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Let I(n) be the number of involutions in a special orthogonal group
SO(n,Fq) defined over a finite field with q elements, where q is
the power of an odd prime. Then the numbers I(n) form a semi-
recursion, in that for m > 1 we have

I(2m + 3) = (
q2m+2 + 1

)
I(2m + 1) + q2m(

q2m − 1
)

I(2m − 2).

We give a purely combinatorial proof of this result, and we apply
it to give a universal bound for the character degree sum for finite
classical groups defined over Fq .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

An involution in a group G is an element g ∈ G such that g2 = 1. Involutions play an important
role in finite group theory, for example, because the centralizers of involutions must be studied in
the classification of finite simple groups [3]. The enumeration of specific types of involutions in finite
classical groups is a well-studied problem in computational group theory [10,12]. Also, the enumera-
tion of involutions in finite groups is related to the real representations of the group, and is equivalent
to computing character degree sums of real characters in certain finite classical groups [16]. As we
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will see, counting the involutions in finite classical groups is equivalent to counting non-degenerate
subspaces of the underlying finite vector spaces, the enumeration of which is a well-studied prob-
lem, see [17] for instance. The enumeration of flags of such subspaces is used in [6] to construct
number-theoretic functions which are related to certain p-adic integrals.

In this paper, we study the enumeration of involutions in special orthogonal groups defined over a
finite field of odd characteristic. Let Fq denote a finite field with q elements, where q is the power of
an odd prime, and let SO(n,Fq) denote a special orthogonal group defined over the field Fq . There are
different types of symmetric forms which can give distinct isomorphism classes of special orthogonal
groups, but as we explain in Sections 2 and 3 below, the number of involutions in the group is
independent of the symmetric form. The main topic we concentrate on is the following result, which
relates the number of involutions in special orthogonal groups of different sizes.

Theorem 1.1. Let q be the power of an odd prime, and let I(n) denote the number of involutions in the special
orthogonal group SO(n,Fq) (of any type). Then for any m > 1, we have

I(2m + 3) = (
q2m+2 + 1

)
I(2m + 1) + q2m(

q2m − 1
)

I(2m − 2).

Theorem 1.1 was first proved by Kutler and the second-named author [9], although the original
proof is by algebraic manipulation of the formulas for I(n), which are given in Corollary 2.1 below. In
this paper, we give a purely combinatorial proof of Theorem 1.1, which gives much more insight as to
why the result “should” be true, based on the combinatorics of the involutions in special orthogonal
groups over finite fields. We refer to the relationship amongst the involutions in finite special orthog-
onal groups given in Theorem 1.1 as a semi-recursion, since the odd-indexed term I(2m + 3) depends
on the previous odd-indexed term I(2m + 1), but also on an even-indexed term.

There are several ways to relate Theorem 1.1 to other results. The original motivation for looking
for such a result in [9] is that the number of involutions in the symmetric group forms a recursion,
a result which has an elementary combinatorial proof and numerous applications [1]. Also, the num-
ber of involutions in a finite special orthogonal group is equal to the number of even-dimensional
non-degenerate subspaces of the underlying vector space with a symmetric form, and so Theorem 1.1
is also a semi-recursion for the number of even-dimensional non-degenerate subspaces. The total
number of subspaces of a linear vector space over a finite field is also recursive, which is a result
studied by Goldman and Rota [2]. The combinatorial proof of this recursion, due to Nijenhuis, Solow
and Wilf [13], gives motivation for our finding a combinatorial proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we give the bijection between involutions in spe-
cial orthogonal groups and even-dimensional non-degenerate subspaces, and we find formulas for the
number of involutions in the finite special orthogonal groups. In the process, we notice that several
expressions are equal. In particular, we note that the number of even-dimensional non-degenerate
subspaces in an even-dimensional vector space over Fq with a symmetric form is the same as the
number of ways to partition a vector space over Fq2 of half the dimension into a subspace and a
complement. This fact is the key to our proof of Theorem 1.1, and so we give a combinatorial proof of
it in Section 3. Also in Section 3, we give an argument which explains why the number of involutions
in the finite special orthogonal groups is independent of the chosen symmetric form. In Section 4, we
apply these results to give a combinatorial proof of Theorem 1.1. Finally, in Section 5, we bound the
expressions for I(n) by polynomials in q, and in the process apply the semi-recursion in Theorem 1.1.
The main application for the obtained bounds is given in Theorem 5.1, which is a universal bound
for the sum of the degrees of the irreducible characters of finite classical groups defined over a finite
field with odd characteristic.

2. Involutions in finite special orthogonal groups

For any q �= 1, and integers n � k � 0, define the q-binomial coefficient, denoted
(n

k

)
q , as

(
n

k

)
= (qn − 1)(qn−1 − 1) · · · (q − 1)

(qk − 1) · · · (q − 1)(qn−k − 1) · · · (q − 1)
,

q
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and define
(n

0

)
q = 1. The q-binomial coefficient has properties which parallel those of the classical

binomial coefficient, such as the symmetric property
(n

k

)
q = ( n

n−k

)
q

, and the q-Pascal identity
(n

k

)
q =(n−1

k

)
q +qn−k

(n−1
k−1

)
q

for k � 1. The q-Pascal identity and induction imply that
(n

k

)
q is a polynomial in q.

We also have limq→1
(n

k

)
q = (n

k

)
. The combinatorial interpretation of the q-binomial coefficient which

will be most important for us is in terms of finite vector spaces. In particular, if q is the power of
a prime, and Fq is a finite field with q elements, then

(n
k

)
q is exactly the number of k-dimensional

subspaces of an n-dimensional vector space over Fq . For a more detailed discussion of the properties
of q-binomial coefficients, see one of [2,7,15].

Unless otherwise stated, we now assume that q is the power of an odd prime. We are interested in
enumerating the number of involutions in special orthogonal groups over the finite field Fq . Beginning
with the general linear group GL(n,Fq), if g is an involution, we notice that g is diagonalizable and
only has eigenvalues 1 and −1, and g is completely determined by the eigenspace E+ for 1, and the
eigenspace E− for −1. Furthermore, if V ∼= F

n
q is the underlying vector space, then E+ and E− form

a direct sum decomposition of V = E+ ⊕ E− . In particular, we have that the involutions in GL(n,Fq)

are in one-to-one correspondence with direct sum decompositions of F
n
q into two subspaces. To count

such decompositions, we note that E+ can have dimension 0 through n, and once E+ is chosen, E−
must be a complement. If E+ has dimension k, then there are exactly

(n
k

)
q ways to choose it. The

number of ways to choose E− as a complement is exactly qk(n−k) by [14, Lemma 3]. We use this
result several times throughout, the proof of which is a direct counting argument, and so we state it
formally here.

Lemma 2.1. If V is an n-dimensional vector space over Fq, and W is a k-dimensional subspace of V , then the
number of subspaces U of V such that U ⊕ W = V is qk(n−k) .

Thus, the total number of involutions in GL(n,Fq), which we denote by Ĩ(n,q), is exactly (see also
[11, Section 1.11])

Ĩ(n,q) =
n∑

k=0

qk(n−k)

(
n

k

)
q
. (2.1)

We now consider vector spaces equipped with a non-degenerate bilinear form. In general, if V is
a finite dimensional vector space over a field F of characteristic not equal to 2, and B : V × V → F is
a non-degenerate bilinear form on V which is either symmetric or skew-symmetric, we denote

G B(V ) = {
g ∈ GL(V )

∣∣ B(gv, g w) = B(v, w) for all v, w ∈ V
}
.

Recall that the bilinear form B being non-degenerate means that for all v ∈ V , B(v, w) = 0 for all
w ∈ V implies v = 0. A subspace W of V is non-degenerate if the form B when restricted to W × W
is also non-degenerate. Although we are specifically interested in the case that F = Fq and B is
symmetric, we have the following more general result.

Lemma 2.2. Let V be a finite dimensional vector space over a field of characteristic not 2, and let B be a
non-degenerate bilinear form on V which is either symmetric or skew-symmetric. Define T to be the set of
involutions in G B(V ), and S the set of non-degenerate subspaces of V . For an element g ∈ T , if E−(g) is the
−1-eigenspace of g, then the map g �→ E−(g) is a bijection from T to S.

Proof. Let g ∈ T . Let E+(g) and E−(g) denote the +1- and −1-eigenspaces of g , respectively. If
v ∈ E+(g) and w ∈ E−(g), then

B(v, w) = B(gv, g w) = B(v,−w) = −B(v, w),
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and thus B(v, w) = 0. This implies we have E+(g) ⊆ E−(g)⊥ . Also, since V = E+(g) ⊕ E−(g), we in
fact have E+(g) = E−(g)⊥ . Now note that since we now have E−(g) ∩ E−(g)⊥ = {0}, then E−(g) is a
non-degenerate subspace of V .

Suppose that there is an element g′ ∈ T such that E−(g) = E−(g′). But then E+(g) = E−(g)⊥ =
E−(g′)⊥ = E+(g′), which implies g = g′ . Finally, given any non-degenerate subspace W ∈ S , we have
V = W ⊕ W ⊥ , and we may define a unique linear map gW defined by gW w = w for all w ∈ W and
gW w ′ = −w ′ for all w ′ ∈ W ⊥ . It follows that gW ∈ G B(V ) and g2

W = I . We now have that the map
g �→ E−(g) is a bijection from T to S . �

Now consider the case that V is an n-dimensional vector space over Fq , q odd, with a non-
degenerate symmetric bilinear form B . Then G B(V ) = OB(n,Fq) is an orthogonal group over the
finite field Fq , and the special orthogonal group is SOB(n,Fq) = {g ∈ OB(n,Fq) | det(g) = 1}. Recall
[5, Chapter 9] that under the relation of similarity, there are exactly two equivalence classes of non-
degenerate symmetric forms on V . In the case that n is odd, the two classes of forms are represented
by the symmetric matrices diag(1,−1,1, . . . ,1,−1,−1) and diag(1,−1,1, . . . ,−1,−d), where d is a
non-square in Fq , and when n is even, the two classes are represented by diag(1,−1, . . . ,1,−1), and
diag(1,−1, . . . ,1,−d), where d is a non-square in Fq . We will call these two types of forms +-type
and −-type (also called split and non-split), and the corresponding orthogonal groups will be de-
noted as O+(n,Fq) and O−(n,Fq), respectively, and the special orthogonal groups as SO+(n,Fq) and
SO−(n,Fq). When n = 2m + 1 is odd, then we in fact have O+(n,Fq) ∼= O−(n,Fq) and SO+(n,Fq) ∼=
SO−(n,Fq), and we will often denote the common groups as O(2m + 1,Fq) and SO(2m + 1,Fq).

We now give an expression for the number of non-degenerate subspaces in an Fq-vector space
with a non-degenerate symmetric form. Since the following is also stated in [6, Section 4], and the
enumeration of various types of subspaces is thoroughly studied in [17], we omit the proof.

Proposition 2.1. Let V be an n-dimensional vector space over Fq, with a non-degenerate symmetric form B,
and let j be an integer, 0 � j � n.

(i) If B is a +-type symmetric form, then the number of non-degenerate subspaces of V of dimension j is

|O+(n,Fq)|
|O+( j,Fq)| · |O+(n − j,Fq)| + |O+(n,Fq)|

|O−( j,Fq)| · |O−(n − j,Fq)| .

(ii) If B is a −-type symmetric form, then the number of non-degenerate subspaces of V of dimension j is

|O−(n,Fq)|
|O+( j,Fq)| · |O−(n − j,Fq)| + |O−(n,Fq)|

|O−( j,Fq)| · |O+(n − j,Fq)| .

Now let A(m,k) denote the number of 2k-dimensional non-degenerate subspaces of a (2m + 1)-
dimensional Fq-vector space V with a non-degenerate symmetric form, and let B±(m,k) denote
the number of 2k-dimensional non-degenerate subspaces of a 2m-dimensional Fq-vector space V
with a non-degenerate symmetric form of ±-type, respectively. Despite the similarity in notation for
the quantity B±(m,k) and the bilinear form B , we trust that context will keep these from being
confused. Using the results above, we may now count the number of involutions in the finite spe-
cial orthogonal groups. Although the following is also computed in a slightly different way in [16],
we give one computation below to highlight the origin of the q2-binomial coefficient which ap-
pears.

Corollary 2.1. Let I(2m+1) denote the number of involutions in the special orthogonal group SO(2m+1,Fq),
I+(2m) the number of involutions in the group SO+(2m,Fq), and I−(2m) the number of involutions in the
group SO−(2m,Fq). Then:
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(i) I(2m + 1) =∑m
k=0 A(m,k), where A(m,k) = q2k(m+1−k)

(m
k

)
q2 .

(ii) I+(2m) =∑m
k=0 B+(m,k) and I−(2m) =∑m

k=0 B−(m,k), where B+(m,k) = B−(m,k) = q2k(m−k)
(m

k

)
q2 .

In particular, I+(2m) = I−(2m).

Proof. By Lemma 2.2, the number of involutions in a finite orthogonal group is equal to the number
of non-degenerate subspaces of the underlying space. For an involution to be in the special orthogonal
group, the element must have determinant 1, and so the −1-eigenspace must have even dimension.
To compute the number of even-dimensional non-degenerate subspaces, we apply Proposition 2.1,
and use the values for the orders of the finite orthogonal groups [5, Theorem 9.11]. We give one such
computation, and the rest are very similar.

To compute B+(m,k), for example, we use |O±(2k,Fq)| = 2qk(k−1)(qk ∓ 1)
∏k−1

i=1 (q2i − 1). From
Proposition 2.1, we have

B+(m,k) = |O+(2m,Fq)|
|O+(2k,Fq)| · |O+(2(m − k),Fq)| + |O+(2m,Fq)|

|O−(2k,Fq)| · |O−(2(m − k),Fq)|

= 2qm(m−1)(qm − 1)
∏m−1

i=1 (q2i − 1)

(2qk(k−1)(qk − 1)
∏k−1

i=1 (q2i − 1))(2q(m−k)(m−k−1)(qm−k − 1)
∏m−k−1

i=1 (q2i − 1))

+ 2qm(m−1)(qm − 1)
∏m−1

i=1 (q2i − 1)

(2qk(k−1)(qk + 1)
∏k−1

i=1 (q2i − 1))(2q(m−k)(m−k−1)(qm−k + 1)
∏m−k−1

i=1 (q2i − 1))

= q2k(m−k)(qm − 1)
∏m−1

i=1 (q2i − 1)

2
∏k−1

i=1 (q2i − 1)
∏m−k−1

i=1 (q2i − 1)

(
2(qm + 1)

(q2k − 1)(q2(m−k) − 1)

)

= q2k(m−k)

∏m
i=1(q

2i − 1)∏k
i=1(q

2i − 1)
∏m−k

i=1 (q2i − 1)
= q2k(m−k)

(
m

k

)
q2

,

from the formula for the q2-binomial coefficient. �
We note that it seems to be a coincidence that I+(2m) = I−(2m) (the common quantity will

be denoted I(2m)), and that B+(m,k) = B−(m,k), which comes from the calculations in Corol-
lary 2.1. In particular, we have that the number of 2k-dimensional non-degenerate subspaces of a
2m-dimensional vector space over Fq with a symmetric form B is the same whether B is +- or
−-type.

A seeming coincidence which is more striking is that the number of involutions Ĩ(m,q2) in the
finite general linear group GL(m,Fq2 ), given in (2.1), is equal to the number of involutions I(2m) in

the groups SO±(2m,Fq), which comes from the q2-binomial coefficient popping up at the end of the
calculation in Corollary 2.1. In particular, the number of ways to choose a k-dimensional subspace
of an m-dimensional vector space over Fq2 , together with an (m − k)-dimensional complementary
subspace, is equal to the number of ways to choose a 2k-dimensional non-degenerate subspace of a
2m-dimensional vector space over Fq with a non-degenerate symmetric form, the common quantity
being q2k(m−k)

(m
k

)
q2 . In the next section, we give explanations as to why these equalities are not

merely coincidental.
Just as the quantities B±(m,k) have an interpretation in terms of Fq2 -linear spaces, so does the

quantity A(m,k). If U is an (m + 1)-dimensional vector space over Fq2 with U ′ a fixed m-dimensional
subspace, the number of k-dimensional subspaces of U ′ is

(m
k

)
q2 , and the number of (m + 1 − k)-

dimensional complements of this subspace in U is q2k(m+1−k) by Lemma 2.1. That is, the number
of ways to choose a k-dimensional subspace of U ′ , together with a complementary subspace in U ,
is exactly A(m,k). We will prove this correspondence in a different way when we use it in our
combinatorial proof of Theorem 1.1.
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3. Correspondences between sets of involutions

As in the previous section, we let B+(m,k) and B−(m,k) denote the number of 2k-dimensional
non-degenerate subspaces of a 2n-dimensional vector space over Fq with a non-degenerate symmet-
ric form which is of +-type and −-type, respectively. These are also the number of involutions in
SO+(2m,Fq) and SO−(2m,Fq), respectively, with a 2k-dimensional −1-eigenspace. We let B̃(m,k) de-
note the number of k-dimensional subspaces, together with an (m − k)-dimensional complementary
subspace, of an m-dimensional vector space over Fq2 . This is the number of involutions in GL(m,Fq2 )

with a k-dimensional −1-eigenspace. As discussed in Corollary 2.1 and the paragraphs which fol-
lowed, we have B+(m,k) = B−(m,k) = B̃(m,k), which came from directly computing each quantity.
The goal in this section is to prove these equalities in another way, without directly counting them,
so as to explain them from a more bijective point of view. So, in this section, we ignore the fact that
we have formulas for each of these quantities, and give combinatorial proofs of our results. Although
our proofs that B+(m,k) = B−(m,k) = B̃(m,k) in Theorems 3.1 and 3.2 are not completely bijective,
they do give a more combinatorially satisfying explanation of these equalities than the incidental
observation that their formulas are the same.

3.1. B+(m,k) = B−(m,k)

First, we deal with the equality B+(m,k) = B−(m,k). We begin with a technical lemma. For any
Fq-vector space V with a symmetric form B , and any a ∈ Fq , define Sa(V ) = {v ∈ V | B(v, v) = a}.

Lemma 3.1. Let V be a 2m-dimensional Fq-vector space with symmetric form B. For any a ∈ Fq and any non-
square d ∈ Fq, there exists a linear automorphism of V which restricts to a bijection from Sb(V ) to Sdb(V ).

Proof. Let v1, v2, . . . , v2m be a basis of V such that the representation of B relative to this basis
is diag(a1,a2, . . . ,a2m) (see [5, Theorem 4.2]). Define B ′ to be another symmetric form on V such
that the representation of B ′ relative to v1, v2, . . . , v2m is diag(da1,da2, . . . ,da2m), where d is a fixed
non-square in Fq . Note that B and B ′ are equivalent forms on V since

det(diag(da1,da2, . . . ,da2m))

det(diag(a1,a2, . . . ,a2m))
= d2m,

which is a perfect square (see [5, Corollary 4.10]). It follows that there exists a linear isomorphism
δ : V → V with B ′(v, w) = B(δ(v), δ(w)) (so δ is an isometry with respect to B ′ and B). If v ∈ Sb(V ),
so B(v, v) = b, then B ′(v, v) = db. It follows that B(δ(v), δ(v)) = B ′(v, v) = db, so δ(v) ∈ Sdb(V ).
Hence the image of δ restricted to Sb(V ) is contained in Sdb(V ). Similarly, the image of δ−1 restricted
to Sdb(V ) is contained in Sb(V ), since B(v, v) = B ′(δ−1(v), δ−1(v)) = db, or B(δ−1(v), δ−1(v)) = b.
Both δ and δ−1 are injective maps, and so δ restricted to Sb(V ) gives the desired bijection. �

Our proof that B+(m,k) = B−(m,k), in the end, will be an induction argument, and the main work
occurs with k = 1 below.

Lemma 3.2. For any m � 1, B+(m,1) = B−(m,1), given by a bijection constructed below.

Proof. Let V and W be 2m-dimensional Fq-vector spaces, with non-degenerate symmetric forms B
and B ′ , respectively. Let v1, v2, . . . , v2m and w1, w2, . . . , w2m be bases of V and W respectively, so
that the representation of B with respect to v1, v2, . . . , v2m is diag(1,−1,1,−1, . . . ,1,−d) and the
representation of B ′ with respect to w1, w2, . . . , w2m is diag(1,−1, . . . ,1,−1), where d is non-square
in Fq . Then B and B ′ are −-type and +-type symmetric forms, respectively. We wish to construct
a bijection from the set of all 2-dimensional non-degenerate subspaces of V to the set of all 2-
dimensional non-degenerate subspaces of W .
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Let V ′ = span(v1, v2, . . . , v2m−1) and W ′ = span(w1, w2, . . . , w2m−1). The map ϕ : V ′ → W ′ de-
fined by ϕ(vi) = wi is an isometry with respect to B and B ′ restricted to V ′ and W ′ , respectively. We
may expand ϕ to a linear isomorphism ϕ : V → W by defining ϕ(v2m) = w2m . We define ψ piece-
wise in three cases. If X is a 2-dimensional non-degenerate subspace of V ′ , we define ψ(X) to be
the subspace ϕ(X) of W ′ , which must also be non-degenerate since ϕ is an isometry. Now assume
that X is a 2-dimensional non-degenerate subspace of V which is not contained in V ′ . It follows that
dim(X ∩ V ′) = 1, and let X ∩ V ′ = span(x1). There are now two cases to consider: either B(x1, x1) �= 0
or B(x1, x1) = 0.

If B(x1, x1) = 0, then we define ψ(X) := ϕ(X). Since X is non-degenerate, there exists an x′ ∈ X
such that B(x1, x′) �= 0. We know then that x′ and x1 are linearly independent, and we may as-
sume x′ = x′′ + v2m for some x′′ ∈ V ′ , by replacing x′ by a scalar multiple. This implies that
B(x1, x′′) = B(x1, x′) �= 0. Now, ϕ(x′) = ϕ(x′′) + w2m , and B ′(ϕ(x1),ϕ(x′′) + w2m) = B ′(ϕ(x1),ϕ(x′′)) =
B(x1, x′′) �= 0. The restriction of B ′ to ϕ(X) can be represented by the matrix

(
0 B(x1, x′′)

B(x1, x′′) B(x′′, x′′)

)

relative to the basis ϕ(x1),ϕ(x′). Since this matrix has nonzero determinant, ψ(X) = ϕ(X) is non-
degenerate. Note that thus far, ψ is injective since ϕ is.

If B(x1, x1) �= 0, then consider span(x1)
⊥ ∩ X , which is a 1-dimensional non-degenerate subspace

of X , so let x be a nonzero element in span(x1)
⊥ ∩ X . By replacing x by a scalar multiple, we

may assume x = x2 + v2m for some x2 ∈ V ′ , and x2 is uniquely determined in this way. Then X =
span(x1, x2 + v2m) and B(x1, x2 + v2m) = 0, which implies B(x1, x2) = 0, or x2 ∈ span(x1)

⊥ ∩ V ′ . Note
also that B(x2, x2) �= d since B(v2m, v2m) = −d and B(x2 + v2m, x2 + v2m) �= 0. Since span(ϕ(x1))

⊥ ∩W ′
is (2m − 2)-dimensional and d ∈ Fq is a non-square, by Lemma 3.1 there exists a linear auto-
morphism δx1 of span(ϕ(x1))

⊥ ∩ W ′ which restricts to a bijection from S1(span(ϕ(x1))
⊥ ∩ W ′) to

Sd(span(ϕ(x1))
⊥ ∩ W ′). We now define ψ(X) as follows:

ψ(X) :=
{

span(ϕ(x1),ϕ(x2) + w2m) if B(x2, x2) �= 1,

span(ϕ(x1), δx1(ϕ(x2)) + w2m) if B(x2, x2) = 1.

In the first case, B ′(ϕ(x2) + w2m,ϕ(x2) + w2m) �= 0, since B ′(ϕ(x2), w2) = 0, B ′(w2m, w2m) = −1, and
B ′(ϕ(x2),ϕ(x2)) = B(x2, x2) �= 1. Since B ′(ϕ(x1),ϕ(x2) + w2m) = 0, we have ψ(X) is non-degenerate.
In the second case, B ′(δx1 (ϕ(x2))+ w2m, δx1 (ϕ(x2))+ w2m) = d −1 �= 0 since d is a non-square, and so
we have ψ(X) is always non-degenerate. The injectivity of ψ for this case follows from the linearity of
ϕ and δx1 , and the fact that B(x2, x2) �= d. Note that in the case B(x2, x2) �= 1 above, we have defined
ψ(X) = ϕ(X).

We have seen ψ is an injective map from 2-dimensional non-degenerate subspaces of V to
2-dimensional non-degenerate subspaces of W . To see that ψ is surjective, we notice that any 2-
dimensional non-degenerate subspace Y of W is either contained in W ′ , or Y ∩ W ′ = span(y1) for
some y1. Any Y ⊂ W ′ is in the image of ψ since ϕ is an isometry, and if B ′(y1, y1) = 0, then ϕ−1(Y )

is a non-degenerate subspace of V follows from a similar argument that ϕ(X) is non-degenerate
above. Finally, if B ′(y1, y1) �= 0, then Y = span(y1, y2 + w2m) for a uniquely determined y2 ∈ W ′
such that B ′(y2, y2) �= 1. Then y2 = ϕ(x2) or y2 = δϕ−1(y1)(ϕ(x2)), for some x2 ∈ V as above, and ψ

is surjective, and thus a bijection as required. �
We are now able to prove the equality of interest.

Theorem 3.1. For any m � k � 0, B+(m,k) = B−(m,k).

Proof. When k = 0, the only non-degenerate subspace is the trivial subspace, and so B+(m,0) =
B−(m,0) for all m � 0. In Lemma 3.2, we proved the statement for all m � 1 when k = 1, and so
we will use B(m,1) to denote either B+(m,1) or B−(m,1). Now fix any k > 1, and we will prove by
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induction on m that B+(m,k) = B−(m,k) for any m � k. For the base case of m = k, the only non-
degenerate subspace of dimension 2m is the space itself, and so B+(k,k) = B−(k,k). Now we assume
that B+(m,k) = B−(m,k) for some m � k, and we will use B(m,k) for either quantity when we do
not have to distinguish between the two types.

Let V be a (2m + 2)-dimensional Fq-vector space with a non-degenerate symmetric form of
+-type. Now, choosing a 2m-dimensional non-degenerate subspace of V is equivalent to choosing
its 2-dimensional non-degenerate orthogonal complement, and thus B+(m + 1,m) = B+(m + 1,1) =
B(m + 1,1), and so there are B(m + 1,1) non-degenerate subspaces of V of dimension 2m. For
each 2m-dimensional subspace V ′ of V , there are B(m,k) non-degenerate subspaces of V ′ of di-
mension 2k, since by the inductive hypothesis, the number of these subspaces does not depend
on the type of non-degenerate subspace V ′ . Now we will show that each 2k-dimensional non-
degenerate subspace of V is contained in exactly B(m − k + 1,1) non-degenerate subspaces of
dimension 2m. Given a 2k-dimensional non-degenerate subspace W ⊂ V , W ⊥ is 2(m − k + 1)-
dimensional, so there are B(m − k + 1,1) non-degenerate subspaces of W ⊥ of dimension 2(m − k).
For each such non-degenerate subspace U of W ⊥ , W ⊕ U is a non-degenerate subspace of dimen-
sion 2m which contains W , and any such subspace containing W must be of this form. Therefore,
B+(m + 1,k) = B(m + 1,1)B(m,k)/B(m − k + 1,1). By a completely parallel argument we also obtain
B−(m +1,k) = B(m +1,1)B(m,k)/B(m −k +1,1). Thus B+(m +1,k) = B−(m +1,k), which completes
the induction. �

From now on, we will let B(m,k) denote both B+(m,k) and B−(m,k), and we let I(m) =∑m
k=0 B(m,k) denote the total number of involutions in either of the groups SO±(2m,Fq).

3.2. B(m,k) = B̃(m,k)

We now turn to our combinatorial proof of the equality B(m,k) = B̃(m,k), where B̃(m,k) is
the number of pairs (U1, U2) of subspaces of an m-dimensional Fq2 -vector space W , such that
dim(U1) = k and U1 ⊕ U2 = W , so dim(U2) = m − k, and U2 is a complementary subspace to U1.
Our argument has similar structure to the one in Section 3.1, in that the proof that B(m,k) = B̃(m,k)

in the end will be by induction, and the main work is in proving that B(m,1) = B̃(m,1).
Before a technical lemma, we establish some notation. In the vector space F

2m+1
q , let Xm denote

the subspace of all vectors with first coordinate 0, and let X ∗
m = F

2m+1
q \ Xm denote the set of all

vectors with nonzero first coordinate. If V is any Fq-vector space with non-degenerate symmetric
form B , then let S0(V ) = {v ∈ V | B(v, v) = 0} as in Lemma 3.1, and let S0(V )∗ = V \ S0(V ).

Lemma 3.3. Let V be a (2m + 1)-dimensional Fq-vector space with non-degenerate symmetric form B. Then
there exists a bijection φ : V → F

2m+1
q , constructed below, such that φ(S0(V )) = Xm and φ(S0(V )∗) = X ∗

m.

Proof. Let x1, x2, . . . , x2m+1 be a basis of V such that the symmetric form B may be represented
by the matrix diag(c1, c2, . . . , c2m+1). For any v ∈ V , if v = ∑2m+1

i=1 ai xi , then define a linear map
γ : V → F

2m
q by γ (v) = (a1,a2, . . . ,a2m).

Now consider another symmetric form on V which can be represented with respect to the basis
x1, x2, . . . , x2m+1 by diag(dc1,dc2, . . . ,dc2m+1), for some fixed non-square d ∈ Fq . Note that B ′(v, w) =
dB(v, w) for any v, w ∈ V . If we restrict B and B ′ to V ′ = span(x1, . . . , x2m), then as in Lemma 3.1,
B|V ′ and B ′|V ′ are equivalent forms. Thus, there exists a linear automorphism L of V ′ such that
B ′(v, w) = B(L(v), L(w)) for all v, w ∈ V ′ .

Fix a set J ⊂ F
×
q such that a ∈ J if and only if −a /∈ J . We define the desired φ : V → F

2m+1
q as

follows. If v ∈ V with v = ∑2m+1
i=1 ai xi , then define

φ(v) :=
{

(B(v, v),a1,a2, . . . ,a2m) if a2m+1 ∈ J ∪ {0},
(dB(v, v), γ ◦ L(v − a x )) if a /∈ J ∪ {0}.
2m+1 2m+1 2m+1
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It follows immediately that φ(S0(V )) ⊆ Xm and φ(S0(V )∗) ⊆ X ∗
m . Since |V | = |F2m+1

q |, to check that
φ is a bijection, it is enough to check that it is injective.

Suppose that v, w ∈ V and φ(v) = φ(w), and let v = ∑2m+1
i=1 ai xi and w = ∑2m+1

i=1 bi xi . If either
a2m+1,b2m+1 ∈ J ∪{0} or a2m+1,b2m+1 /∈ J ∪{0}, then by considering the last 2m coordinates of φ(v) =
φ(w), we obtain ai = bi for i < 2m + 1. By equating the first coordinate of φ(v) = φ(w), we find
a2

2m+1 = b2
2m+1, and it follows that a2m+1 = b2m+1 by the definition of the set J . Thus v = w . We

now prove by contradiction that we cannot have a2m+1 ∈ J ∪ {0} while b2m+1 /∈ J ∪ {0}, so assume
otherwise, still under the assumption that φ(v) = φ(w). If L(

∑2m
i=1 bi xi) = ∑2m

i=1 βi xi , then by the
definition of φ we obtain ai = βi for i < 2m + 1, and so L(w ′) = v ′ , where w ′ = w − b2m+1x2m+1 and
v ′ = v − a2m+1x2m+1. Now we have

B
(

v ′, v ′) = B
(
L
(

w ′), L
(

w ′)) = B ′(w ′, w ′), which implies
2m∑
i=1

a2
i ci =

2m∑
i=1

db2
i ci . (3.1)

Considering the first coordinate of φ(v) = φ(w), we obtain
∑2m+1

i=1 a2
i ci = d

∑2m+1
i=1 b2

i ci , which com-
bined with (3.1), gives a2

2m+1 = db2
2m+1. This is a contradiction, as b2m+1 �= 0 since b2m+1 /∈ J ∪ {0},

and the left side of this equation is a square, while the right side is a non-square. We now have φ is
injective, and thus φ is bijective.

Finally, since φ is bijective, and φ(S0(V )) ⊆ Xm and φ(S0(V )∗) ⊆ X ∗
m , it follows that φ(S0(V )) =

Xm and φ(S0(V )∗) = X ∗
m . �

We now fix V to be a 2m-dimensional Fq-vector space with non-degenerate symmetric form B ,
and fix W to be an m-dimensional Fq2 -vector space. The following is the main tool which is used to

show B(m,1) = B̃(m,1).

Lemma 3.4. Let α ∈ Fq2 such that Fq2 = Fq[α]. Define I and J to be the following sets:

I := {
(x, y)

∣∣ x, y ∈ V , span(x, y) is non-degenerate and 2-dimensional
}
,

J := {(
w, (a + bα)w, U

) ∣∣ w ∈ W , w �= 0, a,b ∈ Fq, b �= 0, U � W , U ⊕ span(w) = W
}
,

where U � W means that U is a subspace of W . Then there exists a bijection θ : I → J , constructed below.

Proof. Before defining θ , we fix the following. Since W is an Fq2 -vector space of dimension m,
then viewed as an Fq-vector space it has dimension 2m, and is thus isomorphic to V as an Fq-
vector space. Fix an Fq-linear isomorphism f : V → W . Next, for any x ∈ V , we have span(x)⊥ is
(2m − 1)-dimensional. If B(x, x) �= 0, then span(x)⊥ is non-degenerate. In this case, by Lemma 3.3,
using the notation there, there is a bijection, which we fix, φx : span(x)⊥ → F

2m−1
q satisfying

φx(S0(span(x)⊥)∗) = X ∗
m−1. For each x ∈ V with B(x, x) = 0, fix a basis μ(x)0,μ(x)1, . . . ,μ(x)2m−1

of V such that span(x)⊥ = span(μ(x)1, . . . ,μ(x)2m−1). Finally, for each w ∈ W , w �= 0, fix a basis
w, ν(w)1, ν(w)2, . . . , ν(w)m−1 of W .

Given (x, y) ∈ I , we now define θ((x, y)) as follows, depending on whether B(x, x) = 0 or
B(x, x) �= 0.

If B(x, x) = 0, then since span(x, y) is non-degenerate, we have B(x, y) �= 0, that is, y /∈ span(x)⊥ .
Now write y = ∑2m−1

i=0 yiμ(x)i , for yi ∈ Fq . Then y0 �= 0 since y /∈ span(x)⊥ . Now define θ((x, y)) =
( f (x), (y1 + y0α) f (x), U ), where

U =
m−1⊕

span
(
ν
(

f (x)
)

i + (y2i + y2i+1α) f (x)
)
.

i=1
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Note that U is indeed an (m − 1)-dimensional Fq2 -subspace of W , and f (x) /∈ U , due to the linear
independence of f (x), ν( f (x))1, . . . , ν( f (x))m−1, and so ( f (x), (y1 + y0α) f (x), U ) ∈ J .

If B(x, x) �= 0, then V = span(x) ⊕ span(x)⊥ , and so we may write y uniquely as y = ax + z
for a ∈ Fq and z ∈ span(x)⊥ , so B(x, z) = 0. Then since span(x, y) = span(x, z) is non-degenerate,
we must have B(z, z) �= 0, and so z ∈ span(x)⊥ , and in particular, z ∈ S0(span(x)⊥)∗ . Let φx(z) =
(z1, . . . , z2m−1) ∈ X ∗

m−1 ⊂ F
2m−1
q , where z1 �= 0 by definition of X ∗

m−1. Now define θ((x, y)) =
( f (x), (a + z1α) f (x), U ), where

U =
m−1⊕
i=1

span
(
ν
(

f (x)
)

i + (z2i + z2i+1α) f (x)
)
.

Then ( f (x), (a + z1α) f (x), U ) ∈ J for the same reason as in the previous case.
We now establish θ is a bijection by giving its inverse. Let (w, (a + bα)w, U ) ∈ J . Since W =

span(w) ⊕ U , then for each i = 1, . . . ,m − 1, there are unique ai,bi ∈ Fq such that ν(w)i + (ai +
biα)w ∈ U . Since the ν(w)i are linearly independent, it follows that

U =
m−1⊕
i=1

span
(
ν(w)i + (ai + biα)w

)
.

If B( f −1(w), f −1(w)) = 0, then define yw = bμ( f −1(w))0 + aμ( f −1(w))1 + ∑m−1
i=1 aiμ( f −1(w))2i +

biμ( f −1(w))2i+1. If B( f −1(w), f −1(w)) �= 0, then let

zw = φ−1
f −1(w)

(
(b,a1,b1,a2,b2, . . . ,am−1,bm−1)

)
,

and define yw = af −1(w)+ zw . In either case, letting xw = f −1(w), we may check that span(xw , yw)

is non-degenerate by considering the determinant of the matrix

(
B(xw , xw) B(xw , yw)

B(xw , yw) B(yw , yw)

)
.

In the first case, B(xw , xw) = 0, we have yw /∈ span(x)⊥ , since b �= 0, and the span of the vectors
μ(xw)1, . . . ,μ(xw)2m−1 is span(x)⊥ . Thus B(xw , yw) �= 0, and the determinant of the above matrix is
not zero. In the case that B(xw , xw) �= 0, we compute that the determinant of the above matrix is
B(xw , xw)B(zw , zw) − B(xw , zw)2. Also, B(zw , zw) �= 0 and B(xw , zw) = 0 since zw is in the image of
φ−1

xw
. Thus, the determinant is nonzero in both cases, and span(xw , yw) is non-degenerate. Finally, it

follows that θ−1((w, (a + bα)w, U )) = (xw , yw), and thus θ is a bijection. �
Lemma 3.5. For any m � 1, B(m,1) = B̃(m,1).

Proof. Let I and J be the sets defined in Lemma 3.4. We define equivalence relations on I and J
as follows. Define (x, y) and (x′, y′) in I to be equivalent when span(x, y) = span(x′, y′), and define
(w, (a + bα)w, U ) and (w ′, (a′ + b′α)w ′, U ′) in J to be equivalent when span(w) = span(w ′) and
U = U ′ . Then, each equivalence class in I corresponds to a 2-dimensional non-degenerate subspace
of V , while each equivalence class in J corresponds to a pair (U , U1) such that U is an (m − 1)-
dimensional subspace of W , U1 is a 1-dimensional subspace of W , and U ⊕ U1 = W . In particular,
the number of equivalence classes in I is B(m,1), and the number of equivalence classes in J is
B̃(m,1). The number of elements in each equivalence class in I is the number of bases of a 2-
dimensional vector space over Fq . Similarly, the number of elements in an equivalence class in J is
the number of ways to pick a nonzero Fq2 -multiple of a fixed w , which is equivalent to choosing a
nonzero vector in a 2-dimensional Fq-vector space, along with a pair a,b ∈ Fq , with b �= 0, which is
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the same in number as choosing a second vector in a 2-dimensional Fq-vector space which is not a
scalar multiple of the first. That is, an equivalence class in J has the same size as an equivalence
class in I . Since also |I| = |J | from Lemma 3.4, then the number of equivalence classes in each set
is the same, and thus B(m,1) = B̃(m,1). �

Finally, we have the following result.

Theorem 3.2. For any m � k � 0, B(m,k) = B̃(m,k).

Proof. For k = 0, then only non-degenerate subspace of an Fq-vector space with a symmetric form
is the trivial subspace, and the only way to choose a 0-dimensional subspace of an Fq2 -vector space

with a complement is the trivial subspace and the subspace itself. Thus B(m,0) = B̃(m,0). Lemma 3.5
gives the statement for k = 1. We now fix k > 1, and we show by induction on m that B(m,k) =
B̃(m,k). For the base case, m = k, we have B(k,k) = B̃(k,k) by essentially the same argument that
B(m,0) = B̃(m,0). Now assume B(m,k) = B̃(m,k) for some m � k.

Let W be an (m + 1)-dimensional vector space over Fq2 . For any vector space V over Fq2 , and any
j � n, let C j(V ) denote the set of pairs (Y, Y ′) such that Y is a j-dimensional subspace of V , and Y ′
is a subspace of V which is a complement to Y , so that Y ⊕ Y ′ = V . The number of ways to choose
a 1-dimensional subspace X of W , with an m-dimensional complement X ′ ⊂ W , is B̃(m + 1,1) =
|C1(W )|. Given such a pair (X, X ′) ∈ C1(W ), we say a pair of subspaces (Z , Z ′) ∈ Ck(W ) is generated
by (X, X ′) if (Z , Z ′) = (Y , Y ′ ⊕ X) for some (Y , Y ′) ∈ Ck(X ′). Then, each element (Y , Y ′) ∈ Ck(X ′)
determines a unique element in Ck(W ) which is generated by (X, X ′). It follows that each (X, X ′) ∈
C1(W ) generates exactly |Ck(X ′)| = B̃(m,k) elements in Ck(W ).

Now, given some element (Z , Z ′) ∈ Ck(W ), (Z , Z ′) is generated by some fixed (X, X ′) ∈ C1(W )

if and only if there exists a subspace U such that Z ′ = X ⊕ U and Z ⊕ U = X ′ . Thus, for a fixed
(Z , Z ′), any (X, U ) ∈ C1(Z ′) determines a unique (X, X ′) ∈ C1(W ) which generates (Z , Z ′), and each
(X, X ′) is determined by at least one such (X, U ). It follows that each (Z , Z ′) is generated by exactly
|C1(Z ′)| = B̃(m − k + 1,1) elements in C1(W ). Therefore, we have that

B̃(m + 1,k) = B̃(m + 1,1)B̃(m,k)/B̃(m − k + 1,1). (3.2)

Finally, we have from the proof of Theorem 3.1 that B(m + 1,k) = B(m + 1,1)B(m,k)/B(m − k + 1,1),
and since B̃(m + 1,1) = B(m + 1,1) and B̃(m − k + 1,1) = B(m − k + 1,1) from Lemma 3.5, and
B̃(m,k) = B(m,k) from the induction hypothesis, it follows from (3.2) that B̃(m + 1,k) = B(m + 1,k),
as desired. �
4. Proof of the semi-recursion

In this section, we give a combinatorial proof of Theorem 1.1. As in the previous sections, we
let A(m,k) and B(m,k) denote the number of 2k-dimensional non-degenerate subspaces of a (2m +
1)-dimensional and 2m-dimensional, respectively, Fq-vector space with a non-degenerate symmetric
form. We continue to prove all statements combinatorially and without using the formulas for these
quantities, and we begin by giving a relationship between A(m,k) and B(m,k).

Lemma 4.1. For any m � k � 0, we have A(m,k) = q2k B(m,k). In particular, we have A(m,m) =
q2m B(m,m) = q2m.

Proof. For the case k = m, we have A(m,m) is the number of ways to choose a 2m-dimensional
non-degenerate subspace, which is equivalent to choosing its 1-dimensional orthogonal complement.
Now, the number of generating vectors of all 1-dimensional non-degenerate subspaces is equal to
the number of vectors x such that B(x, x) �= 0, where B(·,·) is our non-degenerate symmetric form.
By Lemma 3.3, this is equal to the number of elements in F

2m+1
q with nonzero first coordinate, of
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which there are q2m+1 −q2m = q2m(q − 1). Since each 1-dimensional Fq-vector space has exactly q − 1
generating vectors, we have A(m,m) = q2m .

Now consider the general case, with k � 1. If V is a (2m + 1)-dimensional Fq-vector space with a
non-degenerate symmetric form, then as we just obtained, there are A(m,m) = q2m non-degenerate
subspaces of V with dimension 2m. For each 2m-dimensional non-degenerate subspace V ′ , there are
B(m,k) non-degenerate subspaces of V ′ with dimension 2k. Now, given any 2k-dimensional non-
degenerate subspace W of V , we have W ⊥ is a non-degenerate (2(m − k) + 1)-dimensional subspace
of V . There are exactly A(m − k,m − k) = q2(m−k) non-degenerate subspaces of W ⊥ which are 2(m −
k)-dimensional. Given any such subspace U , W ⊕ U is a 2m-dimensional non-degenerate subspace
of V which contains W . Also, any 2m-dimensional non-degenerate subspace Y of V which contains
W may be written as Y = W ⊕ (W ⊥ ∩ Y ). So, the total number of 2k-dimensional non-degenerate
subspaces of V is exactly q2m B(m,k)/q2(m−k) = q2k B(m,k). �

We now reduce the proof of the identity in Theorem 1.1 to another identity.

Lemma 4.2. Theorem 1.1 follows from the identity that for any m > 1, m � k � 1,

A(m + 1,k) = A(m,k) + q2m(
q2m − 1

)
B(m − 1,k − 1) + q2m+2 A(m,m − k + 1).

Proof. Suppose that the identity is true. From Corollary 2.1, we have I(2m + 1) = ∑m
k=0 A(m,k) and

I(2m) = ∑m
k=0 B(m,k). Now, for any m > 1,

I(2m + 3) =
m+1∑
k=0

A(m + 1,k) = A(m + 1,0) + A(m + 1,m + 1)

+
m∑

k=1

(
A(m,k) + q2m(

q2m − 1
)

B(m − 1,k − 1) + q2m+2 A(m,m − k + 1)
)
.

Since A(m+1,0) = 1 = A(m,0), and by Lemma 4.1 A(m+1,m+1) = q2m+2 B(m+1,m+1) = q2m+2 =
q2m+2 A(m + 1,0), we have

I(2m + 3) =
m∑

k=0

A(m,k) + q2m(
q2m − 1

)m−1∑
k=0

B(m − 1,k) + q2m+2
m+1∑
k=1

A(m,m − k + 1)

= (
q2m+2 + 1

) m∑
k=0

A(m,k) + q2m(
q2m − 1

)m−1∑
k=0

B(m − 1,k)

= (
q2m+2 + 1

)
I(2m + 1) + q2m(

q2m − 1
)

I(2m − 2),

which is exactly the identity in Theorem 1.1. �
The key to our proof of Theorem 1.1 is to interpret the quantities A(m,k) and B(m,k) in terms

of linear subspaces of Fq2 -vector spaces. We have done this for B(m,k) in Theorem 3.2, in which
we showed B(m,k) is also the number of ordered pairs (W , W ′) of subspaces of an m-dimensional
Fq2 -vector space V , where dim W = k and W ⊕ W ′ = V . We mentioned a similar interpretation of
A(m,k) at the end of Section 2, for which we now give a proof from our current point of view.

Lemma 4.3. Let V be an (m + 1)-dimensional Fq2 -vector space, and let V ′ be a fixed m-dimensional subspace
of V . The number of ordered pairs (U , U ′) of subspaces of V such that U is a k-dimensional subspace of V ′
and U ⊕ U ′ = V is A(m,k).
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Proof. By Lemma 4.1, it is enough to show that the number of such ordered pairs is q2k B(m,k), and
by Theorem 3.2, we know that B(m,k) is the number of ordered pairs (W , W ′) of subspaces of V ′
such that dim W = k and W ⊕ W ′ = V ′ . Fix an element v ∈ V \ V ′ . If v ′ ∈ V ′ , then (U , U ′), where
U = W and U ′ = W ′ ⊕ span(v + v ′), is a pair of subspaces of V such that dim U = k and U ⊕ U ′ = V .
Note that for v ′, v ′′ ∈ V ′ , we have W ′ ⊕ span(v + v ′) = W ′ ⊕ span(v + v ′′) if and only if v ′ − v ′′ ∈ W ′ .
This implies that the number of choices for W ′ ⊕span(v + v ′) is exactly |V ′|/|W ′| = q2m/q2m−2k = q2k .
Thus, there are a total of q2k B(m,k) = A(m,k) pairs (U , U ′) of subspaces of V such that dim U = k,
U ⊕ U ′ = V , and U ⊂ V ′ . �

We now concentrate on the identity in Lemma 4.2 which implies Theorem 1.1. The main work in
proving the identity is in the next two lemmas.

Lemma 4.4. Let X be an (m +2)-dimensional Fq2 -vector space, V a fixed (m +1)-dimensional subspace of X ,
and V ′ a fixed m-dimensional subspace of V . The number of ordered pairs (U , U ′) of subspaces of X such that
U ⊂ V , dim U = k, U ⊕ U ′ = X, and U �⊂ V ′ , is

q2m+2 A(m,m − k + 1).

Proof. Consider the set of ordered pairs (W , W ′) of subspaces of V , such that dim W = k, W ⊕
W ′ = V , and W �⊂ V ′ . Given such a pair, as in the proof of Lemma 4.3, there are exactly q2k pairs
(U , U ′), where U = W and W ′ ⊂ U ′ , of subspaces of X such that dim U = k, U ⊕ U ′ = X , and
U �⊂ V ′ . Thus, it is enough to show that the number of such pairs (W , W ′) of subspaces of V is
q2(m−k+1) A(m,m − k + 1).

Suppose that (Y , Y ′) is a pair of subspaces of V such that Y ⊂ V ′ , dim Y = k − 1, and Y ⊕ Y ′ = V .
We call a pair (W , W ′) of subspaces of V such that dim W = k, W ⊕ W ′ = V , and W �⊂ V ′ , a semi-
extension of (Y , Y ′) if W ∩ V ′ = Y , W ′ ⊂ Y ′ , and dim(W ∩ Y ′) = 1. We now count the number of
semi-extensions of a fixed pair of such subspaces (Y , Y ′) of V .

If (W , W ′) is a semi-extension of (Y , Y ′), then dim(W ∩ Y ′) = 1, and W ∩ V ′ = Y , which implies
W = (W ∩ Y ′) ⊕ Y . Also, Y ′ = W ′ ⊕ (W ∩ Y ′), where dim W ′ = m − k + 1. Now, each semi-extension
(W , W ′) uniquely describes the pair (W ′, W ∩ Y ′). Conversely, each ordered pair ( J , K ) of subspaces
of Y ′ such that dim J = m − k + 1, dim K = 1, K �⊂ V ′ , and J ⊕ K = Y ′ , determines a unique semi-
extension (Y ⊕ K , J ) of (Y , Y ′). Thus, to count the number of semi-extensions of (Y , Y ′), we need
to count the number of such pairs ( J , K ). We have dim Y ′ = (m + 1) − (k − 1) = m − k + 2, and so
dim(Y ′ ∩ V ′) = m−k+1, while we must choose K �⊂ V ′ . So, the number of choices of K is the number
of 1-dimensional complements to Y ′ ∩ V ′ in Y ′ , of which there are q2(m−k+1) by Lemma 2.1. Once K
is chosen, J is a complementary subspace to K in Y ′ , the number of which is also q2(m−k+1) , again
by Lemma 2.1. This gives a total of q4(m−k+1) semi-extensions of (Y , Y ′).

Now, given a pair (W , W ′) of subspaces of V such that dim W = k, W ⊕ W ′ = V , and W �⊂ V ′ ,
then to determine a pair (Y , Y ′) for which (W , W ′) is a semi-extension, we note Y = W ∩ V ′ is
uniquely determined. Since we must have Y ′ = W ′ ⊕ (W ∩ Y ′) where dim(W ∩ Y ′) = 1, then Y ′ is
uniquely determined by the choice of a 1-dimensional subspace of W , which is a complement to Y ,
since W = (W ∩ Y ′) ⊕ Y . There are q2(k−1) such 1-dimensional subspaces, and so (W , W ′) is a semi-
extension of exactly q2(k−1) pairs (Y , Y ′).

Finally, the number of pairs of subspaces (Y , Y ′) of V such that Y ⊂ V ′ , dim Y = k − 1, and Y ⊕
Y ′ = V is A(m,k − 1) by Lemma 4.3, and there are q4(m−k+1) semi-extensions (W , W ′) of (Y , Y ′),
and a pair (W , W ′) is a semi-extension of q2(k−1) pairs (Y , Y ′). It follows that the number of pairs of
subspaces (W , W ′) of V such that dim W = k, W ⊕ W ′ = V , and W �⊂ V ′ is

A(m,k − 1)q4(m−k+1)/q2(k−1) = q2(k−1)B(m,k − 1)q4(m−k+1)/q2(k−1)

= B(m,m − k + 1)q4(m−k+1)

= q2(m−k+1) A(m,m − k + 1),
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as desired, where we have applied Lemma 4.1 twice, and the fact that B(m,k − 1) = B(m,m −
k + 1). �
Lemma 4.5. Let X be an (m +2)-dimensional Fq2 -vector space, V a fixed (m +1)-dimensional subspace of X ,
and V ′ a fixed m-dimensional subspace of V . The number of ordered pairs (U , U ′) of subspaces of X such that
U ⊂ V , dim U = k, U ⊕ U ′ = X, and U ⊂ V ′ , is

A(m,k) + q2m(
q2m − 1

)
B(m − 1,k − 1).

Proof. As in the proof of Theorem 3.2, we let Ck(X) denote the set of ordered pairs of subspaces
(Z , Z ′) of X such that dim Z = k and Z ⊕ Z ′ = X , and similarly for Ck(V ).

Fix a vector x ∈ X \ V . For pairs (U , U ′) ∈ Ck(X) such that U ⊂ V ′ , we consider the cases that
either x ∈ U ′ or x /∈ U ′ . In the case x ∈ U ′ , for any pair (W , W ′) ∈ Ck(V ) with W ⊂ V ′ , there is a
unique pair (U , U ′) ∈ Ck(X) satisfying U = W ⊂ V ′ and W ′ ⊂ U ′ , namely U ′ = W ′ ⊕ span(x). Since
Ck(V ) has exactly A(m,k) elements, then the number of pairs (U , U ′) ∈ Ck(X) such that U ⊂ V ′ and
x ∈ U ′ is exactly A(m,k).

We now count pairs (U , U ′) ∈ Ck(X) such that U ⊂ V ′ and x /∈ U ′ . Fix a vector y ∈ V \ V ′ . Consider
a nonzero vector v ′ ∈ V ′ , and a subspace Z of V ′ such that (span(v ′), Z) ∈ C1(V ′), so span(v ′) ⊕
Z = V ′ and dim Z = m − 1, and let (Y , Y ′) ∈ Ck−1(Z). Now, for any w ∈ V ′ , take the pair of subspaces

(
U , U ′) = (

Y ⊕ span
(

v ′), Y ′ ⊕ span(y + w) ⊕ span
(
x + v ′)).

Then we have dim U = k, U ⊂ V ′ , U ⊕ U ′ = X , and x /∈ U ′ , since x + v ′ ∈ U ′ and v ′ /∈ U ′ . Furthermore,
all pairs (U , U ′) with these properties are of this form. In constructing this pair (U , U ′), there are
q2m − 1 choices for v ′ , q2(m−1) choices for Z by Lemma 2.1, B(m − 1,k − 1) ways to choose (Y , Y ′),
and q2m choices for w ∈ V ′ . We now count how many of these choices produce the same pair (U , U ′).

Fix (U , U ′) constructed as above. Given span(v ′), there are q2(k−1) choices for Y which are com-
plements to span(v ′) in U , again by Lemma 2.1. Now, given choices for Y ′ and v ′ , we may replace
w ∈ V ′ by any element in w + Y ′ to obtain the same U ′ , for which there are |Y ′| = q2(m−k) choices.
We now show that if we fix a choice of Y , then v ′ , Y ′ , w + Y ′ , and Z are uniquely determined by
(U , U ′). This is enough, since this will give that the total number of pairs (U , U ′) ∈ Ck(X) such that
U ⊂ V ′ and x /∈ U ′ is

(
q2m − 1

)
q2(m−1)q2m B(m − 1,k − 1)/

(
q2(k−1)q2(m−k)

) = q2m(
q2m − 1

)
B(m − 1,k − 1).

We have U ⊕ U ′ = X , so given any v ∈ X , define prU (v) and prU ′ (v) to be the unique vectors in U
and U ′ , respectively, so that prU (v) + prU ′ (v) = v . Now, considering the vector x ∈ X \ V , we have
x + v ′ ∈ U ′ and v ′ ∈ U , and so prU (x) = −v ′ and prU ′ (x) = x + v ′ . Since x is fixed, we have v ′ =
−prU (x) is uniquely determined by (U , U ′). Next, since Y ′ = U ′ ∩ V ′ , then Y ′ is uniquely determined
by (U , U ′) as well, and since we have fixed our choice of Y , Y ⊕ Y ′ = Z is uniquely determined.
Finally, we have V ′ = U ⊕ Y ′ , and so to show that w + Y ′ is uniquely determined, we may assume
w ∈ U and prove w is then uniquely determined by (U , U ′). We have U ′ ∩ V = Y ′ ⊕ span(y + w), and
V = U ⊕ (U ′ ∩ V ). Since y = −w + (y + w) where −w ∈ U and y + w ∈ U ′ ∩ V , we have −w = prU (y)

and y + w = prU ′∩V (y). This implies w = −prU (y) is uniquely determined by (U , U ′), as claimed. �
Finally, we have the following, which completes the proof of Theorem 1.1 by Lemma 4.2.

Lemma 4.6. For any m > 1, m � k � 1,

A(m + 1,k) = A(m,k) + q2m(
q2m − 1

)
B(m − 1,k − 1) + q2m+2 A(m,m − k + 1).
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Proof. Let X be an (m + 2)-dimensional Fq2 -vector space, V a fixed (m + 1)-dimensional subspace
of X , and V ′ a fixed m-dimensional subspace of V . By Lemma 4.3, A(m + 1,k) is the number of
pairs of subspaces (U , U ′) of X such that U ⊂ V , dim U = k, and U ⊕ U ′ = X . Given any such pair,
we either have U ⊂ V ′ or U �⊂ V ′ . By Lemma 4.5, the number of pairs (U , U ′) such that U ⊂ V ′ is
A(m,k) + q2m(q2m − 1)B(m − 1,k − 1), and by Lemma 4.4, the number of pairs such that U �⊂ V ′ is
q2m+2 A(m,m − k + 1), the sum of which gives the result. �
5. An application to bounding character degree sums

In sieving applications, Kowalski [8] needed to bound the sums of the degrees of the complex
irreducible characters of certain finite groups, and he obtained an explicit bound for the character
degree sum of a large class of finite reductive groups. More specifically, if G is a connected reductive
group with connected center which is defined over a finite field Fq by a split Frobenius map, Kowalski
gave a bound for the character degree sum for the finite group G(Fq) in terms of the rank, dimension,
and the order of the Weyl group of G, and in terms of q [8, Proposition 5.5]. He noted that the one
factor in the bound which contained the order of the Weyl group could be dropped in several cases,
and the second-named author proved [16, Theorem 6.1] that this is true whenever G is classical and
q is odd, and without any assumption on the Frobenius map. Furthermore, it was conjectured by the
second-named author [16, Conjecture 7.1] that an even tighter bound should be true for any connected
reductive group with connected center. The purpose of this section is to prove Theorem 5.1, which
confirms this conjecture when G is classical and q is odd. The main connection with the previous
sections of this paper is that the character degree sums for various finite orthogonal groups may be
bounded by using the number of involutions, and in particular, we use Theorem 1.1 to obtain one
such bound.

We begin with a bound on the q-binomial coefficient by a polynomial in q. Note that although we
are concerned with q being a power of an odd prime in our applications, the following result, and
the next lemma, are true for any real number q � 2.

Lemma 5.1. For any q � 2 and any integers m � k � 0, we have

(
m

k

)
q
� qk(m−k−2)(q + 1)2k.

Proof. For k = 0, the statement reduces to 1 � 1. For k = 1, we have
(m

k

)
q = 1 + q + · · · + qm−1. Then,

for m = 1,
(1

1

)
q = 1 � (1+1/q)2 = q−2(q +1)2; for m = 2,

(2
1

)
q = 1+q � (1+1/q)(q +1) = q−1(q +1)2;

and for m = 3,
(3

1

)
q = 1 + q + q2 � (q + 1)2. Now suppose k = 1 and m � 4. Since q � 2, we have

1 + q + · · · + qm−4 = qm−3 − 1

q − 1
� qm−3 − 1 < qm−2.

Thus, we have

(
m

1

)
q
= 1 + q + · · · + qm−1 < qm−2 + qm−3 + qm−2 + qm−1

= qm−3(q + 1)2.

We may now assume k � 2, and our induction hypothesis is that the inequality holds for
(m−1

k

)
q for

any k � m − 1. We apply the q-Pascal identity
(m

k

) = (m−1
k

) + qm−k
(m−1

k−1

)
, k � 1. We have
q q q
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(
m

k

)
q
=

(
m − 1

k

)
q
+ qm−k

(
m − 1

k − 1

)
q
� qk(m−k−3)(q + 1)2k + qm−kq(k−1)(m−k−2)(q + 1)2k−2

= qk(m−k−3)(q + 1)2k + qk(m−k−2)q2(q + 1)2k−2 = qk(m−k−2)(q + 1)2k
(

1

qk
+ q2

(q + 1)2

)
.

Since k � 2 and q � 2, we have 1
qk � 1

q2 � 1
q+1 , and q2

(q+1)2 � q2

q2+q
= q

q+1 . Thus,

1

qk
+ q2

(q + 1)2
� 1

q + 1
+ q

q + 1
= 1.

This gives
(m

k

)
q � qk(m−k−2)(q + 1)2k , as desired. �

By applying Lemma 5.1, we are now able to bound I(2m), the number of involutions in the special
orthogonal groups SO±(2m,Fq).

Lemma 5.2. For any q � 2 and any m � 1, we have

m∑
k=0

q2k(m−k)

(
m

k

)
q2

�
{

qm2−2m(q2 + 1)m if m is even,

2qm2−2m−1(q2 + 1)m if m is odd.

Proof. From the symmetry in k and m − k in the sum, we have

m∑
k=0

q2k(m−k)

(
m

k

)
q2

=
⎧⎨
⎩

qm2/2
( m

m/2

)
q2 + 2

∑(m/2)−1
k=0 q2k(m−k)

(m
k

)
q2 if m is even,

2
∑(m−1)/2

k=0 q2k(m−k)
(m

k

)
q2 if m is odd.

(5.1)

First consider the case that m is even. By [16, Lemma 5.1], for any q > 1 and any integers m � k � 1,
we have

(m
k

)
q � qk(m−k)−m+1(q + 1)m−1. Thus, for k = m/2, we have

qm2/2
(

m

m/2

)
q2

� qm2−2m+2(q2 + 1
)m−1

. (5.2)

For any k < m/2, we apply Lemma 5.1 to obtain

q2k(m−k)

(
m

k

)
q2

� q2k(m−k)q2k(m−k−2)
(
q2 + 1

)2k = q4k(m−k−1)
(
q2 + 1

)2k
. (5.3)

As a function of x, 4x(m − x − 1) is strictly increasing on the interval [0, (m − 1)/2], and thus for each
k � m/2 − 1 we have

q4k(m−k−1) � q4(m/2−1)(m−(m/2−1)−1) = qm2−2m. (5.4)

Applying inequalities (5.3) and (5.4), we have

2
m/2−1∑

q2k(m−k)

(
m

k

)
q2

� 2
m/2−1∑

qm2−2m(
q2 + 1

)2k = 2qm2−2m (q2 + 1)m − 1

(q2 + 1)2 − 1
.

k=0 k=0
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Now, (q2+1)m−1
(q2+1)2−1

<
(q2+1)m

q2(q2+1)
= (q2+1)m−1

q2 . Using this, and the fact that q � 2, we obtain

2
m/2−1∑

k=0

q2k(m−k)

(
m

k

)
q2

� 2qm2−2m (q2 + 1)m−1

q2
� qm2−2m(

q2 + 1
)m−1

. (5.5)

Finally, by combining (5.1), (5.2), and (5.5), we have

m∑
k=0

q2k(m−k)

(
m

k

)
q2

= qm2/2
(

m

m/2

)
q2

+ 2
(m/2)−1∑

k=0

q2k(m−k)

(
m

k

)
q2

� qm2−2m+2(q2 + 1
)m−1 + qm2−2m(

q2 + 1
)m−1 = qm2−2m(

q2 + 1
)m

,

when m is even, as desired.
Now assume that m is odd. Similar to (5.3), we have for any k � (m − 1)/2,

q4k(m−k−1) � q4( m−1
2 )(m− m−1

2 −1) = qm2−2m+1.

Combining this with Lemma 5.1, we have

q2k(m−k)

(
m

k

)
q2

� q4k(m−k−1)
(
q2 + 1

)2k � qm2−2m+1(q2 + 1
)2k

, (5.6)

for any k � (n − 1)/2. Now, by (5.1) and (5.6), we have for m odd,

m∑
k=0

q2k(m−k)

(
m

k

)
q2

� 2qm2−2m+1
(m−1)/2∑

k=0

(
q2 + 1

)2k = 2qm2−2m+1 (q2 + 1)m+1 − 1

(q2 + 1)2 − 1
.

We have (q2+1)m+1−1
(q2+1)2−1

<
(q2+1)m+1

q2(q2+1)
= (q2+1)m

q2 . So, finally, when m is odd,

m∑
k=0

q2k(m−k)

(
m

k

)
q2

� 2qm2−2m+1 (q2 + 1)m

q2
= 2qm2−2m−1(q2 + 1

)m
,

as claimed. �
Now that we have obtained a bound for I(2m), we may bound I(2m + 1) by using the semi-

recursion in Theorem 1.1. When considering that each I(n) is a polynomial in q, and that we proved
Theorem 1.1 when q is the power of an odd prime, then by continuity the semi-recursion for these
polynomials in q is true for real numbers q. So, the inequality given below in fact holds for all real
q � 2.

Proposition 5.1. For any q � 2 and any integer m � 0,

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

� qm2
(q + 1)m.
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Proof. We will prove by induction on m that

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

� qm2−m(
q2 + 1

)m
,

which is enough, since (q2 + 1) � q(q + 1), and so qm2−m(q2 + 1)m � qm2
(q + 1)m . The inequality

reduces to 1 � 1 when m = 0, and to q2 + 1 � q2 + 1 when m = 1. When m = 2, the expression on the
left is equal to 1 + q4(q2 + 1)+ q4, which is indeed less than or equal to q2(q2 + 1)2. Now, we assume
that the inequality holds for some m � 2. Since the expression we are bounding is I(2m + 1), and the
expression bounded in Lemma 5.2 is I(2m), we may apply Theorem 1.1. We have, when m � 2,

I(2m + 3) = (
q2m+2 + 1

)
I(2m + 1) + q2m(

q2m − 1
)

I(2m − 2).

By Lemma 5.2, since q � 2, we have for both m even and odd,

I(2m − 2) � q(m−1)2−2(m−1)
(
q2 + 1

)m−1 = qm2−4m+3(q2 + 1
)m−1

.

Applying this and the semi-recursion, we obtain

I(2m + 3) �
(
q2m+2 + 1

)
qm2−m(

q2 + 1
)m + (

q2m − 1
)
qm2−2m+3(q2 + 1

)m−1
. (5.7)

Since m � 2, we have q−m+3 < q2 + 1, which gives qm2−2m+3 < qm2−m(q2 + 1). Combining this with
(5.7) gives

I(2m + 3) �
(
q2m+2 + 1

)
qm2−m(

q2 + 1
)m + (

q2m − 1
)
qm2−m(

q2 + 1
)m

= qm2−m(
q2 + 1

)m(
q2m+2 + q2m) = qm2+m(

q2 + 1
)m+1

,

which completes the induction. �
Finally, we come to the main result of this section. Recall that for an algebraic group G over the

algebraically closed field F̄q , the dimension of G is its dimension as an algebraic variety over F̄q , and
its rank is the dimension of a maximal torus in G. For a more thorough discussion of the relevant
material on algebraic and classical groups over Fq , and character theory of finite groups, see [16] and
its references.

Theorem 5.1. Let q be the power of an odd prime, and let G be a connected classical group with connected
center defined over Fq, where the rank of G is r, and the dimension of G is d. Then the sum of the degrees of the
irreducible characters of the finite group G(Fq) may be bounded as follows:

∑
χ∈Irr(G(Fq))

χ(1) � q(d−r)/2(q + 1)r,

where Irr(G(Fq)) is the collection of irreducible complex characters of G(Fq), and χ(1) is the degree of χ .

Proof. The groups G(Fq) which are relevant are the finite general linear group GL(n,Fq), the finite
unitary group U(n,Fq2 ), the finite group of symplectic similitudes GSp(2n,Fq), the finite special or-
thogonal group SO(2n + 1,Fq), and the connected component of the split or non-split finite group of
orthogonal similitudes GO±,◦(2n,Fq). For the groups GL(n,Fq), U(n,Fq2 ), and GSp(2n,Fq), this bound
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on the sum of the character degrees is proved in [16, Section 7]. So, we must prove the statement for
the groups SO(2n + 1,Fq) and GO±,◦(2n,Fq).

If G(Fq) = SO(2n + 1,Fq), then d = 2n2 + n and r = n, and the sum of the degrees of the irre-
ducible characters of SO(2n + 1,Fq) is exactly equal to I(2n + 1). This follows from a result of Gow
[4, Theorem 2] which states that every irreducible character of SO(2n + 1,Fq) is the character of a
representation which may be realized over the real numbers. The bound for the sum of the degrees
of the characters, then, follows exactly from Proposition 5.1, since we have

∑
χ∈Irr(G(Fq))

χ(1) = I(2n + 1) � qn2
(q + 1)n = q(d−r)/2(q + 1)r .

If G(Fq) = GO±,◦(2n,Fq), then for either of these groups we have d = 2n2 − n + 1 and r = n + 1. It
is shown in [16, Proof of Theorem 6.1] that for either of these groups, we have the bound

∑
χ∈Irr(G(Fq))

χ(1) � (q − 1)
(

I(2n) + qn−1(qn + 1
)

I(2n − 2)
)
.

If n is even, then by Lemma 5.2 we have

∑
χ∈Irr(G(Fq))

χ(1) � (q − 1)
(
qn2−2n(q2 + 1

)n + qn−1(qn + 1
)
2q(n−1)2−2(n−1)−1(q2 + 1

)n−1)

� (q − 1)
(
qn2−n(q + 1)n + 2qn2−n−1(q + 1)n),

where we have used that q2 + 1 � q(q + 1) and qn + 1 � qn−1(q + 1). Now we have

∑
χ∈Irr(G(Fq))

χ(1) � qn2−n−1(q + 1)n(q − 1)(q + 2) = qn2−n−1(q + 1)n(q2 + q − 2
)

� qn2−n(q + 1)n+1 = q(d−r)/2(q + 1)r,

as desired. Similarly, when n is odd, we have by Lemma 5.2,

∑
χ∈Irr(G(Fq))

χ(1) � (q − 1)
(
2qn2−2n−1(q2 + 1

)n + qn−1(qn + 1
)
q(n−1)2−2(n−1)

(
q2 + 1

)n−1)

� (q − 1)
(
2qn2−n−1(q + 1)n + qn2−n(q + 1)n)

= qn2−n−1(q + 1)n(q − 1)(q + 2) � qn2−n(q + 1)n+1 = q(d−r)/2(q + 1)r,

which concludes the last case. �
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