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Abstract

We show that for any n and q, the number of real conjugacy classes in PGL(n,Fq) is
equal to the number of real conjugacy classes of GL(n,Fq) which are contained in SL(n,Fq),
refining a result of Lehrer, and extending the result of Gill and Singh that this holds when n
is odd or q is even. Further, we show that this quantity is equal to the number of real con-
jugacy classes in PGU(n,Fq), and equal to the number of real conjugacy classes of U(n,Fq)
which are contained in SU(n,Fq), refining results of Gow and Macdonald. We also give a
generating function for this common quantity.
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1 Introduction

It was proved by G. I. Lehrer [6] that the number of conjugacy classes in the finite projective
linear group PGL(n,Fq) is equal to the number of conjugacy classes of the finite general linear
group GL(n,Fq) which are contained in the finite special linear group SL(n,Fq). I. G. Macdonald
[7] showed that the number of conjugacy classes in the finite projective unitary group PGU(n,Fq)
is equal to the number of conjugacy classes of the finite unitary group U(n,Fq) which are
contained in the finite special unitary group SU(n,Fq) (although this number is different than
the number of conjugacy classes in PGL(n,Fq) in general).

Meanwhile, R. Gow [5] considered the number of real conjugacy classes in GL(n,Fq) and in
U(n,Fq), where a conjugacy class of a finite group G is real if whenever g is in the class, then
so is g−1. In particular, Gow noted [5, pg. 181] that the number of real classes of GL(n,Fq) is
equal to the number of real classes of U(n,Fq).

More recently, N. Gill and A. Singh [3, 4] classified the real conjugacy classes of PGL(n,Fq)
and SL(n,Fq). They noted [4, after Theorem 2.8] that when q is even or n is odd, the number of
real classes of PGL(n,Fq) is equal to the number of real classes of GL(n,Fq) which are contained
in SL(n,Fq). In this paper we prove that this equality holds for all n and q. Moreover, we show
that this number is equal to the number of real classes of PGU(n,Fq), and is equal to the number
of real classes of U(n,Fq) which are contained in SU(n,Fq). That is, we extend the result of Gill
and Singh, and give a refinement of the results of Lehrer, Macdonald, and Gow.

This paper is organized as follows. In Section 2, we establish notation for partitions and
linear and unitary groups over finite fields, and we give an overview of the sets of polynomials
over finite fields which we need. We finish this section with an important enumeration in Lemma
2.1. In Section 3, we describe the real conjugacy classes for the groups of interest. In particular,
in Section 3.1 we give known results for the real classes in GL(n,Fq) and U(n,Fq), Gill and
Singh’s enumeration of the number of real classes of GL(n,Fq) which are contained in SL(n,Fq),
and we explain why this is equal to the number of real classes of U(n,Fq) which are contained
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in SU(n,Fq). In Section 3.2, we classify the real classes of PGU(n,Fq) by following the methods
of Gill and Singh for PGL(n,Fq). In Lemma 3.8 we give an enumeration of the real classes
of PGU(n,Fq), and show this is equal to the number of real classes of PGL(n,Fq). Finally, in
Section 4 we prove our main result in Theorem 4.1, where the work left to be done is to prove
that the number of real classes of PGL(n,Fq) is equal to the number of real classes of GL(n,Fq)
which are contained in SL(n,Fq). We accomplish this by computing a generating function for
each quantity, which has a particularly nice form.

Acknowledgements. The authors thank the referee for a careful reading and some help-
ful suggestions. The second-named author was supported in part by a grant from the Simons
Foundation, Award #280496.

2 Preliminaries

For positive integers n,m, we denote their greatest common divisor by (n,m). We let |n|2 denote
the largest power of 2 which divides n, also called the 2-part of n. That is, if n = 2kb with b
odd, then |n|2 = 2k. If G is a group with g ∈ G, then |g| will denote the order of the element g,
and |g|2 will denote the 2-part of the order of g.

2.1 Partitions

Given an integer n ≥ 0, we denote a partition ν of n as

ν = (1m12m23m3 · · · ),

such that
∑

i≥1 imi = n. Each integer mi = mi(ν) ≥ 0 is the multiplicity of the part i in ν. We
can also denote the partition ν by

ν = (ν1, ν2, . . . , νl),

such that
∑l

j=1 νj = n, and νj ≥ νj+1 ≥ 0 for j < l. Then we have mi(ν) is the number of j
such that νj = i. We also assume each νj > 0 unless n = 0, in which the unique partition of 0
is considered the empty partition. We let Pn denote the collection of all partitions of n.

2.2 Linear and unitary groups over finite fields

For any prime power q, we let Fq denote a finite field with q elements, and we fix an algebraic
closure F̄q. We let F×q and F̄×q denote the multiplicative groups of nonzero elements in these
fields.

Let GL(n, F̄q) denote the group of invertible n-by-n matrices over F̄q, and we identify
GL(1, F̄q) with F̄×q . Define the standard Frobenius map F on GL(n, F̄q) by F ((aij)) = (aqij), and
so the fixed points of F give the general linear group over Fq:

GL(n, F̄q)F = GL(n,Fq).

We let SL(n,Fq) denote the special linear group over Fq, or the elements of determinant 1 in
GL(n,Fq). The center of GL(n,Fq) is the group of scalar matrices, which is isomorphic to F×q .
We identify the scalar matrices with the group F×q by a slight abuse of notation. The projective
linear group, which we denote by PGL(n,Fq), is the general linear group modulo its center:

PGL(n,Fq) = GL(n,Fq)/F×q .
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Define the map F̃ on GL(n, F̄q) by composing F with the inverse-transpose map, so for
(aij) ∈ GL(n, F̄q), we have

F̃ ((aij)) = >(aqij)
−1

= (aqji)
−1.

We define the unitary group over Fq, which we denote by U(n,Fq), to be the group of F̃ -fixed
points in GL(n, F̄q):

GL(n, F̄q)F̃ = U(n,Fq).

Alternatively, one can define U(n,Fq) to be the group of F̃ -fixed points in GL(n,Fq2), which
is also the isometry group of the Hermitian form on the vector space Fnq2 defined by 〈v, w〉 =
>vF (w), where v, w are viewed as coordinate vectors and F is the q-power map on coordinates.

We identify U(1,Fq) with (F̄×q )F̃ , which is the multiplicative subgroup of F×
q2

of order q + 1.

Denote this cyclic group by Cq+1. That is, Cq+1 is the kernel of the norm map Nm : F×
q2
→ F×q ,

where Nm(a) = aq+1.
The special unitary group SU(n,Fq) is then defined as the group of determinant 1 elements in

U(n,Fq). The center of U(n,Fq) is the group of scalar matrices with diagonal entries from Cq+1,
and we again identify this group of scalars with Cq+1. The projective unitary group PGU(n,Fq)
is the unitary group modulo its center, that is,

PGU(n,Fq) = U(n,Fq)/Cq+1.

When n = 0, we take each of the linear and unitary groups described above to be the group
with one element.

2.3 Polynomials over finite fields

In this section we define several sets of polynomials over finite fields which we need in order to
describe conjugacy classes. Let t be an indeterminate, and for a finite field Fq we let Fq[t] denote
the collection of polynomials in t with coefficients from Fq. We will primarily be interested in
monic polynomials with nonzero constant term, and so we denote this collection of polynomials
over Fq by Mq[t].

Given a polynomial f(t) ∈ Mq[t] with deg(f(t)) = d, we define the reciprocal polynomial of
f(t), denoted by f∗(t), by

f∗(t) = f(0)−1tdf(t−1),

so if f(t) = td + ad−1t
d−1 + · · ·+ a1t+ a0, then f∗(t) = td + a1a

−1
0 td−1 + · · ·+ ad−1a

−1
0 t+ a−10 . A

polynomial f(t) ∈ Mq[t] and its reciprocal f∗(t) have the relationship that α ∈ F̄×q is a root of
f(t) if and only if α−1 is a root of f∗(t) (with the same multiplicity). A polynomial f(t) ∈Mq[t]
is called self-reciprocal when f(t) = f∗(t), or when α ∈ F̄×q is a root of f(t) if and only if α−1

is a root with the same multiplicity. Note that the constant term is a0 = ±1 necessarily for a
self-reciprocal polynomial.

Now let rq,d denote the number of self-reciprocal polynomials in Mq[t] of degree d. As given
in [3, Lemma 2.1] and [1, Lemma 1.3.15(b)], we have for any prime power q and for d > 0,

rq,d =


2q(d−1)/2 if q is odd and d is odd,

(q + 1)q(d/2)−1 if q is odd and d is even,

q(d−1)/2 if q is even and d is odd,

qd/2 if q is even and d is even.

(2.1)

Or, more compactly, if we set e = e(q) = (q − 1, 2), so e = 1 if q is even and e = 2 if q is odd,
then for d > 0 we have rq,d = qbd/2c+ (e− 1)qb(d−1)/2c. For any prime power q, we take rq,0 = 1.
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Given any polynomial f(t) ∈Mq2 [t], define f [q](t) by applying the q-power map (the Frobe-
nius map) to each coefficient of f(t). So α ∈ F̄×q is a root of f(t) if and only if αq is a root of

f [q](t) with the same multiplicity, and f(t) = f [q](t) if and only if f(t) ∈Mq[t]. If f(t) ∈Mq2 [t]

with deg(f(t)) = d, define the ∼-conjugate polynomial of f(t), written as f̃(t), by

f̃(t) = f(0)−qtdf [q](t−1).

So if f(t) = td+ad−1t
d−1+· · ·+a1t+a0, then f̃(t) = td+(a1a

−1
0 )qtd−1+· · ·+(ad−1a

−1
0 )qt+a−q0 . In

particular, α ∈ F̄×q is a root of f(t) if and only if α−q is a root of f̃(t) with the same multiplicity.

A polynomial f(t) ∈ Mq2 [t] is self-conjugate if f(t) = f̃(t). Define Uq[t] to be the collection of
self-conjugate polynomials in Mq2 [t], so

Uq[t] = {f(t) ∈Mq2 [t] | f(t) = f̃(t)}.

Now consider some f(t) ∈ Uq[t] which is also self-reciprocal. Then for any α ∈ F̄×q , we have α
is a root of f(t) if and only if α−1 is, if and only if α−q is, all of the same multiplicity. But then
α−q is a root if and only if αq is, since f(t) is self-reciprocal, which implies α is a root of f(t)
if and only if αq is (of the same multiplicity), and it follows that f(t) must be a self-reciprocal
polynomial in Mq[t]. That is, we have

{f(t) ∈ Uq[t] | f(t) = f∗(t)} = {f(t) ∈Mq[t] | f(t) = f∗(t)} = Uq[t] ∩Mq[t]. (2.2)

We will let Td denote the subset of polynomials of degree d in this set, and so |Td| = rq,d as in
(2.1).

Now let f(t) ∈Mq[t] ∪ Uq[t], with ζ ∈ F×q if f(t) ∈Mq[t], and ζ ∈ Cq+1 if f(t) ∈ Uq[t]. With

a fixed ζ and deg(f(t)) = d, we define the ζ-reciprocal polynomial of f(t), written as f̂(t), by

f̂(t) = f(0)−1tdf(ζt−1),

so if f(t) = td+ad−1t
d−1+· · ·+a1t+a0, then f̂(t) = td+a1ζa

−1
0 td−1+· · ·+ad−1ζd−1a−10 t+ζda−10 .

The polynomial f(t) is ζ-self-reciprocal if f(t) = f̂(t), which is equivalent to the statement that
α ∈ F̄×q is a root of f(t) if and only if ζα−1 is a root of the same multiplicity.

We will be interested in ζ-reciprocal polynomials in the case that ζ is not a square in F×q or
Cq+1, respectively, which means we will only be concerned in the case that q is odd. If ζ is not
a square in F×q , let SM,d denote the set of ζ-self-reciprocal polynomials in Mq[t] of degree d, and

write rζq,d = |SM,d|. Gill and Singh [3, Lemma 2.2] prove that

rζq,d =

{
rq,d if d is even,
0 if d is odd.

(2.3)

We need the following analogue of this statement for ζ-self-reciprocal polynomials in Uq[t]. We
let SU ,d denote the set of ζ-self-reciprocal polynomials of degree d in Uq[t].

Lemma 2.1. Let q be odd and ζ ∈ Cq+1 be a non-square. The number of ζ-self-reciprocal

polynomials in Uq[t] of degree d is equal to rζq,d, given in (2.3). That is, |SU ,d| = |SM,d|.

Proof. Let f(t) ∈ Uq[t] be ζ-self-reciprocal of degree d, with f(t) = td+ad−1t
d−1 + · · ·+a1t+a0.

Since f̂(t) = f(t), then we have a0 = ζda−10 , so a20 = ζd. Since also f̃(t) = f(t), we have
a−q0 = a0, so that a0 ∈ Cq+1. Since ζ is a non-square in Cq+1, then this is impossible with d
odd, and so there are no such polynomials in this case.
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We now assume d is even, and from a20 = ζd we have a0 = ±ζd/2, and for any 0 ≤ i ≤ d
we have a0ζ

i−d = a−10 ζi. From the fact that f̂(t) = f(t) and f̃(t) = f(t), we know that for
0 < i < d,

ai = a0ad−iζ
−i and ad−i = aqia

−q
0 = aqia0. (2.4)

Note that if ai ∈ Fq2 is chosen to satisfy the equations above for 0 < i ≤ d/2, then ad−i is
determined for d/2 < i < d. Substituting the second equation of (2.4) into the first yields

ai = a20ζ
−iaqi = ζd−iaqi .

For any i, 0 < i < d, there are q solutions to this equation in Fq2 , given by either ai = 0, or the

q − 1 solutions to aq−1i = ζi−d if ai 6= 0.
Suppose first that a0 = −ζd/2. Then for i = d/2, the first equation in (2.4) gives ad/2 =

−ad/2, so that ad/2 = 0 necessarily. Given that there are q possibilities for each of ai for

0 < i < d/2, we have a total of q(d/2)−1 polynomials in this case.
If a0 = ζd/2, then there is no such restriction on ad/2, and there are q possibilities for its

value. Taking the q possible values for ai with 0 < i < d/2, the polynomial f(t) is determined,
and there are qd/2 possibilites. This gives a total of q(d/2)−1 + qd/2 = rq,d polynomials of degree
d which are ζ-self-reciprocal in Uq[t] when d is even, as claimed.

3 Real Conjugacy Classes

3.1 Conjugacy classes and real classes in GL(n,Fq) and U(n,Fq)

The conjugacy classes of GL(n,Fq) may be parameterized by sequences of polynomials,

(f1(t), f2(t), . . .), with fi(t) ∈Mq[t] such that
∑
i≥1

i deg(fi(t)) = n, (3.1)

as explained by Macdonald [7, Section 1]. In fact, Macdonald uses sequences of polynomials
with constant term 1 instead of monic polynomials. This may be seen to be equivalent to (3.1)
by replacing the polynomial fi(t) =

∏d
j=1(t − αj) with the polynomial

∏d
j=1(1 − tαj). In the

parametrization (3.1), for any element g ∈ GL(n,Fq) in the conjugacy class corresponding to
the sequence (f1(t), f2(t), . . .), the characteristic polynomial of g is given by

∏
i≥1 fi(t)

i.
As given in [7, Section 6], the conjugacy classes of U(n,Fq) may be similarly parameterized

by sequences of polynomials

(f1(t), f2(t), . . .), with fi(t) ∈ Uq[t], such that
∑
i≥1

ideg(fi(t)) = n, (3.2)

where the characteristic polynomial of any element in this class is given by
∏
i≥1 fi(t)

i.
For the conjugacy class of GL(n,Fq) or U(n,Fq) corresponding to the sequence of polynomials

(f1(t), f2(t), . . .), we may define the partition

ν = (1m12m23m3 · · · ), where deg(fi(t)) = mi, (3.3)

corresponding to this conjugacy class, where ν is a partition of n. Fixing a partition ν ∈ Pn,
a conjugacy class of GL(n,Fq) or U(n,Fq) is said to be a conjugacy class of type ν if the class
corresponds to the partition ν as given by (3.3).

An element g of a group G is said to be real if g is conjugate to g−1 in G. If the element
g is real, then all elements in the conjugacy class of g are real, in which case we call this a real
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conjugacy class of G. A conjugacy class of GL(n,Fq) corresponding to (f1(t), f2(t), . . .) is a real
class if and only if each fi(t) is self-reciprocal [3, Proposition 3.7]. The same statement is true for
real conjugacy classes of U(n,Fq) parameterized by (3.2), as explained in [2, Section 5.2]. Since
the set of self-reciprocal polynomials in Mq[t] is the same as the set of self-reciprocal polynomials
in Uq[t] as in (2.2), then the real classes of GL(n,Fq) and of U(n,Fq) may be parameterized by
exactly the same sequences of polynomials, a fact which reflects the observation of Gow [5, pg.
181] that these classes are equal in number.

Let rq,d be the number of self-reciprocal polynomials in Mq[t] (or in Uq[t]) of degree d, as
given in (2.1). By considering the number of real conjugacy classes of type ν for each partition
ν, where ν = (1m12m23m3 · · · ), the number of real classes in GL(n,Fq) or in U(n,Fq) is given by
the coefficient of un in the generating function

∑
n≥0

(∑
ν∈Pn

∏
i:mi>0

rq,mi

)
un =

∞∏
i=1

∑
k≥0

(ui)krq,k

 =

∞∏
i=1

(1 + ui)e

1− qu2i
, (3.4)

where e = e(q) = (q − 1, 2) (see [3, Theorem 3.8] and [5, Theorem 2.9]).
Next consider those real classes of GL(n,Fq) or U(n,Fq) which are contained in SL(n,Fq)

or SU(n,Fq), respectively. Since an element g of the conjugacy class parameterized by the
sequence (f1(t), f2(t), . . .) has characteristic polynomial

∏
i≥1 fi(t)

i, which has constant term
(−1)n det(g), then elements of this class have determinant 1 exactly when this constant term
is (−1)n. That is, a real class of GL(n,Fq) or of U(n,Fq) which is contained in SL(n,Fq) or in
SU(n,Fq), respectively, corresponds to a sequence (f1(t), f2(t), . . .) of self-reciprocal polynomials
such that

∏
i≥1 fi(0)i = (−1)n. In particular, we have the following observation.

Lemma 3.1. Let n ≥ 1 and let q be any prime power. Then the number of real classes of
GL(n,Fq) contained in SL(n,Fq) is equal to the number of real classes of U(n,Fq) contained in
SU(n,Fq).

For any partition ν of n, let slν denote the number of real classes of type ν in GL(n,Fq)
which are contained in SL(n,Fq). Gill and Singh [3, Proposition 4.1] compute slν to be

slν =



∏
i:mi>0

rq,mi if q is even or mi = 0 for i odd,

1

2

∏
i:mi>0

rq,mi if q is odd or imi is odd for some i,

hν(q)
∏
i odd:
mi>0

q(mi/2)−1
∏
i even:
mi>0

rq,mi otherwise,

(3.5)

with hν(q) = 1
2((q + 1)ρ + (q − 1)ρ), where ρ is the number of odd i such that mi > 0. We

simplify this expression a bit as follows.

Lemma 3.2. If q is even, then the number of real conjugacy classes of GL(n,Fq) is equal to the
number of real conjugacy classes of GL(n,Fq) contained in SL(n,Fq). If q is odd, the number of
real conjugacy classes of GL(n,Fq) of type ν which are contained in SL(n,Fq) is given by

slν =



1

2

∏
i:mi>0

rq,mi if mi is odd for some odd i,

1

2

 ∏
i:mi>0

rq,mi +
∏
i odd:
mi>0

q − 1

q + 1
rq,mi

∏
i even:
mi>0

rq,mi

 if mi is even for all odd i.
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Proof. First, if q is even, this statement follows from the first case of (3.5). Note also this follows
from the fact that the determinant of any real element of GL(n,Fq) must be ±1, and so must
be in SL(n,Fq) in the case q is even.

Now suppose q is odd, and we are not in the second case of (3.5), so that mi is even whenever
i is odd. First note that in the case that mi = 0 for all odd i, we may interpret the expression
in the first case of (3.5) as the expression in the third case, with ρ = 0 and the product over all
i odd with mi > 0 is empty. That is, the first and third cases in (3.5) may be combined. Now
consider the expression in the third case, so that mi is even whenever i is odd, and note that ρ
is exactly the number of contributing factors in the product over odd i with mi > 0. That is,

hν(q)
∏
i odd:
mi>0

q(mi/2)−1 =
1

2

 ∏
i odd:
mi>0

(q + 1)q(mi/2)−1 +
∏
i odd:
mi>0

(q − 1)q(mi/2)−1


=

1

2

 ∏
i odd:
mi>0

rq,mi +
∏
i odd:
mi>0

q − 1

q + 1
rq,mi

 ,

by applying (2.1) and the fact that mi is even when i is odd in this case. Substituting this
expression in for the third case of (3.5) and combining the first and third cases gives the claimed
expression.

3.2 Real classes of PGL(n,Fq) and PGU(n,Fq)

We begin by describing the conjugacy classes of PGL(n,Fq) and PGU(n,Fq), following [7, Sec-
tions 2 and 6]. Let Z be the center of GL(n,Fq) or U(n,Fq), identified with F×q or Cq+1,
respectively. Let G be either GL(n,Fq) or U(n,Fq), and let Ḡ = G/Z be either PGL(n,Fq) or
PGU(n,Fq), respectively. If xZ and yZ are elements of Ḡ, then xZ and yZ are conjugate in
Ḡ if and only if x and ηy are conjugate in G for some η ∈ Z. If the conjugacy class of y in G
corresponds to the sequence (f1(t), f2(t), . . .) as in Section 3.1, where deg(fi(t)) = di, then the
conjugacy class of ηy corresponds to the sequence (ηd1f1(tη

−1), ηd2f2(tη
−1), . . .), since α is a root

of fi(t) if and only if ηα is a root of the monic polynomial ηdifi(tη
−1). So, we define the action

of Z on polynomials f(t) and on sequences (fi(t)) = (f1(t), f2(t), . . . ) (with d = deg(f(t))) by

η.f(t) = ηdf(tη−1), and η.(fi(t)) = (η.fi(t)) = (η.f1(t), η.f2(t), . . .). (3.6)

Then the conjugacy classes of Ḡ are parameterized by the orbits of the Z-action on the sequences
(fi(t)). Note that if the conjugacy class of G corresponding to (f1(t), f2(t), . . .) is of type ν, then
so is the class corresponding to η.(f1(t), f2(t), . . .). So we say a conjugacy class of Ḡ is type ν if
it corresponds to a Z-orbit of classes in G which are of type ν.

The real classes of PGL(n,Fq) were described by Gill and Singh [4, Section 2], and here we
follow their work closely to describe the real classes of PGU(n,Fq). For the rest of this section
we fix some non-square ζ ∈ Z. An element g ∈ G is ζ-real if g is conjugate to ζg−1 in G. If
xZ ∈ Ḡ, we say xZ lifts to the element g ∈ G if g ∈ xZ. The following is [4, Lemma 2.4] in the
case G = GL(n,Fq), and the proof is exactly the same in the case G = U(n,Fq).

Lemma 3.3. If gZ ∈ Ḡ is real in Ḡ, then gZ lifts to real or a ζ-real element in G.

A conjugacy class of G corresponding to (f1(t), f2(t), . . .) consists of ζ-real elements if and
only if each fi(t) is a ζ-self-reciprocal polynomial. Thus, by Lemma 3.3 in order to understand
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the real conjugacy classes of Ḡ, we must understand the Z-orbits of sequences (f1(t), f2(t), . . .),
where every fi(t) is self-reciprocal or every fi(t) is ζ-self-reciprocal. This essentially requires the
understanding of Z-orbits of individual self-reciprocal or ζ-self-reciprocal polynomials.

As in Section 2.3, we let Td denote the set of self-reciprocal polynomials of degree d which
are in Uq[t], and this is the same as the set of self-reciprocal polynomials of degree d in Mq[t].
We will let Sd denote either the set SM,d of ζ-self-reciprocal polynomials of degree d which are
in Mq[t] or the set SU ,d of these polynomials in Uq[t]. While these are in general distinct sets
of polynomials in these two cases, they do have the same cardinality by Lemma 2.1. Given
any f(t) in Mq[t] or Uq[t], we let [f ] denote the Z-orbit of f(t), and we let [f ]T = [f ] ∩ Td and
[f ]S = [f ] ∩ Sd when deg(f(t)) = d. In the rest of this section, we follow the same arguments
for G = U(n,Fq) as are given for G = GL(n,Fq) in [4, Section 2]. Since many of the details are
essentially the same, we will give outlines of proofs with mostly details which are complementary
to those given in [4, Section 2].

The following is the G = U(n,Fq) version of [4, Lemma 2.2].

Lemma 3.4. Let f(t) ∈ Uq[t], with f(t) = td + ad−1t
d−1 + · · ·+ a1t+ a0.

(i) If q is even, then [f ]T contains at most one element (and [f ]S is empty).

(ii) If q is odd, then [f ]S and [f ]T contain at most 2 elements. In particular, [f ]T and [f ]S
(when nonempty) may be assumed to be of the form {f(t), η.f(t)} where η ∈ Cq+1 has
order a power of 2.

Proof. Let η ∈ Cq+1. If f(t) and η.f(t) are both in Td or both in Sd, one obtains ηiai = η−iai
for 0 < i < d. That is, |η| must divide 2k whenever ak 6= 0.

Suppose |η| is odd. If both f(t) and η.f(t) are in [f ]S or both in [f ]T , then |η| divides k
whenever ak 6= 0, and so f(t) ∈ Uq[t|η|]. In particular, η.f(t) = f(t). If q is even, then |η| divides
q + 1 and so must be odd, and the result follows in this case.

If q is odd, suppose that for some β, η ∈ Cq+1 of even order we have f(t), η.f(t), and
β.f(t) are all in Td or all in Sd, and that β.f(t) and η.f(t) are distinct from f(t). Thus
f(t) 6∈ Uq[t|η|] ∪ Uq[t|β|], while |β|/2 and |η|/2 both divide k whenever ak 6= 0, so f(t) lies in
Uq[t|η|/2]∩ Uq[t|β|/2] = Uq[tlcm(|η|/2,|β|/2)]. It follows that we must have |η|2 = |β|2, and then that

η.f(t) = β.f(t). Note also that if |η| = 2ks with s odd, and γ = η2
k
, then γ has odd order so

γ.f(t) = f(t). Then |ηγ−1| = 2k and ηγ−1.f(t) = η.f(t), and the result follows.

The following is very similar to statements contained in [4, Proof of Lemma 2.3].

Lemma 3.5. Let q be odd, η ∈ Cq+1, and f(t) = td + ad−1t
d−1 + · · · + a1t + a0 ∈ Uq[t] with d

even.

(i) If f(t) ∈ Sd, then η.f(t) ∈ Td if and only if f(t) ∈ Uq[t|q+1|2 ] and η2 = ζβ−1 for some
β ∈ Cq+1 with |β|2 = |q + 1|2.

(ii) If f(t) ∈ Td, then η.f(t) ∈ Sd if and only if f(t) ∈ Uq[t|q+1|2 ] and η2 = ζβ for some
β ∈ Cq+1 with |β|2 = |q + 1|2.

Proof. The proofs of (i) and (ii) are almost identical, so we give an outline of (i). If f(t) ∈ Sd,
then from the proof of Lemma 2.1, we have ad−i = aia0ζ

i−d for 0 < i < d. If we also have
η.f(t) is self-reciprocal, then we can compute that (η2)d−iai = ζi−dai. Since ai 6= 0 if and only
if ad−i 6= 0, then we have η2i = ζ−i whenever ai 6= 0 (and note η2d = ζ−d since a20 = ζd). Thus
η2 = βζ−1 for some β ∈ Cq+1, where |β| divides the greatest common divisor of all i 6= 0, d such
that ai 6= 0. Since ζ is a non-square, then β is also a non-square, and so |q + 1|2 = |β|2. Thus
|q + 1|2 divides all i such that ai 6= 0, and so f(t) ∈ Uq[t|q+1|2 ].
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The following result is the unitary analog of [4, Lemma 2.3].

Lemma 3.6. Let q be odd, and let f(t) ∈ Uq[t] with f(t) = td + ad−1t
d−1 + · · ·+ a1t+ a0.

(i) If d is odd, then Sd is empty, and if f(t) ∈ Td then |[f ]T | = 2.

(ii) Suppose d is even and f(t) ∈ Uq[t|q+1|2 ]. If f(t) ∈ Td or f(t) ∈ Sd, then |[f ]S | = |[f ]T | = 1.

(iii) Suppose d is even and f(t) 6∈ Uq[t|q+1|2 ]. If f(t) ∈ Sd, then |[f ]S | = 2 and |[f ]T | = 0. If
f(t) ∈ Td, then |[f ]T | = 2 and |[f ]S | = 0.

Proof. If d is odd, we have already mentioned in Lemma 2.1 that f(t) cannot be ζ-self-reciprocal,
and so Sd is empty. If f(t) ∈ Td, then we know [f ]T contains at most two elements by Lemma
3.4(ii). But (−1).f(t) = −f(−t) 6= f(t) since d is odd, and so [f ]T = {f(t), (−1).f(t)} has two
elements in this case, and (i) follows.

Now suppose d is even and that f(t) ∈ Sd or f(t) ∈ Td. By Lemma 3.4, if f(t) ∈ Sd (or
f(t) ∈ Td, respectively), then we may assume [f ]S (or [f ]T ) is of the form {f(t), η.f(t)} for some
η ∈ Cq+1 with order a power of 2. Suppose f(t) ∈ Uq[t|q+1|2 ]. It follows that η.f(t) = f(t),
so [f ]S = {f(t)} when f(t) ∈ Sd (and [f ]T = {f(t)} when f(t) ∈ Td). It follows directly from
Lemma 3.5 that if f(t) ∈ Sd, then there is an η ∈ Cq+1 such that η.f(t) ∈ Td (and if f(t) ∈ Td
then η.f(t) ∈ Sd for some η ∈ Cq+1). Thus |[f ]S | = |[f ]T | = 1 in all cases, and (ii) follows.

Finally, suppose f(t) 6∈ Uq[t[q+1]2 ], and let b be the smallest power of 2 such that f(t) 6∈ Uq[tb].
Taking η ∈ Cq+1 such that |η| = b, we have η.f(t) 6= f(t), and if f(t) ∈ Sd (or f(t) ∈ Td), then
also η.f(t) ∈ Sd (or η.f(t) ∈ Td). So by Lemma 3.4(ii), we have |[f ]S | = 2 (or |[f ]T = 2). It
also follows from Lemma 3.5 that if f(t) ∈ Sd, then |[f ]T | = 0 and if f(t) ∈ Td, then |[f ]S | = 0.
Thus we have (iii).

We are now able to classify the real classes of PGU(n,Fq) in the following, which is analogous
with [4, Lemma 2.6].

Lemma 3.7. Let q be odd. Consider a conjugacy class of type ν = (1m12m2 · · · ) in U(n,Fq)
parameterized by the sequence (f1(t), f2(t), . . .), where deg(fi(t)) = mi. Let [(fi(t))] denote the
Z-orbit of this sequence.

(i) If some mi is odd, then [(fi(t))] contains no ζ-real classes, and contains either zero or two
real classes.

(ii) If all mi are even and fi(t) ∈ Uq[t|q+1|2 ] for all i, then either [(fi(t))] contains no real or
ζ-real classes, or contains exactly one real class and exactly one ζ-real class.

(iii) If all mi are even and fj(t) 6∈ Uq[t|q+1|2 ] for some j, then [(fi(t))] contains either no real
or ζ-real classes, or exactly two real classes and no ζ-real classes, or exactly two ζ-real
classes and no real classes.

Proof. If mj = deg(fj(t)) is odd, then η.fj(t) is never ζ-self-reciprocal for any η ∈ Cq+1. Thus
[(fi(t))] cannot contain any ζ-real classes. Suppose [(fi(t))] contains a real class, and without
loss of generality suppose (fi(t)) is a real class, so that every fi(t) is self-reciprocal. By Lemma
3.4(ii), there can be at most one other real class in [(fi(t))]. As in Lemma 3.6(i), we have
(−1).fi(t) is self-reciprocal for each i. Since mj = deg(fj(t)) is odd, then (−1).fj(t) 6= fj(t),
and so (−1).(fi(t)) 6= (fi(t)). Thus [(fi(t))] contains two real classes.

Now suppose all mi are even and all fi(t) ∈ Uq[t|q+1|2 ]. If (fi(t)) is a ζ-real class (or a real
class, respectively), we may choose η ∈ Cq+1 as in Lemma 3.5(i) (Lemma 3.5(ii), respectively)
so that η.(fi(t)) is a real class (a ζ-real class, respectively). Now (ii) follows from Lemma 3.6(ii).
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Finally, suppose all mi are even and some fj(t) 6∈ Uq[t|q+1|2 ]. Note that from Lemma 3.5, if
[(fi(t))] contains a real class, then it cannot contain a ζ-real class and vice versa. Now let b be
the smallest power of 2 such that all fi(t) 6∈ Uq[tb], and let η ∈ Cq+1 such that |η| = b. As in
the proof of Lemma 3.6(iii), if (fi(t)) is a real class (or a ζ-real class), then η.(fi(t)) is a distinct
real class (or a ζ-real class). The statement now follows from Lemma 3.6(iii).

We may now give the following enumeration of real conjugacy classes in PGU(n,Fq).

Lemma 3.8. Let ν = (1m12m2 · · · ) be a partition of n, and let pguν be the number of real
conjugacy classes of PGU(n,Fq) of type ν. Then we have

pguν =


∏

i:mi>0

rq,mi if q is even, or if q is odd and mi is even for all i,

1

2

∏
i:mi>0

rq,mi if q is odd and mi is odd for some i.

Moreover, if pglν is the number of real classes of PGL(n,Fq) of type ν, then pglν = pguν . In
particular, the number of real classes of PGL(n,Fq) is equal to the number of real classes of
PGU(n,Fq).

Proof. Let (fi(t)) = (f1(t), f2(t), . . .) correspond to a conjugacy class of type ν in U(n,Fq).
First, if q is even, then it follows from Lemma 3.4(i) that the Z-orbit [(fi(t))] can contain at
most one real class and no ζ-real classes. It follows that the real classes of PGU(n,Fq) of type
ν are in bijection with the real classes of U(n,Fq) of type ν.

We now assume that q is odd. If some mi = deg(fi(t)) is odd, then by Lemma 3.7(i), the
Z-orbit [(fi(t))] contains no ζ-real classes, and either contains no or two real classes. Thus the
real classes of PGU(n,Fq) of type ν correspond to pairs of real classes of U(n,Fq) of type ν, and
so there are half as many real classes of PGU(n,Fq) of type ν as there are of U(n,Fq).

Finally, suppose every mi = deg(fi(t)) is even, and assume the Z-orbit [(fi(t))] corresponds
to a real class of PGU(n,Fq), and so contains either a real or a ζ-real class of U(n,Fq). Then by
Lemma 3.7(ii) and (iii), [(fi(t))] contains either two real classes of U(n,Fq), two ζ-real classes,
or one of each. By Lemma 2.1, the number of ζ-self-dual polynomials of degree mi in Uq[t] is
equal to the number of self-dual polynomials of degree mi in Uq[t] (since mi is even), which is
rq,mi . So there are an equal number of ζ-real classes and real classes of type ν in PGU(n,Fq)
in this case, each of which are given by

∏
i:mi>0 rq,mi . Since sequences of such polynomials are

paired to form the real classes of PGU(n,Fq) of type ν, the result follows.
In all cases, this matches the number of real classes in PGL(n,Fq) of type ν obtained by Gill

and Singh in [4, Corollary 2.7 and Theorem 2.8], and so the number of real classes of PGL(n,Fq)
is equal to the number of real classes of PGU(n,Fq).

4 Main Result

We finally arrive at our main result.

Theorem 4.1. Let q be any prime power. Then for any n ≥ 0 we have

the number of real classes in PGL(n,Fq)
= the number of real classes of GL(n,Fq) contained in SL(n,Fq)
= the number of real classes in PGU(n,Fq)
= the number of real classes of U(n,Fq) contained in SU(n,Fq).
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If we take e = e(q) = (q − 1, 2), then the generating function for this common quantity is given
by

1

2

( ∞∏
i=1

(1 + ui)e

1− qu2i
+
∞∏
i=1

1 + uei

1− qu2i

)
.

Proof. The first and third quantities are equal by Lemma 3.8, while the second and fourth are
equal by Lemma 3.1. So we just need to show the number of real classes in PGL(n,Fq) is equal
to the number of real classes of GL(n,Fq) which are contained in SL(n,Fq). When q is even,
these were already observed to be equal by Gill and Singh [4, after Theorem 2.8], and are both
equal to the number of real classes of GL(n,Fq) (by Lemma 3.2). The generating function for
this quantity is given by (3.4) with e = 1, which gives our claim in this case.

We may now assume q is odd, and we first calculate a generating function for the number of
real classes in PGL(n,Fq). If pglν is the number of real conjugacy classes of PGL(n,Fq) of type
ν, then as stated in Lemma 3.8 we have by Gill and Singh [4, Corollary 2.7] that

pglν =


∏

i:mi>0

rq,mi if mi is even for all i,

1

2

∏
i:mi>0

rq,mi if mi is odd for some i.

Applying this and the fact that∑
ν∈Pn

∃i:mi odd

∏
i:mi>0

rq,mi =
∑
ν∈Pn

∏
i:mi>0

rq,mi −
∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi ,

it follows that the generating function that we want may be written as

∑
n≥0

(∑
ν∈Pn

pglν

)
un =

∑
n≥0

un

 ∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi +
1

2

∑
ν∈Pn

∃i:mi odd

∏
i:mi>0

rq,mi


=
∑
n≥0

un

1

2

∑
ν∈Pn

∏
i:mi>0

rq,mi +
1

2

∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi

 . (4.1)

From (3.4) we have ∑
n≥0

(∑
ν∈Pn

∏
i:mi>0

rq,mi

)
un =

∞∏
i=1

(1 + ui)2

1− qu2i
. (4.2)

Next, we have

∑
n≥0

un

 ∑
ν∈Pn

all mi even

∏
i:mi>0

rq,mi

 =
∞∏
i=1

∑
k≥0

(ui)2krq,2k =
∞∏
i=1

1 +
∑
k≥1

(qk + qk−1)u2ik


=

∞∏
i=1

∑
k≥0

(qu2i)k +
∑
k≥0

u2i(qu2i)k


=
∞∏
i=1

(
1

1− qu2i
+

u2i

1− qu2i

)
=
∞∏
i=1

1 + u2i

1− qu2i
. (4.3)
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Substituting (4.2) and (4.3) into (4.1) yields the claimed generating function.
As in Section 3.1, let slν denote the number of real classes of GL(n,Fq) of type ν which are

contained in SL(n,Fq). We now compute the generating function for the number of real classes
of GL(n,Fq) which are contained in SL(n,Fq), which is given by

∑
n≥0

(∑
ν∈Pn

slν

)
un =

∑
n≥0

un

 ∑
ν∈Pn

mi even ∀i odd

slν +
∑
ν∈Pn

∃i odd:mi odd

slν

 . (4.4)

Consider the first sum in the parentheses of (4.4). By applying Lemma 3.2, we have

∑
n≥0

un

 ∑
ν∈Pn

mi even ∀i odd

slν


=

1

2

∑
n≥0

un
∑
ν∈Pn

mi even ∀i odd

∏
i:mi>0

rq,mi +
∑
n≥0

un
∑
ν∈Pn

mi even ∀i odd

∏
i odd:
mi>0

q − 1

q + 1
rq,mi

∏
i even:
mi>0

rq,mi


=

1

2

 ∞∏
i=1

∑
k≥0

(u2i)krq,k

 ∞∏
i=1

∑
k≥0

(u2i−1)2krq,2k


+

∞∏
i=1

∑
k≥0

(u2i)krq,k

 ∞∏
i=1

1 +
∑
k≥1

(u2i−1)2k
q − 1

q + 1
rq,2k

 . (4.5)

Note that

∞∏
i=1

∑
k≥0

(u2i)krq,k

 =
∑
n≥0

(∑
ν∈Pn

∏
i:mi>0

rq,mi

)
u2n =

∞∏
i=1

(1 + u2i)2

1− qu4i
, (4.6)

by substituting u2 for u in (3.4). Next we compute∑
k≥0

(u2i−1)2krq,2k = 1 +
∑
k≥1

(qk + qk−1)(u2i−1)2k

=
∑
k≥0

(qu4i−2)k +
∑
k≥0

u4i−2(qu4i−2)k

=
1 + u4i−2

1− qu4i−2
. (4.7)

Very similarly, we have

1 +
∑
k≥1

q − 1

q + 1
rq,2k(u

2i−1)2k = 1 +
∑
k≥1

(qk − qk−1)(u2i−1)2k

=
∑
k≥0

(qu4i−2)k −
∑
k≥0

u4i−2(qu4i−2)k

=
1− u4i−2

1− qu4i−2
. (4.8)
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Substituting (4.6), (4.7), and (4.8) into (4.5), we obtain

∑
n≥0

un

 ∑
ν∈Pn

mi even ∀i odd

slν

 =
1

2

( ∞∏
i=1

(1 + u2i)2

1− qu4i
1 + u4i−2

1− qu4i−2
+
∞∏
i=1

(1 + u2i)2

1− qu4i
1− u4i−2

1− qu4i−2

)

=
1

2

( ∞∏
i=1

(1 + u2i)2

1− qu2i
(1 + u4i−2) +

∞∏
i=1

(1 + u2i)2

1− qu2i
(1− u4i−2)

)
(4.9)

Now note that
∞∏
i=1

(1 + u2i)2(1− u4i−2) =
∞∏
i=1

(1 + u2i)(1− u4i)(1− u4i−2)
1− u2i

=
∞∏
i=1

1 + u2i

1− u2i
(1− u2i)

=

∞∏
i=1

(1 + u2i).

Using this, (4.9) becomes

∑
n≥0

un

 ∑
ν∈Pn

mi even ∀i odd

slν

 =
1

2

( ∞∏
i=1

(1 + u2i)2

1− qu2i
(1 + u4i−2) +

∞∏
i=1

1 + u2i

1− qu2i

)
. (4.10)

For the second sum in the parentheses of (4.4), we again apply Lemma 3.2 and compute

∑
n≥0

un

 ∑
ν∈Pn

∃i odd:mi odd

slν

 =
1

2

∑
n≥0

un
∑
ν∈Pn

∃i odd:mi odd

∏
i:mi>0

rq,mi

=
1

2

∑
n≥0

un

∑
ν∈Pn

∏
i:mi>0

rq,mi −
∑
ν∈Pn

mi even ∀i odd

∏
i:mi>0

rq,mi


=

1

2

 ∞∏
i=1

∑
k≥0

(ui)krq,k

− ∞∏
i=1

∑
k≥0

(u2i)krq,k

 ∞∏
i=1

∑
k≥0

(u2i−1)2krq,2k

 . (4.11)

Now substitute (3.4), (4.6), and (4.7) for each of the infinite products in (4.11). This yields

∑
n≥0

un

 ∑
ν∈Pn

∃i odd:mi odd

slν

 =
1

2

( ∞∏
i=1

(1 + ui)2

1− qu2i
−
∞∏
i=1

(1 + u2i)2

1− qu4i
1 + u4i−2

1− qu4i−2

)

=
1

2

( ∞∏
i=1

(1 + ui)2

1− qu2i
−
∞∏
i=1

(1 + u2i)2

1− qu2i
(1 + u4i−2)

)
. (4.12)

Now we take the sum of (4.10) and (4.12), and (4.4) becomes∑
n≥0

(∑
ν∈Pn

slν

)
un =

1

2

( ∞∏
i=1

(1 + ui)2

1− qu2i
+

∞∏
i=1

1 + u2i

1− qu2i

)
, (4.13)

which matches our generating function for the number of real classes in PGL(n,Fq).

13



References

[1] J. Fulman, P. Neumann, and C. Praeger, A generating function approach to the enumeration
of matrices in classical groups over finite fields, Mem. Amer. Math. Soc. 176 (2005), vi+90
pp.

[2] Z. Gates, A. Singh, and C. R. Vinroot, Strongly real classes in finite unitary groups of odd
characteristic, J. Group Theory 17 (2014), no. 4, 589–617.

[3] N. Gill and A. Singh, Real and strongly real classes in SLn(q), J. Group Theory 14 (2011),
no. 3, 437–459.

[4] N. Gill and A. Singh, Real and strongly real classes in PGLn(q) and quasi-simple covers of
PSLn(q), J. Group Theory 14 (2011), no. 3, 461–489.

[5] R. Gow, The number of equivalence classes of nondegenerate bilinear and sesquilinear forms
over a finite field, Linear Algebra Appl. 41 (1981), 175–181.

[6] G. I. Lehrer, Characters, classes, and duality in isogenous groups, J. Algebra 36 (1975), no.
2, 278–286.

[7] I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bull. Austral.
Math. Soc. 23 (1981), no. 1, 23–48.

Department of Physics
Broida Hall
University of California
Santa Barbara, CA 93106-9530
USA
e-mail: eamparo@physics.ucsb.edu

Department of Mathematics
College of William and Mary
P. O. Box 8795
Williamsburg, VA 23187-8795
USA
e-mail: vinroot@math.wm.edu

14


