), we have ωχ(z) = ωψ(z)m . 	

Note that the proof of Lemma 5.1 is the same if we consider lifting defined

using Kawanaka’s norm, since central elements are invariant under the map TFq .
We now consider the case when G is a connected reductive group with

connected center which is defined over Fq . An irreducible character χ of G(Fq) is
called a regular character if it appears in the decomposition into irreducibles of the
Gelfand–Graev character of G(Fq), which is obtained by inducing a non-degener-
ate linear character from a maximal unipotent subgroup. A semisimple character of
G(Fq) is an irreducible character which takes a nonzero average value on regular
unipotent elements. Equivalently, a semisimple character is an irreducible which
appears in the decomposition of the character obtained by applying the duality
functor (or Alvis–Curtis dual) to the Gelfand–Graev character of G(Fq). That is,
semisimple characters are those which are obtained, up to a sign, when applying
the duality functor to regular characters. When p = char(Fq) is a good prime for
G, then the semisimple characters of G(Fq) are exactly the irreducible characters
with degree not divisible by p. For a discussion of regular characters, semisimple
characters, and the duality functor, see [8, Chaps. 8 and 14] or [4, Chap. 8].
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If a regular or semisimple character is real-valued, then there is always a
central element which controls the Frobenius–Schur indicator of the character.
The first version of the following result was obtained by Prasad [21, Theorem 3],
and was improved to the following form by the author [26, Theorem 4.2].

Theorem 5.1 (Prasad [21], Vinroot [26]). Let G be a connected reductive group
with connected center over F̄q , defined over Fq . Then there exists an element z ∈
Z(G(Fq)) such that, for any m ≥ 1, and any real-valued regular or semisimple
character χ of G(Fqm ), we have ε(χ) = ωχ(z).

We now apply the results above, along with a result of Gyoja [12] to see that
the Frobenius–Schur indicators of regular and semisimple character behave nicely
under Shintani lifting.

Theorem 5.2. Let G be a connected reductive group with connected center which
is defined over Fq . Let χ be an irreducible character of G(Fqm ) which is a Shintani
lift of a regular or semisimple real-valued character ψ of G(Fq). Then

ε(χ) =
{
ε(ψ) if m is odd,
1 if m is even.

Proof. Since ψ is a real-valued character, then by Theorem 3.2, χ is also real-val-
ued. Gyoja proved that if ψ is regular, and has a Shintani lift χ , then χ must
also be regular, and if ψ is semisimple, then χ must also be semisimple [12,
Lemmas 6.3 and 6.4]. By Theorem 5.1, there exists an element z ∈ Z(G(Fq))

such that ε(χ) = ωχ(z) and ε(ψ) = ωψ(z). Finally, by Lemma 5.1 we have
ε(χ) = ωχ(z) = ωψ(z)m = ε(ψ)m , which is equal to 1 when m is even, and ε(ψ)
when m is odd. 	


We suspect that Theorem 5.2 holds for any real-valued irreducible χ which
is a Shintani lift, or at least for those characters which are invariant under the
twisting operator on characters of G(Fqm ). This is the content of Theorem 4.2 in
the case m = 2, without the assumption that the center is connected.

Suppose that Theorem 5.2 holds for some irreducible character χ , which is the
lift ofψ , and letχ∗ denote the irreducible character obtained by applying the duality
functor to χ (where the correct sign is chosen to obtain a true character). McGovern
[19, Theorem 4.3] has shown that χ∗ is then the Shintani lift of ψ∗. By a result
of the author [26, Theorem 3.2], we also have ε(χ) = ε(χ∗) and ε(ψ) = ε(ψ∗),
which implies Theorem 5.2 would also hold for the character χ∗. That is, if the
conclusion of Theorem 5.2 holds for an irreducible character χ , then it holds also
for the character χ∗.

There are several groups for which it is known that all real-valued irreduc-
ible characters are characters of real representations, such as GL(n,Fq) (by [21,
Theorem 4], for example) and SO±(n,Fq) for q odd (by [11, Theorem 2]). In
these cases, there is nothing to check for the conclusion of Theorem 5.2 to hold
for all irreducible characters in the image of Shintani lifting. On the other hand,
for the finite symplectic group Sp(2n,Fq), when q is the power of an odd prime,
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Gow [11, Theorem 1] proved that every irreducible real-valued character χ satis-
fies ε(χ) = ωχ(−I ). In this case, we may apply Lemma 5.1 and Theorem 3.2 to
obtain the conclusion in Theorem 5.2 for all irreducible characters in the image of
Shintani lifting, as in the following.

Corollary 5.1. Let q be the power of an odd prime. Let χ be an irreducible charac-
ter of Sp(2n,Fqm )which is the Shintani lift of the real-valued irreducible character
ψ of Sp(2n,Fq). Then

ε(χ) =
{
ε(ψ) if m is odd,
1 if m is even.

When m is odd and relatively prime to q, Kawanaka [14] proved that lifting
gives a bijection from irreducible characters of Sp(2n,Fq) to the Frobenius-invari-
ant irreducible characters of Sp(2n,Fqm ). It follows from Corollary 5.1 and Theo-
rem 3.2 that in this case, if ψ is any irreducible character of Sp(2n,Fq), and χ is
its Shintani lift to Sp(2n,Fqm ), then ε(χ) = ε(ψ).

6. Deligne–Lusztig characters

Let G be a connected reductive group over F̄q , with connected center, defined
over Fq with Frobenius map σ . If T is a σ -stable maximal torus of G, and θ a
multiplicative character of T(Fq), we let RT,θ denote the Deligne–Lusztig virtual
character (see [5]) of G(Fq) corresponding to the pair (T, θ). Recall that ±RT,θ is
irreducible if and only if (T, θ) is in general position, that is, there is no non-trivial
element of the Weyl group W (T)σ which maps (T, θ) to itself. If (T′, θ ′) is another
pair, and ±RT,θ is irreducible, then RT,θ = RT′,θ ′ if and only if there is a unique
element w ∈ W (T)σ such that wT = T′ and wθ = θ ′ (see [4, Theorem 7.3.4]).

Given a σ -stable maximal torus T of G, we have T is also a σm-stable maximal
torus for any m > 1, and so we may consider both of the finite groups T(Fq) and
T(Fqm ). Define a homomorphism, which we denote by NmFqm /Fq (or simply Nm),
by

NmFqm /Fq : T(Fqm ) → T(Fq), Nm(x) =
m−1∏
i=0

(σ
m−i

x).

Since T is itself a connected reductive group, which happens to be abelian, the
only difference between the map Nm and the map NFqm /Fq in Proposition 2.1 is
that we have defined Nm element-wise, rather than on σ -conjugacy classes. In
particular, by Proposition 2.1, Nm is a surjective homomorphism with fibers being
σ -conjugacy classes of T(Fqm ).

If θ is a multiplicative homomorphism of T(Fq), where T is a σ -stable maxi-
mal torus of G, then θ ◦ Nm is a multiplicative homomorphism of T(Fqm ). Gyoja
studied the map (T, θ) �→ (T, θ ◦ Nm), and showed that it induces a map from
irreducible Deligne–Lusztig characters ±RT,θ of G(Fq) to σ -invariant irreducible
Deligne–Lusztig characters of G(Fqm ) [12, Lemmas 6.6 and 6.9]. Under certain
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conditions on p = char(Fq), q, and m, Gyoja [12, Theorems 7.2 and 8.4] proved
that this map coincides with Shintani lifting from G(Fq) to G(Fqm ). Digne [6,
Corollaire 3.6] proved a generalization of Gyoja’s result for Shintani descent of
virtual Deligne–Lusztig characters, under the conditions that p is a good prime for
G and (m, p) = 1. Since irreducible Deligne–Lusztig characters are both regu-
lar and semisimple (see [4, Section 8.4], for example), we could apply Theorem
5.2 to make conclusions about real-valued irreducible Deligne–Lusztig characters
under these conditions. However, we are able to prove these results independent
of the results on Shintani lifting of irreducible Deligne–Lusztig characters, and
also under no conditions on p, q, or m. That is, we prove directly that real-valued
irreducible Deligne–Lusztig behave nicely under the bijection induced by the map
(T, θ) �→ (T, θ ◦ Nm). We conclude with the following result, which improves
[26, Theorem 5.1].

Theorem 6.1. Let ψ = ±RT,θ be an irreducible Deligne–Lusztig character of
G(Fq), and let χ = ±RT,� be the irreducible Deligne–Lusztig character of
G(Fqm ), where� : T(Fqm ) → C

× is defined as� = θ ◦Nm. Thenψ is real-valued
if and only if χ is real-valued. When they are real-valued, we have

ε(χ) =
{
ε(ψ) if m is odd,
1 if m is even.

Proof. If ψ is real-valued, then RT,θ = RT,θ = RT,θ by [8, Proposition 11.4],

and so there is a unique s ∈ W (T)σ such that sθ = θ . This implies s2 = 1,
since s2

θ = θ and ψ is assumed to be irreducible. For any y ∈ T(Fqm ), we have
Nm(sys) = sNm(y)s, since σ s = s. Now,

s�(y) = θ(sNm(y)s) = sθ(Nm(y)) = �(y).

So, s� = �, where s ∈ W (T)σ ⊆ W (T)σ
m

. Thus χ = ±RT,� is real-valued.
If χ is real-valued, then there is a unique w ∈ W (T)σ

m
such that w� = �, and

again we havew2 = 1. We claim that σw = w, and to show this it is enough to prove
that

σw� = �. For any y ∈ T(Fqm ), we have Nm(σwy σw) = Nm(w(σ
m−1

y)w).
Now,

σw�(y) = θ(Nm(w(σ
m−1

y)w)) = w�(σ
m−1

y) = �(σ
m−1

y) = �(y),

since � is σ -invariant. We now have w ∈ W (T)σ , as claimed. For any x ∈ T(Fq),
we may choose a y ∈ T(Fqm ) such that Nm(y) = x , since Nm is surjective, and so

wθ(x) = θ(wNm(y)w) = w�(y) = �(y) = θ(x).

Since wθ = θ , we have ψ is real-valued.
If χ and ψ are real valued, then by Theorem 5.1, there is an element z ∈

Z(G(Fq)) such that ε(χ) = ωχ(z) and ε(ψ) = ωψ(z). It follows from [4, Propo-
sition 7.5.3 and Theorem 7.5.1] that ωχ(z) = �(z) and ωψ(z) = θ(z) (see also
[26, Lemma 5.1]). Since Nm(z) = zm , we have

ε(χ) = �(z) = θ(Nm(z)) = θ(z)m = ε(ψ)m,

which is ε(ψ) if m is odd, and 1 if m is even. 	
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