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Abstract

If [λ(j)] is a multipartition of the positive integer n (a sequence of parti-
tions with total size n), and μ is a partition of n, we study the number
K[λ(j)]μ of sequences of semistandard Young tableaux of shape [λ(j)] and
total weight μ. We show that the numbers K[λ(j)]μ occur naturally as the
multiplicities in certain permutation representations of wreath products.
The main result is a set of conditions on [λ(j)] and μ which are equivalent
to K[λ(j)]μ = 1, generalizing a theorem of Berenshtĕın and Zelevinskĭı. Fi-
nally, we discuss some computational aspects of the problem, and we give
an application to multiplicities in the degenerate Gel’fand-Graev repre-
sentations of the finite general linear group. We show that the problem of
determining whether a given irreducible representation of the finite gen-
eral linear group appears with nonzero multiplicity in a given degenerate
Gel’fand-Graev representation, with their partition parameters as input,
is NP -complete.

1 Introduction

Young tableaux and Kostka numbers, in their various forms, are of central impor-
tance in combinatorics and representation theory [21]. In symmetric function theory,
Kostka numbers appear in transition matrices between fundamental bases, and in
representation theory they appear as multiplicity coefficients in numerous contexts.
An important question in both of these settings is whether a basic object appears
with multiplicity one in an expansion, since this uniqueness can be exploited to
identify interesting properties of this object. It is with this motivation that A. D.
Berenshtĕın and A. V. Zelevinskĭı [2] solve the following problem: given a complex
semisimple Lie algebra g and an irreducible g-module Vλ with highest weight λ, find
all weights ω such that the weight subspace Vλ(ω) of Vλ has dimension 1. In the case
that g is of type A, the dimension of the weight subspace Vλ(ω) is exactly the Kostka
number Kλω, or the number of semistandard Young tableaux of shape λ and content
ω (which we will call the weight of the tableau henceforth, and we will not refer to
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weights in the Lie algebra context again). As an important corollary, Berenshtĕın
and Zelevinskĭı thus obtain conditions on partitions λ and μ of a positive integer
n which are equivalent to the statement that Kλμ = 1. The main purpose of this
paper is to generalize this result in the case that we replace λ with a multipartition
[λ(j)], that is, a sequence of partitions with total size n, which we accomplish in
Theorem 5.3.

The organization and results of this paper are as follows. In Section 2, we give
background material and the main definitions, starting with partitions and tableaux
(Section 2.1), Kostka numbers and some classical results on symmetric functions
and the symmetric group (Section 2.2), and the definitions for multipartitions and
multitableaux, including the basic results which parallel those for classical Kostka
numbers (Section 2.3). In Section 3, we state the relevant result of Berenshtĕın and
Zelevinskĭı for Kostka numbers associated with partitions in Theorem 3.1. In an
effort to keep this paper as self-contained as possible, we give a complete proof of
Theorem 3.1 using tableau combinatorics, as there does not seem to be a tableau-
theoretic proof of this statement in the literature previously.

In Section 4, we turn to the representation theory of wreath products of finite
groups to find motivation to study Kostka numbers associated with multipartitions.
The main result here is Theorem 4.5, where we decompose wreath product permuta-
tion characters which are analogous to the symmetric group on a Young subgroup,
and we find that multipartition Kostka numbers appear as multiplicities. In Section
5, we prove Theorem 5.3, in which we give conditions on a multipartition [λ(j)] and
a partition μ which are equivalent to the statement K[λ(j)]μ = 1. In Corollary 5.4,
we classify exactly which multipartitions [λ(j)] are such that there exists a unique
partition μ satisfying K[λ(j)]μ = 1, generalizing the result for partitions given in
Corollary 3.4.

Lastly, in Section 6, we consider some computational problems related to the
main results. In particular, it is known from more general results that the question
of whether the Kostka number Kλμ is equal to any particular value can be answered in
polynomial time, and some of these results immediately extend to the multipartition
case. We then consider an application to the characters of the finite general linear
group by applying our main result Theorem 5.3 to obtain some information on the
decompositions of the degenerate Gel’fand-Graev characters. In considering the more
general version of Kostka numbers which appear in this application, we show in
Proposition 6.3 that the question of whether an irreducible character appears as
a constituent of a degenerate Gel’fand-Graev character, with the partition data as
input, is an NP -complete problem.

Another generalization of the theorem of Berenshtĕın and Zelevinskĭı which has
been studied is the question of when the Littlewood-Richardson coefficient takes
the value 1 (see [15, Corollary, Sec. 6]). For partitions λ, μ, and ν, such that
|ν|+ |μ| = |λ|, the Littlewood-Richardson coefficient cλν,μ is the number of semistan-
dard Young tableaux of weight μ and skew shape λ − ν whose filling satisfies the
lattice permutation property, or the Yamanouchi condition (see [5, Section 5.1] or
[16, Section I.9]). In particular, Kλμ = cλν,μ = 1 when ν is the empty partition and
λ = μ. More generally, Kostka numbers can be viewed as special kinds of Littlewood-
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Richardson coefficients (see [13] for a precise construction). Littlewood-Richardson
coefficients are studied and interpreted through the honeycomb model by Knutson
and Tao [14] and Knutson, Tao, and Woodward [15], with several important com-
binatorial and representation-theoretic applications. There is some indication [14,
After Corollary, Sec. 6] that the results on the honeycomb model in the multiparti-
tion case can be carried out using tools of Zelevinsky [25]. It would be interesting to
carry out this construction in detail, and understand the main result of this paper
in the context of the honeycomb model.

2 Preliminaries

2.1 Partitions and Tableaux

For any non-negative integer n, a partition of n is a finite sequence λ = (λ1, λ2, . . . , λl)
of positive integers such that λi ≥ λi+1 for i < l and

∑l
i=1 λi = n, where λi is the

ith part of λ. The number of parts of λ is the length of λ, written �(λ). If λ is a
partition of n, we write λ � n, and we say λ has size n, written |λ| = n. If n = 0,
the only partition of n is the empty partition, written (0). We let Pn denote the set
of all partitions of size n, and P the set of all partitions.

We may represent a partition λ = (λ1, λ2, . . . , λl) by its Young diagram, which
has a row of λi boxes for each part of λ, which are upper-left justified. Notationally,
we will often identify a partition λ with its Young diagram. For example, if λ =
(4, 3, 2, 2, 1), then λ � 12 (so |λ| = 12), �(λ) = 5, and the Young diagram for λ is

.

Given λ, μ ∈ P, we say μ ⊂ λ if μi ≤ λi for all i. That is, μ ⊂ λ exactly when
the Young diagram for μ fits inside of the Young diagram for λ. If μ ⊂ λ, we define
λ − μ to be the result of removing the boxes of the Young diagram for μ from the
Young diagram of λ, resulting in a skew diagram. For example, if λ = (5, 4, 4, 1) and
μ = (3, 2, 1), then μ ⊂ λ, and the Young diagram for λ with the Young diagram for
μ inside of it marked by dots, and the skew diagram for λ− μ, are

· · ·
· ·
· , .

The size of a skew diagram is defined to be the number of boxes it has, and above we
have |λ−μ| = 8. A horizontal strip is a skew diagram which has at most one box in
each column, and a horizontal m-strip is a horizontal strip of size m. For example,
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if λ = (5, 4, 1) and μ = (4, 2), then λ− μ is a horizontal 4-strip with diagram

.

There is a partial order on the set Pn called the dominance partial order defined
as follows. Given two partitions λ, μ ∈ Pn, define λ� μ if for each k ≥ 1,

∑
i≤k λi ≥∑

i≤k μi. For example, if λ = (3, 2, 1), μ = (3, 1, 1, 1), and ν = (2, 2, 2), then λ � μ
and λ� ν, but μ and ν are incomparable in the dominance partial order.

Given λ ∈ P, a semistandard Young (or column-strict) tableau of shape λ is
a filling of the boxes of the Young diagram for λ with positive integers, such that
entries in each row weakly increase from left to right and entries in each column
strictly increase from top to bottom. If T is a semistandard Young tableau of shape
λ, the weight of T , written wt(T ), is the finite sequence ω = (ω1, ω2, . . . , ωl), where
ωi is the number of times i is an entry in T , and l is the largest entry in T . Note that∑l

i=1 ωi = |λ|, so if λ � n, then wt(T ) is a composition of n (where we allow entries
to be 0, and the length l is the position of the last positive part). We will mainly
concern ourselves with the case that the weight of a tableau is also a partition, so
that ωi ≥ ωi+1 for each i, and we will typically denote the weight by μ in this case.
An example of a semistandard Young tableau of shape λ = (4, 2, 2, 1) and weight
μ = (3, 3, 2, 1) is

1 1 1 2
2 2
3 3
4

.

We may also describe a semistandard Young tableau of shape λ and weight ω to be
a sequence

(0) = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(l) = λ

of nested partitions, such that each λ(i)−λ(i−1) is a (possibly empty) horizontal strip,
and ωi = |λ(i) − λ(i−1)|. The idea is that the horizontal strip λ(i) − λ(i−1) is exactly
the set of boxes with entry i > 0 in the corresponding semistandard Young tableau,
and we take λ(i) = λ(i−1) when there are no i entries.

2.2 Kostka numbers

Let λ ∈ Pn and let ω = (ω1, ω2, . . . , ωl) be a composition of n. The number of
semistandard Young tableau of shape λ and weight ω is the Kostka number, denoted
Kλω. Kostka numbers play an important role in algebraic combinatorics and rep-
resentation theory. A crucial example is in symmetric function theory (see [16, I.2]
for an introduction). For m ≥ 0, let hm be the complete symmetric function, and
if μ, λ � n, where μ = (μ1, μ2, . . . , μl), let hμ = hμ1 · · ·hμl and let sλ denote the
Schur symmetric function corresponding to λ. Then the Kostka numbers make up
the entries of the transition matrix between these two bases of symmetric functions,
in that we have

hμ =
∑
λ�n

Kλμsλ. (2.1)
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The proof of (2.1) uses Pieri’s formula [16, I.5.16], which states that for any λ ∈ P
and any m ≥ 0,

hmsλ =
∑
ν

sν ,

where the sum is taken over all partitions ν such that ν − λ is a horizontal m-strip.
Recalling that hn = s(n), (2.1) is obtained by inductively applying Pieri’s formula
and observing that sλ appears in the expansion of hμ in as many ways as we can
build λ by choosing horizontal strips of sizes μ1, μ2, and so on. By the definition of
semistandard Young tableaux through horizontal strips, this multiplicity is exactly
Kλμ.

In the above argument, note that changing the order of the product hμ =
hμ1 · · ·hμl does not change the expansion, and the same Pieri rule argument may
be applied no matter what the order of these factors, and in that case the μ in (2.1)
is replaced by the composition resulting in permuting the parts of μ (or inserting
0’s). That is to say, it is a result of the proof of (2.1) that for a composition ω of n
and λ ∈ Pn, the Kostka number Kλω is invariant under permutation of the parts of
ω, see also [5, Section 4.3, Proposition 2]. This is precisely why we may restrict our
attention to the case of the weights of semistandard Young tableaux being partitions.

It is also known that for λ, μ ∈ Pn, we have Kλμ > 0 if and only if λ � μ. The
fact that Kλμ > 0 implies λ�μ follows from a quick argument, and we give the more
general proof for multipartitions in Lemma 2.3. The converse statement is more
subtle. We give a constructive proof here (coming out of a discussion with Nick
Loehr) since it is not typically found in the literature, and we need the construction
explicitly in Section 3. Suppose λ � μ, which implies �(λ) ≤ �(μ), and let μ =
(μ1, . . . , μl) with �(μ) = l and write λ = (λ1, . . . , λl) with �(λ) ≤ l so that some λi
may be 0. We construct a semistandard Young tableau T of shape λ and weight μ as
follows. We fill horizontal strips greedily from the bottom of λ to the top, by filling
in the longest columns first, where rows are filled from right to left. That is, we
begin by filling in μl entries of l, starting from right to left in the last row of λ, and
if that row is filled, we continue the horizontal strip on the next available row, and
continue until using all l’s. We then fill in the next horizontal strip up in the same
way. For example, if λ = (12, 4, 2, 2) and μ = (5, 5, 5, 5), then the partial tableau
looks like the following after filling in the μ4 = 5 entries of 4:

4
4 4

4 4

.

Let j be maximal such that λj ≥ μl, so that row j is the upper-most row which
contains an l entry, and let ri, j ≤ i ≤ l, be the number of l entries which occur
in row i of the partial tableau after this step, so that

∑l
i=j ri = μl. In the above

example, j = 1, r1 = 1, r2 = 2, r3 = 0, and r4 = 2. Let μ∗ = (μ1, . . . , μl−1), and
define λ∗ to have parts λ∗i = λi if i < j, and λ∗i = λi − ri if i ≥ j. To show that
we can continue these steps to construct a semistandard Young tableau of shape
λ and weight μ, then it is enough by induction on n to prove that λ∗ � μ∗. It is
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immediate that for k < j, we have
∑k

i=1 λ
∗
i ≥

∑k
i=1 μ

∗
i , since λ� μ. In the case that

μl ≤ λl, then j = l and rl = μl, and λ∗ � μ∗ follows immediately. So we assume
now that μl − λl = d > 0. Consider k such that j ≤ k < l, and we must show∑k

i=1 λ
∗
i ≥

∑k
i=1 μ

∗
i , where μ

∗
i = μi when i ≤ k < l. Note that whenever k < i < l,

then λi < μl since i > j, and μi ≤ μl since μ is a partition. Thus λi − μi ≤ 0, while
λl − μl = −d, so that

∑l
i=k+1 λi −

∑l
i=k+1 μi ≤ −d. Since

∑l
i=1 λi −

∑l
i=1 μi = 0,

then we obtain
k∑
i=1

λi −
k∑
i=1

μi ≥ d. (2.2)

Since λl < μl, then we have rl = λl, and so μl − rl =
∑l−1

i=j ri = μl − λl = d. So∑k
i=j ri ≤ d. From this fact and (2.2), we now have

k∑
i=1

λ∗i −
k∑
i=1

μ∗
i =

k∑
i=1

λi −
k∑
i=1

μi −
k∑
i=j

ri ≥ d− d = 0.

Thus λ∗ � μ∗ as claimed, and we can construct a semistandard Young tableau of
shape λ and weight μ in this way whenever λ� μ.

Now consider the symmetric group Sn of permutations of {1, 2, . . . , n}, and the
irreducible complex representations of Sn. These representations are parameterized
by Pn, and we denote the irreducible representation of Sn parameterized by λ � n
by πλ, and its character by χλ. We adapt the convention of [6, Lecture 4] and [16,
I.8] that χ(n) = 1, the trivial character of Sn, and χ

(1,1,...,1) is the sign character of
Sn. Given μ = (μ1, . . . , μl) � n, let Sμ be the Young subgroup

Sμ = Sμ1 × Sμ2 × · · · × Sμl ,

where Sμ is embedded in Sn such that Sμ1 permutes 1 through μ1, Sμ2 permutes
μ1 + 1 through μ2, and so on. If we consider the permutation representation of Sn
on Sμ, we obtain the decomposition

IndSnSμ(1) =
⊕
λ�μ

Kλμπ
λ, (2.3)

known as Young’s rule, see [6, Corollary 4.39] for example. For any partition μ, one
may see that Kμμ = 1, so that πμ appears with multiplicity 1 in the decomposition
(2.3). Two natural question arise. Which other πλ occur with multiplicity 1 in the
representation IndSnSμ(1), and when is it the case that πλ appears with multiplicity 1

in IndSnSμ(1) only for μ = λ? We give answers to these two questions in Section 3.

2.3 Multipartitions and multitableaux

If n ≥ 0 and r ≥ 1 are integers, then an r-multipartition of n is a sequence of r
partitions such that the sum of the sizes of the r partitions is n. We denote an r-
multipartition of n by [λ(j)] = [λ(1), λ(2), . . . , λ(r)], where [λ(j)] has size |[λ(j)]| =
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∑r
j=1 |λ(j)| = n. Let Pn[r] denote the set of all r-multipartitions of n, and let P[r]

denote the set of all r-multipartitions. Given [λ(j)] ∈ Pn[r], we define the partition

λ̃ ∈ Pn which has parts λ̃i =

r∑
j=1

λ(j)i, (2.4)

so that �(λ̃) = max{�(λ(j)) | 1 ≤ j ≤ r}. One may also view λ̃ as the partition ob-
tained by taking all columns of all λ(j), and arranging them from longest to smallest.
For example, suppose [λ(j)] ∈ P12[3], with λ(1) = (2, 1, 1), λ(2) = (2, 2), λ(3) = (4).
Then λ̃ = (8, 3, 1), with Young diagrams

λ(1) = , λ(2) = , λ(3) = , and λ̃ = .

Given [λ(j)] ∈ Pn[r] and a composition ω of n, a semistandard Young r-multitableau
of shape [λ(j)] and weight ω is a sequence [T (j)] of r semistandard Young tableaux,
where each T (j) has shape λ(j), and if ω(j) is the weight of λ(j), then ω has parts
given by ωi =

∑r
j=1 ω(j)i. As was the case with single tableau, we will primarily

deal with r-multitableau which have total weight given by a partition μ.
For example, if [λ(j)] ∈ P12[3] is the same as in the previous example, one semi-

standard Young 3-multitableau of weight μ = (4, 3, 3, 1, 1) is given by

T (1) =
1 3
3
4

, T (1) = 1 2
2 3

, T (3) = 1 1 2 5 .

Note that the weight μ of [T (j)] is a partition, while none of the weights of the
individual tableaux T (j) are partitions.

Given [λ(j)] ∈ Pn[r] and any composition ω of n, we define the multipartition
Kostka number K[λ(j)]ω to be the total number of semistandard Young r-multitableaux
of shape [λ(j)] and weight ω. The following relates the Kostka number for an r-
multipartition to the Kostka number for the individual partitions.

Proposition 2.1. For any composition υ of length l and size n, and any [λ(j)] ∈
Pn[r], we have

K[λ(j)]υ =
∑

∑
j ω(j)=υ

|ω(j)|=|λ(j)|

r∏
j=1

Kλ(j)ω(j),

where the sum is over all possible ways to choose r l-tuples ω(j), 1 ≤ j ≤ r, of
non-negative integers, where the sum of the ω(j) coordinate-wise is υ, and the size
of ω(j) taken as a composition is the same as the size of λ(j).

Proof. We may count possible semistandard Young r-multitableaux of weight υ and
shape [λ(j)] as follows. For each j, we choose the weight ω(j) of the tableau of
shape λ(j). We must choose these ω(j) so that the coordinate-wise sum is exactly
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the weight υ for the whole r-multitableau. Now Kλ(j)ω(j) is the total number of
semistandard Young tableaux of shape λ(j) and weight ω(j), so that once we fix the
individual weights ω(j), the total number of r-multitableaux with this prescription
is the product

∏r
j=1Kλ(j)ω(j). The formula follows.

Next we observe that, like in the case for partitions, the Kostka number for a
multipartition is invariant under permuting the parts of the weight. This is precisely
why we may restrict our attention to the weight being a partition.

Corollary 2.2. For any [λ(j)] ∈ Pn[r], and any composition υ of size n, let μ be the
unique partition obtained by permuting the parts of υ. Then K[λ(j)]υ = K[λ(j)]μ.

Proof. If υ has length l, let σ ∈ Sl be the permutation which, when applied to the
parts of υ, gives μ. If we use Proposition 2.1, and we apply σ to every l-tuple ω(j)
in the sum when computing K[λ(j)]υ, then we obtain every l-tuple ω′(j) which would
appear in the sum when computing K[λ(j)]μ. Since Kostka numbers for partitions
are invariant under permutation of the parts of the weight, then we always have
Kλ(j)ω(j) = Kλ(j)ω′(j) when ω

′(j) is the result of permuting the parts of ω(j) by σ. It
follows that K[λ(j)]υ = K[λ(j)]μ.

The following result gives a precise condition for when the Kostka number for an
r-multipartition is nonzero, and reduces to the case of partitions.

Lemma 2.3. Suppose [λ(j)] ∈ Pn[r] and μ ∈ Pn. Then K[λ(j)]μ > 0 if and only if

λ̃� μ.

Proof. First suppose that λ̃ does not dominate μ (that is, suppose λ̃ � μ does not
hold), but there does exist a semistandard Young r-multitableau [T (j)] of shape
[λ(j)] and weight μ. Then for some m ≥ 1, we have

∑
i≤m λ̃i <

∑
i≤m μi, which

means
r∑
j=1

∑
i≤m

λ(j)i <
∑
i≤m

μi. (2.5)

Since the entries in each column of each T (j) strictly increase, then all entries 1
through m must appear in the first m rows of each T (j). However, the inequality
(2.5) says that there are more entries 1 through m than there are boxes in the first
m rows of [T (j)], giving a contradiction.

Now assume λ̃�μ. Then Kλ̃μ > 0, and so there is a semistandard Young tableau

T of shape λ̃ and weight μ. Given such a T , we may construct a semistandard Young
r-multitableau [T (j)] of shape [λ(j)] and weight μ as follows. Each column of λ̃ is
the same length of some column of some λ(j), and we may take each column of T ,
and make it a column of some T (j). If some column in T is to the left of another
column in T , we need only make sure that if these columns are in the same T (j),
that the first is still to the left of the second. This guarantees that each T (j) is a
semistandard Young tableau, since the entries of each column strictly increase going
down, as they did in T , and the entries in each row of T (j) weakly increase to the
right, since each column is arranged in an order so that weak increasing is preserved
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from T . Thus any [T (j)] created in this way is a semistandard Young r-multitableau
of shape [λ(j)] and weight μ, so that K[λ(j)]μ > 0.

The construction of the r-multitableau [T (j)] from the tableau T in the end of
the proof above will be used again, and so we give an example now.

Example 2.4. Let μ = (7, 6, 4, 3, 1, 1), and define [λ(j)] by λ(1) = (4, 4, 3), λ(2) =
(3, 3, 1), and λ(3) = (3, 1). Then λ̃ = (10, 8, 4). One semistandard Young tableau T
of shape λ̃ and weight μ is

T =
1 1 1 1 1 1 1 2 2 2
2 2 2 3 3 3 3 4
4 4 5 6

.

By choosing columns of T to go in different positions of an r-multitableau, while still
preserving the order of entries, we can construct (at least) two different semistandard
r-multitableau, [T (j)] and [T ′(j)], of shape [λ(j)] and weight μ, which we may define
as

T (1) =
1 1 1 2
2 2 3 4
4 4 6

, T (2) =
1 1 1
2 3 3
5

, T (3) = 1 2 2
3

,

and

T ′(1) =
1 1 1 1
2 2 3 3
4 5 6

, T ′(2) =
1 1 1
2 3 3
4

, T ′(3) = 2 2 2
4

.

3 Multiplicity One for Partitions

Berenshtĕın and Zelevinskĭı [2] give precise conditions on partitions λ, μ, which are
equivalent to the statement that Kλμ = 1. We note that there is a very slight
typographical error in the subscripts of [2, Theorem 1.5] which we correct below.

Theorem 3.1 (Berenshtĕın and Zelevinskĭı). Let λ, μ ∈ Pn, and suppose �(μ) = l.
Then Kλμ = 1 if and only if there exists a choice of indices 0 = i0 < i1 < · · · < it = l
such that, for k = 1, . . . , t, the partitions

λk = (λik−1+1, λik−1+2, . . . , λik) and μk = (μik−1+1, μik−1+2, . . . , μik),

where we define λi = 0 if i > �(λ), satisfy the following:

(1) λk � μk (so |λk| = |μk|), and
(2) λik−1+1 = λik−1+2 = · · · = λik−1, or λik−1+1 > λik−1+2 = λik−1+3 = · · · = λik .

As our main result in Section 5 is a generalization of and heavily dependent on
Theorem 3.1, we give a tableau-theoretic proof of Theorem 3.1 now. We begin with
the following special cases.

Lemma 3.2. Let λ, μ ∈ Pn with �(μ) = l, �(λ) ≤ l, λ� μ, and λ = (λ1, λ2, . . . , λl),
with λi = 0 if i > �(λ). Suppose that either:
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(1) λ1 = λ2 = · · · = λl,

(2) λ1 > λ2 = λ3 = · · · = λl, or

(3) λ1 = λ2 = · · · = λl−1 > λl.

Then Kλμ = 1. In case (1), or in case (2) when λ1 − λ2 = 1, or in case (3) when
λl−1 − λl = 1, we must also have μ = λ.

Proof. Since λ�μ, there is at least one semistandard Young tableau of shape λ and
weight μ. Let T be such a tableau.

In case (1), we have �(λ) = �(μ), and the only case for T is that every column
of T has entries 1 through l in sequential order, since entries must strictly increase
from top to bottom in columns. Thus Kλμ = 1 and μ = λ.

In case (2), if we have λ2 = 0, then λ = (λ1), and we must have Kλμ = 1 since
any semistandard Young tableau T of shape a single row must have entries in weakly
increasing order. So assume λ2 > 0, in which case �(λ) = �(μ). Since �(μ) = l is the
number of rows of T , then the first λ2 columns of T must have exactly the entries 1
through l in that order. The remaining λ1 − λ2 entries must be in weakly increasing
order in row 1 of T . For example, if λ = (6, 3, 3) and μ = (5, 4, 3), then the first 3
columns of the tableau must have entries 1, 2, 3, and the remaining entries must be
in row 1 in a fixed order:

1 1 1
2 2 2
3 3 3

�→
1 1 1 1 1 2
2 2 2
3 3 3

.

There is thus only one such T , and Kλμ = 1. If λ1−λ2 = 1, then the only entry that
can appear in the right-most entry of the first row of T is 1, in order for the weight
μ to be a partition. Thus μ = λ in this case.

In case (3), first consider the case that λl = 0, so that �(λ) = l − 1. In this case,
each column of T is missing exactly one of the entries 1 through l. Since the entries
of each column strictly increase from top to bottom, knowing the missing entry is
the same as knowing the column entries. Since also row entries weakly increase from
left to right, then given columns of length l − 1 with entries from 1 through l, the
columns can only be arranged in one way to form T , which is in such a way that the
missing entries from each column weakly decrease from left to right. In other words,
T is uniquely determined from λ and μ, and Kλμ = 1. For example, if λ = (5, 5, 5, 5)
and μ = (5, 4, 4, 4, 3), then every column has a 1, one column each is missing a 2, 3,
and 4, and one column is missing a 5. The only such T with this property is

1 1 1 1 1
2 2 2 2 3
3 3 3 4 4
4 4 5 5 5

,

where the missing entries from each column, from left to right, are 5, 5, 4, 3, and 2.
Note that we cannot have λl−1 − λl = 1 and �(μ) = l in this case. Now consider the
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case that λl > 0. The first λl columns of λ are then of length l, and so these columns
of T must have the entries 1 through l from top to bottom. If we remove these
columns from λ and these entries from μ, we are left with a partition of length l− 1
with all equal parts, and now the case just covered (case (3) with λl = 0) applies.
Thus Kλμ = 1. If λl−1 − λl = 1, then again the entries of the first λl columns of T
must be 1 through l from top to bottom, and the only choice for the last column of
T to have the weight μ a partition, is to have the entries 1 through l− 1 from top to
bottom. This implies μ = λ.

We will also need the following result.

Lemma 3.3. Let λ, μ ∈ Pn such that Kλμ = 1 and �(λ) = h ≤ �(μ) = l. Then
the unique semistandard Young tableau T of shape λ and weight μ has the following
properties.

(1) The first entry in each row i of T is i for i = 1, . . . , h.

(2) If h = l, then every entry of row h of T is h. If h < l, then every entry greater
than h in T is in row h of T , and further

∑l
j=h+1 μj < λh.

Proof. For (1), by way of contradiction suppose that i is minimal such that the first
entry of row i of T is not i. If the first entry of row i is j > i, then this j entry does
not have a j − 1 entry directly above it. Since μj−1 ≥ μj, then T must have a j − 1
entry with no j entry directly below it. In particular, such an entry has either no
square below it, or has an entry greater than j below it. In a row of T with such an
entry, consider the right-most such j − 1 entry. We may switch this j − 1 entry with
the first j entry in row i, resulting in another distinct semistandard Young tableau
of shape λ and weight μ, contradicting the fact that Kλμ = 1.

For statement (2), we consider the construction of T by greedily filling horizontal
strips from bottom to top, as described in Section 2.2. Since Kλμ = 1, then this
construction must yield the unique tableau T . By the construction, we begin by
filling row h of T from right to left with the l entries, and moving to entries in
shorter columns if we fill up row h, and then continuing with smaller entries on the
next horizontal strip up. We note that by part (1), T must have the property that
row h has first entry h, which means that when constructing T in this way, if h = l,
then every entry of row h must be h, and if h < l then we never fill up row h with
entries greater than h. This implies that T has the property that all entries greater
than h must be in row h, and these do not occupy all of row h. In other words,
μh+1 + · · ·+ μl < λh.

We remark that the proof of property (1) in Lemma 3.3 also implies that whenever
λ � μ, there always exists a semistandard Young tableau T of shape λ and weight
μ such that each row i of T has first entry i, for i = 1, . . . , h, although we will not
need this statement here.

Proof of Theorem 3.1. First we assume that λ, μ ∈ Pn satisfy the conditions listed in
Theorem 3.1. We have

∑t
k=1 |μk| = |μ| = n, |λk| = |μk| for k = 1, . . . , t, and |λ| = n.
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It follows that each part of λ must be a part of some λk, otherwise
∑t

k=1 |λk| is
strictly less than n. In other words, the last index it must satisfy it ≥ �(λ), and thus
it = l = �(μ) ≥ �(λ). Also, since λk � μk for each k, it follows that λ � μ, and so
Kλμ ≥ 1.

Consider a semistandard Young tableau T of shape λ and weight μ. Since entries
strictly increase down columns of λ, any entry in the ith row of T must be at least
i. Consider rows 1 through i1 of T . Since any row past i1 must have entries at least
i1 + 1, then all |μ1| entries of value at most i1 must occur in the first i1 rows of T .
Since |λ1| = |μ1|, it follows that the only entries in the first i1 rows of T can be 1
through i1. By induction, the only entries in rows ik−1 + 1 through ik can be the
values ik−1 + 1 through ik. It follows that we may consider tableaux of shapes λk

and weights μk independently, and that Kλμ =
∏t

k=1Kλkμk . We remark that this
argument implies that this factorization result holds for any choice of indices, as long
as |λk| = |μk| for each k. Now, it is enough to show that for λ, μ ∈ Pn, with �(μ) = l,
if λ� μ and either λ1 = λ2 = · · · = λl−1 or λ1 > λ2 = λ3 = · · · = λl (where λi = 0 if
i > �(λ)), then Kλμ = 1. This is exactly what is proved in Lemma 3.2.

We now assume Kλμ = 1, and we prove there always exists a choice of indices
0 = i0 < i1 < i2 < . . . < it = l with the desired properties. Throughout, we take T
to be the unique semistandard Young tableau of shape λ and weight μ. We prove
the statement by induction on n, where in the case n = 1, we have λ = (1) = μ, and
the result is immediate. So we assume n > 1, and that the statement holds for all
positive integers less than n. We first consider the special cases that λ = (1, 1, . . . , 1)
or λ = (n). In either case, note that if Kλμ > 0 then Kλμ = 1 since there is a single
column or row, respectively. If λ = (1, 1, . . . , 1), we must also have μ = (1, 1, . . . , 1)
since entries must increase down the single column of T , and �(μ) = �(λ) = l. Then
take t = 1, so λ1 = λ and μ1 = μ, and the desired conditions are satisfied. If λ = (n),
then μ may be any partition of n. Again take t = 1, so μ1 = μ and λ1 = (n, 0, . . . , 0),
where the number of 0’s is l − 1. The desired conditions are satisfied in this case
as well, so we may assume that λ takes neither of these shapes. We now consider
four scenarios in the induction, and we give an example in each to demonstrate the
argument.

Let �(λ) = h ≤ �(μ) = l. We first consider the case that μh+1 < μh (which
includes the case that h = l) and μh > 1. For example, let λ = (5, 33) and μ =
(42, 3, 2, 1), so h = 4 ≤ l = 5, and μh = 2 > μh+1 = 1. Then we have

T =

1 1 1 1 2
2 2 2
3 3 3
4 4 5

.

Define new partitions λ∗ and μ∗ by λ∗i = λi − 1 and μ∗
i = μi − 1 for 1 ≤ i ≤ h,

and μ∗
i = μi for i > h. The assumption that μh+1 < μh guarantees that μ∗ is

indeed a partition, and we have λ∗, μ∗ ∈ Pn−h. In our example, λ∗ = (4, 23) and
μ∗ = (32, 2, 12). Since λ�μ, we also have λ∗�μ∗. Consider any semistandard Young
tableau T ∗ of shape λ∗ and weight μ∗. Given T ∗, add a box with an i entry at the
beginning of row i for i = 1, . . . , h (noting that some of these rows of T ∗ might be
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initially length 0). Since the least possible entry in row i of a semistandard Young
tableau is i, then this construction yields a semistandard Young tableau of shape λ
and weight μ, which then must be T since Kλμ = 1, and note that T has the property
that the first entry of each row i is i by Lemma 3.3. Consequently, T ∗ must be the
unique semistandard Young tableau of shape λ∗ and weight μ∗, since a distinct such
tableau would yield a distinct tableau of shape λ and weight μ. Thus, Kλ∗μ∗ = 1,
and we may apply the induction hypothesis to λ∗ and μ∗. In the example, we have

T ∗ =

1 1 1 2
2 2
3 3
4 5

.

Let 0 = i∗0 < i∗1 < · · · < i∗t = �(μ∗) be the desired indices for λ∗ and μ∗, which
exist by the induction hypothesis, with the accompanying subpartitions λ∗k and μ∗k.
In the example, we can take i∗1 = 2 and i∗2 = 5, with λ∗1 = (4, 2), μ∗1 = (3, 3),
λ∗2 = (2, 2, 0), and μ∗2 = (2, 1, 1). Note that �(μ∗) = �(μ) since μh > 1. Now let
ik = i∗k for k = 0, 1, . . . , t, and consider the corresponding subpartitions λk and μk.
In the example, this gives λ1 = (5, 3), μ1 = (4, 4), λ2 = (3, 3, 0), and μ2 = (2, 1, 1).
Since λ∗k � μ∗k, then it follows that λk � μk for k = 1, . . . , t. We also have either
λ∗i∗k−1+1 = λ∗i∗k−1+2 = · · · = λ∗i∗k−1 or λ∗i∗k−1+1 > λ∗i∗k−1+2 = λ∗i∗k−1+3 = · · · = λ∗i∗k for

k = 1, . . . t. By Lemma 3.3(2), every entry greater than h is in row h of T . In the case
that k < t, we must then have ik ≤ h−1, and so either λik−1+1 = λik−1+2 = · · · = λik−1

or λik−1+1 > λik−1+2 = λik−1+3 = · · · = λik by how we defined λ∗. The k = t case
follows from the assumption that μh > 1, because if λh = 1 then �(λ) = �(μ) (since
the last row of T would have no room for entries greater than h), and if λh > 1
then �(λ) = �(λ∗). These statements imply the desired subpartition properties are
preserved.

If μh+1 < μh and μh = 1, then μh+1 = 0 and h = l, and λh = 1, which follows
from Lemma 3.3(2) since all entries in row h of T must be h. As an example, take
λ = (4, 2, 1) and μ = (32, 1), which means we have

T =
1 1 1 2
2 2
3

.

Now let λ∗ = (λ1, . . . , λl−1) and μ∗ = (μ1, . . . , μl−1), so in the example λ∗ = (4, 2)
and μ∗ = (32). Given any semistandard Young tableau of shape λ∗ and weight μ∗,
we may add a single box with entry l at the bottom to obtain a semistandard Young
tableau of shape λ and weight μ. Since Kλμ = 1, the resulting tableau must be
T . Thus we must have Kλ∗μ∗ = 1, since otherwise we could obtain more than one
semistandard Young tableau of shape λ and weight μ. In the example,

T ∗ = 1 1 1 2
2 2

.

We take the indices obtained by applying the induction hypothesis to λ∗, μ∗ ∈ Pn−1,
and we add to it the index it = l to obtain indices for λ and μ. In the example,
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i∗1 = 2, with λ∗1 = λ∗ = (4, 2) and μ∗1 = μ∗ = (3, 3), and then i1 = 2, i2 = 3, with
λ1 = (4, 2), μ1 = (3, 3), and λ2 = (1) = μ2. Since we will always have λt = (1) = μt,
and λ∗k = λk, μ∗k = μk for k < t, it follows that the resulting subpartitions have the
desired properties.

Now consider the case that μh+1 = μh (so �(λ) = h < �(μ) = l) and either
l > h+ 1 or λh = λh−1. Take as an example λ = (5, 33) and μ = (42, 3, 13), so h = 4
and l = 6, and λ4 = λ3 = 1. In this case,

T =

1 1 1 1 2
2 2 2
3 3 3
4 5 6

.

By Lemma 3.3(2), all entries greater than h must be in row h of T . Now define λ∗

and μ∗ by λ∗i = λi if i < h, and λ∗h = λh−μl, and μ∗
i = μi if i < l, and μ∗

i = 0 if i = l.
Then λ∗ = (5, 32, 2) and μ∗ = (42, 3, 12) in the example. Note that λ∗h > 0 by Lemma
3.3(1), since row h of T has as its first entry h < l. Now λ∗, μ∗ ∈ Pn−μl , and λ∗ � μ∗

since λ�μ. If T ∗ is any semistandard Young tableau of shape λ∗ and weight μ∗, then
we can add μl boxes with entries of l to row h of T ∗, and we obtain a semistandard
Young tableau of shape λ and weight μ. This must be T , since Kλμ = 1, and then
we must also have Kλ∗μ∗ = 1. In our example,

T ∗ =

1 1 1 1 2
2 2 2
3 3 3
4 5

.

Let 0 = i∗0 < i∗1 < · · · < i∗t = �(μ∗) = l − 1 be the indices which exist by the
induction hypothesis, with the subpartitions λ∗k and μ∗k with the desired properties.
We may take i∗1 = 3 and i∗2 = 5, with λ∗1 = (5, 3, 3), μ∗1 = (4, 4, 3), λ∗2 = (2, 0),
and μ∗2 = (1, 1) in the example. Define ik = i∗k if k < t, and it = i∗t + 1 = l. In
the example, this gives i1 = 3, i2 = 6, λ1 = (5, 3, 3) = λ∗1, μ1 = (4, 4, 3) = μ∗1,
λ2 = (3, 0, 0), and μ2 = (1, 1, 1). In general we have λk = λ∗k and μk = μ∗k if k < t,
so the desired properties hold. When k = t, then λk � μk, and the fact that λk is of
the desired shape follows from the assumption that either l > h + 1, in which case
it−1 = h − 1 necessarily, or λh = λh−1 with l = h + 1, in which case i∗t = h and
it = h+ 1 = l.

Finally, consider the case with μh+1 = μh, l = h+1, and λh < λh−1. For example,
let λ = (5, 32, 2) and μ = (42, 3, 12), so h = 4, l = 5, and

T =

1 1 1 1 2
2 2 2
3 3 3
4 5

.

Assume that in row h − 1 of T , there are some h entries, and we will obtain a
contradiction. This implies that the right-most entry in row h−1 is h, since all μl of
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the l = h + 1 entries in T are in row h of T , by Lemma 3.3. Consider the left-most
l entry in row h of T . There cannot be an l − 1 = h entry directly above this entry,
since then all entries to the right of it would also be h, which would imply μh > μh+1,
a contradiction. Then we can exchange the left-most l = h + 1 entry in row h with
the right-most h entry in row h − 1 of T to obtain a distinct semistandard Young
tableau T ′ of shape λ and weight μ, contradicting Kλμ = 1. Thus, there are no h
entries in row h−1 of T , and thus no h entries above row h of T by the greedy filling
of horizontal strips, since λh < λh−1, and if there are other h entries, there must be
some in row h− 1. In particular, we have λh = μh+μh+1. Now define λ∗ by λ∗i = λi
if i < h and λ∗h = 0, and we define μ∗ by μ∗

i = μi if i < h and μ∗
h = μ∗

h+1 = 0.
In the example, λ∗ = (5, 32) and μ∗ = (42, 3). In any semistandard Young tableau
T ∗ of shape λ∗ and weight μ∗, we can always add a row of length λh containing μh
entries of h and μh+1 entries of h+1, since T ∗ contains entries h− 1 or lower. As in
the previous cases, the resulting tableau must be T since Kλμ = 1, and so T ∗ is the
unique semistandard Young tableau of shape λ∗ and weight μ∗, and Kλ∗μ∗ = 1. In
our example,

T ∗ =
1 1 1 1 2
2 2 2
3 3 3

.

We may then apply the induction hypothesis to λ∗ and μ∗. Take the indices for λ∗

and μ∗ from the induction hypothesis, and define these to be i0 through it−1 = h− 1
for λ and μ, and it = h + 1 = l. So λ∗k = λk and μ∗k = μk for k ≤ t − 1, and
λt = (λh, 0), μ

t = (μh, μh+1). In the example, we may take i∗1 = 3 , so i1 = 2 and
i2 = 5, with λ∗1 = λ1 = (5, 3, 3), μ∗1 = μ1 = (4, 4, 3), and λ2 = (2, 0), μ2 = (1, 1). By
the induction hypothesis, and since λt = (λh, 0) always satisfies λ

t�μt = (μh, μh+1),
this choice gives the desired indices for λ and μ. This completes the induction.

It follows from Theorem 3.1, or from direct observation, that for any partition λ
we have Kλλ = 1. The next result gives exactly which partitions λ satisfy Kλμ = 1
for only μ = λ.

Corollary 3.4 (Gates, Goldman, and Vinroot). Let λ ∈ P. The only μ ∈ P which
satisfies Kλμ = 1 is μ = λ if and only if λi − λi+1 ≤ 1 for all i (where λi = 0 if
i > �(λ)).

The proof of Corollary 3.4 as it appears in [7, Corollary 5.1] follows from an enu-
meration of those μ which satisfy Kλμ = 1. We could give another proof of Corollary
3.4 here as a corollary of Theorem 3.1 and Lemma 3.2. Instead, we generalize the
statement in Corollary 5.4, with a proof independent of Corollary 3.4.

Our main goal is to give conditions on an r-multipartition [λ(j)] and a partition
μ which are equivalent to K[λ(j)]μ = 1, and to generalize Corollary 3.4 to multipar-
titions. Before accomplishing this goal, we make a departure into representation
theory to find motivation to study these Kostka numbers.
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4 Permutation Characters of Wreath Products

Let Sn denote the symmetric group on n elements. For any group G, and any
subgroup of permutations P ≤ Sn, we let G	P denote the semidirect product Gn�P ,
where Gn is the direct product of n copies of G, and P acts by inverse permutation
of indices on elements in Gn. That is, if g = (g1, . . . , gn) ∈ Gn and τ ∈ P , then the
action of τ on g is given by

τg = (gτ−1(1), . . . , gτ−1(n)).

If P = Sn, then G 	 Sn is the standard wreath product.
Let A and B be finite groups, with complex representations (π, V ) and (ρ,W ),

with characters χ and η, respectively. We let π
ρ denote the external tensor product
of representations, which is a representation of A × B acting on the space V ⊗W ,
with character given by (χ 
 η)(a, b) = χ(a)η(b). In particular,

⊙n
i=1 π = π�n is

a representation of An acting on
⊗n

i=1 V = V ⊗n, with character
⊙n

i=1 χ = χ�n. If
(π, V ) and (ρ,W ) are both representations of A, then we let π⊗ρ denote the internal
tensor product of representations, which is a representation of A acting on V ⊗W ,
with character given by (χ⊗ η)(a) = χ(a)η(a).

We let 1 denote the trivial character of a finite group. For any finite group A,
let Irr(A) denote the collection of irreducible complex characters of A. Given any
character χ, we let χ(1) denote its degree. If χ and η are complex-valued class
functions of A, let 〈χ, η〉 = 1/|A|∑a∈A χ(a)η(a) be the standard inner product. For

a subgroup D ≤ A, and a character ξ of D, we let IndAD(ξ) denote the induced
character from D to A.

As in Section 2.2, for any λ ∈ Pn, we let πλ be the irreducible representation of
Sn associated with λ, with character χλ, in such a way that χ(n) = 1 and χ(1,1,...,1) is
the sign character.

4.1 Irreducible characters of wreath products

Let G be any finite group, and let Gn = G 	 Sn. The irreducible complex characters
of Gn were first described by Specht [22], and the description we give in this section
and the next follows [12, Section 4.3] and [16, Chapter I, Appendix B], and we have
also found [17, Section 4] helpful. Another approach to the representation theory of
wreath products is given in [4].

If (�, V ) is a representation of G, then ��n is a representation of Gn acting
on V ⊗n. We extend ��n to a representation ��n of Gn = G 	 Sn by defining, for
g = (g1, . . . , gn) ∈ Gn, τ ∈ Sn, and vi ∈ V ,(

��n
)
(g, τ)(v1 ⊗ · · · ⊗ vn) =

(
�(g1)vτ−1(1) ⊗ · · · ⊗ �(gn)vτ−1(n)

)
.

Given the representation πλ, λ ∈ Pn, of Sn, extend πλ to a representation πλ of Gn

trivially, that is,
πλ(g, τ) = πλ(τ), for g ∈ Gn, τ ∈ Sn.
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Then, given a representation � of G and λ ∈ Pn, define the representation � 	 λ of
Gn by

� 	 λ =
(
��n
)⊗ πλ,

and if ψ is the character of �, we let ψ 	 λ denote the character of � 	 λ.
Suppose that G has r = |Irr(G)| irreducible characters, and consider the set Pn[r]

of r-multipartitions of n. We would like to associate a partition to each ψ ∈ Irr(G),
and while we could label each irreducible character of G as ψj for 1 ≤ j ≤ r and
associate λ(j) with ψj , we instead write λ(ψ) for this partition in the general case
for the sake of clarity. That is, for the parameterization which we will describe,
we write [λ(ψ)] ∈ Pn[r] with the understanding that each ψ ∈ Irr(G) is labeled by
1 ≤ j ≤ |Irr(G)| in some order, and that λ(ψ) is taken as λ(j), with ψ labeled by j.

Given any [λ(ψ)] ∈ Pn[|Irr(G)|], define the subgroup G[λ(ψ)] of Gn by

G[λ(ψ)] =
∏

ψ∈Irr(G)

G|λ(ψ)| =
∏

ψ∈Irr(G)

(G 	 S|λ(ψ)|).

Then we have that ⊙
ψ∈Irr(G)

ψ 	 λ(ψ) is a character of G[λ(ψ)].

We may now give the parameterization of irreducible characters of Gn.

Theorem 4.1 (Specht [22]). The irreducible complex characters of Gn may be param-
eterized by Pn[|Irr(G)|], where for each [λ(ψ)] ∈ Pn[|Irr(G)|], the irreducible character
η[λ(ψ)] is given by

η[λ(ψ)] = IndGnG[λ(ψ)]

⎛⎝ ⊙
ψ∈Irr(G)

ψ 	 λ(ψ)
⎞⎠ .

The degree of η[λ(ψ)] is given by

η[λ(ψ)](1) = n!
∏

ψ∈Irr(H)

(
ψ(1)|λ(ψ)|

) (
χλ(ψ)(1)

)
|λ(ψ)|! .

4.2 Symmetric functions

Macdonald [16, Chapter 1, Appendix B] gives a method of describing the irreducible
characters of Gn using symmetric function theory, which is an extension of the de-
scription of the character theory of the symmetric groups using symmetric functions
[16, Chapter 1.8]. Another detailed treatment of symmetric functions associated
with wreath products is given by Ingram, Jing, and Stitzinger [11].

For each ψ ∈ Irr(G), let Yψ = {yiψ | i ≥ 1} be an infinite set of indeterminates,
where any two yiψ commute. For any partition λ, let sλ(Yψ) be the Schur symmetric
function in these variables. For any sequence [λ(ψ)] ∈ Pn[|Irr(G)|], define

s[λ(ψ)] =
∏

ψ∈Irr(G)

sλ(ψ)(Yψ).
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Let Λn = C-span{s[λ(ψ)] | [λ(ψ)] ∈ Pn[|Irr(G)|]} and Λ = ⊕nΛn. Then Λ is a graded
C-algebra, where multiplication is standard multiplication of symmetric functions
coming from polynomial multiplication. Let R(Gn) be defined as the space of C-
valued class functions of Gn, and let R = ⊕nR(Gn). For any m,n ≥ 1, we may
embed Gm ×Gn in Gm+n by embedding Sm × Sn in Sm+n as we did in Section 2.2,
and we identify Gm × Gn as a subgroup of Gm+n in this way. For α ∈ R(Gn) and
β ∈ R(Gm), define the product αβ ∈ R(Gm+n) by the induced class function

αβ = Ind
Gm+n

Gm×Gn(α× β).

This multiplication makes R a graded C-algebra. We only need parts of the main
result in [16, Chapter 1, Appendix B], and the following is a portion of [16, I.B,
(9.7)].

Theorem 4.2. Let η[λ(ψ)] be the irreducible character of Gn = G 	 Sn corresponding
to [λ(ψ)] ∈ Pn[|Irr(G)|]. There is an isomorphism of graded C-algebras

ch : R→ Λ,

which we may define by ch(η[λ(ψ)]) = s[λ(ψ)], and extend linearly. In particular, for
any α, β ∈ R, ch(αβ) = ch(α)ch(β).

For any |Irr(G)|-multipartition [λ(ψ)], define the height of the multipartition as

ht([λ(ψ)]) = max{�(λ(ψ)) | ψ ∈ Irr(G)}.
In particular, ht([γ(ψ)]) = 1 if and only if each γ(ψ) is either the empty partition or
has a single part (and at least one γ(ψ) is not the empty partition).

For any m ≥ 1 and any subset S ⊆ Irr(G), define the element H
(S)
m ∈ Λm as

H(S)
m =

∑
|[γ(ψ)]|=m
ht([γ(ψ)])=1

γ(ψ)=(0) if ψ �∈S

s[γ(ψ)].

For any partition μ = (μ1, μ2, . . . , μl) of n, define H
(S)
μ ∈ Λn as

H(S)
μ = H(S)

μ1
H(S)
μ2

· · ·H(S)
μl
.

We now prove a generalization of (2.1) in the algebra Λ. This result is implied by
the wreath product versions of the Littlewood-Richardson rule proved by Ingram,
Jing, and Stitzinger (via symmetric functions) [11, Theorem 4.7], and by Stein [23,
Theorem 4.5] (proved and generalized in a categorical setting). The result is equiva-
lent to [11, Corollary 4.6], but we give a proof of the result here for the purposes of
self-containment.

Lemma 4.3. For any partition μ of n, we have

H(S)
μ =

∑
|[λ(ψ)]|=n

λ(ψ)=(0) if ψ �∈S

K[λ(ψ)]μs[λ(ψ)].
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Proof. Each factor H
(S)
μi consists of summands s[γ(ψ)], such that each partition γ(ψ)

is either empty or a single row, so write γ(ψ) = (γ(ψ)1), where we take γ(ψ)1 = 0
when γ(ψ) = (0). Then we have

s[γ(ψ)] =
∏

ψ∈Irr(G)

s(γ(ψ)1)(Yψ) =
∏

ψ∈Irr(G)

hγ(ψ)1(Yψ),

where hk is the complete symmetric function. Now we have

H(S)
μ =

l∏
i=1

H(S)
μi

=
l∏
i=1

⎛⎜⎜⎜⎜⎜⎝
∑

|[γ(i)(ψ)]|=μi
ht([γ(i)(ψ)])=1

γ(i)(ψ)=(0) if ψ �∈S

∏
ψ∈Irr(G)

hγ(i)(ψ)1(Yψ)

⎞⎟⎟⎟⎟⎟⎠
=

∑
1≤i≤l

|[γ(i)(ψ)]|=μi
ht([γ(i)(ψ)])=1

γ(i)(ψ)=(0) if ψ �∈S

∏
ψ∈Irr(G)

hγ(1)(ψ)1(Yψ) · · ·hγ(l)(ψ)1(Yψ)

=
∑
1≤i≤l

|[γ(i)(ψ)]|=μi
ht([γ(i)(ψ)])=1

γ(i)(ψ)=(0) if ψ �∈S

∏
ψ∈Irr(G)

∑
λ(ψ)∈P|ω(ψ)|

Kλ(ψ)ω(ψ)sλ(ψ)(Yψ),

where we take ω(ψ) to be the composition ω(ψ) = (γ(1)(ψ)1, . . . , γ
(l)(ψ)1), and we

have applied (2.1). Note that we have
∑

ψ ω(ψ) = μ � n. We may now rearrange
sums and products to obtain

H(S)
μ =

∑
|[λ(ψ)]|=n

λ(ψ)=(0) if ψ �∈S

⎛⎜⎝ ∑
∑
ψ ω(ψ)=μ

|ω(ψ)|=|λ(ψ)|

∏
ψ∈Irr(G)

Kλ(ψ)ω(ψ)

⎞⎟⎠ s[λ(ψ)]

=
∑

|[λ(ψ)]|=n
λ(ψ)=(0) if ψ �∈S

K[λ(ψ)]μs[λ(ψ)],

where we have applied Proposition 2.1 to obtain the last equality.

4.3 Permutation characters of Gn on certain subgroups

If G is any finite group with L ≤ G a subgroup, then Ln = L 	 Sn is a subgroup
of Gn. Consider the case when L � G is normal with G/L abelian. If ψ ∈ Irr(G)
such that L ⊆ ker(ψ), then ψ can be viewed as a character of G/L, and in particular
ψ(1) = 1. Suppose that η[λ(ψ)] ∈ Irr(Gn) such that λ(ψ) = (0) if L �⊆ ker(ψ). Then
it follows from Theorem 4.1 that

η[λ(ψ)](1) = n!
∏

ψ∈Irr(G)

χλ(ψ)(1)

|λ(ψ)|! .
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The decomposition of the permutation character of Gn on Ln in this situation is as
follows.

Proposition 4.4. Let G be a finite group and L � G a normal subgroup such that
G/L is abelian. Then

IndGnLn (1) =
∑

|[γ(ψ)]|=n
ht([γ(ψ)])=1

γ(ψ)=(0) if L�⊆ker(ψ)

η[γ(ψ)].

Proof. We first show that the character degrees on both sides are the same. The
degree of IndGnLn (1) is [Gn : Ln] = |G/L|n. Consider one character η|γ(ψ)| in the sum

on the right. Since each γ(ψ) has a single part or is empty, then χγ(ψ)(1) = 1. Since
L ⊆ ker(ψ) whenever γ(ψ) �= (0), and since we may think of ψ as a character of
G/L, then the multipartitions we are considering may be thought of as |Irr(G/L)|-
multipartitions. We now have

η|γ(ψ)|(1) =
n!∏

ψ∈Irr(G/L) |γ(ψ)|!
,

which is a multinomial coefficient. In summing the degrees of these characters, we
are summing over all possible multinomial coefficients of degree n with |G/L| terms,
which has sum |G/L|n.

Since the degrees are equal, it is now enough to show that any character η[γ(ψ)]

in the sum appears with nonzero multiplicity in the permutation character. Indeed,
we will show that 〈

IndGnLn (1), η
[γ(ψ)]

〉
= 1. (4.1)

From Theorem 4.1, we have that

η[γ(ψ)] = IndGnG[γ(ψ)](ξ
[γ(ψ)]) where ξ[γ(ψ)] =

⊙
ψ∈Irr(G)

ψ 	 γ(ψ).

By Frobenius reciprocity, we have〈
IndGnLn (1), η

[γ(ψ)]
〉
=
〈
ResG[γ(ψ)](Ind

Gn
Ln

(1)), ξ[γ(ψ)]
〉
,

where Res is restriction of characters. By Mackey’s theorem, we have

ResG[γ(ψ)](Ind
Gn
Ln

(1)) =
∑

g∈[G[γ(ψ)]\Gn/Ln]
Ind

G[γ(ψ)]
G[γ(ψ)]∩gLng−1(1),

where the sum is over a set of double coset representatives. A brief consideration
reveals that the only double coset representative is g = 1 ∈ Gn. Define

L[γ(ψ)] = G[γ(ψ)] ∩ Ln =
∏

ψ∈Irr(G)

(L 	 S|γ(ψ)|).
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By Mackey’s theorem and Frobenius reciprocity, we then have〈
IndGnLn (1), η

[γ(ψ)]
〉
=
〈
Ind

G[γ(ψ)]
L[γ(ψ)] (1), ξ

[γ(ψ)]
〉

=
〈
1,ResL[γ(ψ)](ξ

[γ(ψ)])
〉

=
1

|L[γ(ψ)]||
∑

x∈L[γ(ψ)]
ξ[γ(ψ)](x).

We have γ(ψ) = (0) unless L ⊆ ker(ψ), and we have χγ(ψ) is trivial for every
ψ ∈ Irr(G). It follows directly from the definition that for every ψ ∈ Irr(G) and
every (a, τ) ∈ L|γ(ψ)| = L 	 S|γ(ψ)| that

(ψ 	 γ(ψ))(a, τ) = 1.

Thus, for any x ∈ L[γ(ψ)], we have ξ[γ(ψ)](x) = 1, and (4.1) follows.

Note that if G/L is not abelian, then Proposition 4.4 does not hold, in that the
decomposition cannot be multiplicity-free since the degrees will not match.

We now see multipartition Kostka numbers as multiplicities, in the following
generalization of (2.3) to wreath products.

Theorem 4.5. Let G be a finite group, L � G a normal subgroup such that G/L is
abelian, n ≥ 1, and μ = (μ1, . . . , μl) ∈ Pn. Define Lμ = L 	Sμ =

∏l
i=1(L 	Sμi). Then

the permutation character of Gn on Lμ decomposes as

IndGnLμ (1) =
∑

|[λ(ψ)]|=n
λ(ψ)=(0) if L�⊆ker(ψ)

K[λ(ψ)]μη
[λ(ψ)].

Proof. Let S = {ψ ∈ Irr(G) | L ⊆ ker(ψ)}. For any m ≥ 1, we have from
Proposition 4.4 and Theorem 4.2 that

ch(IndGmLm (1)) = H(S)
m .

Then we have

IndGnLμ (1) = IndGnLμ1×···×Lμl (1)

= IndGnGμ1×···×Gμl

(
Ind

Gμ1
Lμ1

(1) · · · IndGμlLμl
(1)
)
.

From these two statements, and Theorem 4.2, we have ch(IndGnLμ (1)) = H
(S)
μ . The

result now follows by applying Lemma 4.3 and Theorem 4.2.

In the case that G = L, Theorem 4.5 boils down to Young’s rule (2.3), and is
implied by [23, Proposition 3.12]. In the general setting that L � G and G/L is
abelian, Theorem 4.5 appears to be a new result, stemming exactly from Proposition
4.4, along with Lemma 4.3. Since Lemma 4.3 is implied by the wreath product
versions of the Littlewood-Richardson rules appearing in [11, 23], then one should
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expect that there is a Littlewood-Richardson generalization of Theorem 4.5. It would
be interesting to understand the more general situation when there is no restriction
on the subgroup L, and we induce an arbitrary character from Lμ to Gn.

An example of Theorem 4.5 which is of particular interest is the case that G is a
cyclic group of order r, which we denote by C(r). In this case Gn = C(r) 	 Sn is the
complex reflection group G(r, 1, n). We realize C(r) as the multiplicative group of
rth roots of unity, with generator ζ = e2

√−1π/r, so that C(r) = {ζj−1 | 1 ≤ j ≤ r}.
We label the irreducible characters of C(r) by ψj(c) = cj−1, for 1 ≤ j ≤ r. Then
the irreducible characters of Gn are parameterized by Pn[r], and we write λ(j) for
the partition corresponding to ψj ∈ Irr(C(r)). The subgroups of C(r) correspond to
positive divisors d|r, where C(d) = 〈ζr/d〉 is the subgroup of C(r) of order d. Then we
have C(d) ⊆ ker(ψj) if and only if d|(j − 1). Proposition 4.4 and Theorem 4.5 then
give the following.

Corollary 4.6. Let r, n ≥ 1, and let d be a positive divisor of r. Then

IndC
(r)�Sn

C(d)�Sn(1) =
∑

[γ(j)]∈Pn[r]
ht([γ(j)])=1

γ(j)=(0) if d�(j−1)

η[γ(j)].

More generally, if μ ∈ Pn, then

IndC
(r)�Sn

C(d)�Sμ(1) =
∑

[λ(j)]∈Pn[r]
λ(j)=(0) if d�(j−1)

K[λ(j)]μη
[λ(j)], and IndC

(r)�Sn
Sμ

(1) =
∑

[λ(j)]∈Pn[r]
K[λ(j)]μη

[λ(j)],

where the second case is the result of taking d = 1 in the first case.

Several cases of the induced representations in Corollary 4.6 appear as parts of the
generalized involution models for the complex reflection groups G(r, 1, n) constructed

by Marberg [17]. Namely, IndC
(r)�Sn

Sn
(1) is the piece of the model corresponding to

k = 0 for r odd, and IndC
(r)�Sn

C(2)�Sn(1) corresponds to the k = � = 0 piece for r even in [17,

Theorem 5.6]. This model of the complex reflection groups is obtained independently
by Mazorchuk and Stroppel [18], and generalized to projective reflection groups by
Caselli and Marberg [3].

5 Multiplicity One for Multipartitions

In this section we prove the main result, which is a generalization of Theorem 3.1
to multipartitions. We begin with a necessary condition for a multipartition Kostka
number to be 1.

Lemma 5.1. Suppose [λ(j)] ∈ Pn[r] and μ ∈ Pn, and let λ̃ ∈ Pn be as in (2.4).
Then K[λ(j)]μ ≥ Kλ̃μ. In particular, if K[λ(j)]μ = 1 then Kλ̃μ = 1.

Proof. From Lemma 2.3, if Kλ̃μ = 0, then K[λ(j)]μ = 0, so we may suppose that

Kλ̃μ > 0. Let T be some semistandard Young tableau of shape λ̃ and weight μ. As
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in Example 2.4, we have seen that from T we can construct a semistandard Young
r-multitableau [T (j)] of shape [λ(j)] and weight μ. Now suppose T ′ is a semistandard
Young tableaux of shape λ̃ and weight μ which is distinct from T . Then some column,
say the ith column, of T is distinct from column i of T ′. Suppose that the entries
of column i of T are the entries of column k of T (j) of an r-multitableau [T (j)]
of shape [λ(j)]. Through the process described in Section 2.3, we can construct a
semistandard Young r-multitableau [T ′(j)] with the entries of column i of T ′ as the
entries of column k of T ′(j) (since the order of entries is still preserved, since it was
preserved in constructing [T (j)]). In particular, [T (j)] and [T ′(j)] are distinct. It
follows that K[λ(j)]μ ≥ Kλ̃μ. If K[λ(j)μ] = 1, then Kλ̃μ > 0 by Lemma 2.3, and so
Kλ̃μ = 1.

The converse of the second statement of Lemma 5.1 is false, which we can see
by considering [λ(j)] defined by λ(1) = λ(2) = (1) and μ = (1, 1). Then λ̃ = (2),
and Kλ̃μ = 1 where T = 1 2 is the unique semistandard Young tableau of shape

λ̃ and weight μ. However, [T (j)] and [T ′(j)] defined by T (1) = 1 , T (2) = 2 , and
T ′(1) = 2 , T ′(2) = 1 , are both semistandard Young 2-multitableaux of shape
[λ(j)] and weight μ.

The following observation is crucial in the proof of the main result.

Lemma 5.2. Let [λ(j)] ∈ Pn[r] and μ ∈ Pn such that K[λ(j)]μ = 1. Let [T (j)] be
the unique semistandard Young r-multitableau of shape [λ(j)] and weight μ. If two
distinct λ(j) have some column of the same length, then every column of that length
in [T (j)] must have identical entries.

Proof. Suppose that two distinct λ(j) have some column of the same length, but
two columns of that length do not have identical entries in [T (j)]. By Lemma 5.1,
Kλ̃μ = 1, and let T be the unique semistandard Young tableau of shape λ̃ and weight
μ. By the process described in Section 2.3, we can construct [T (j)] from T by making
each column of T the same as some column of some T (j). So, some two columns of
the same length in T do not have the same entries, say columns i and i+1. Suppose
λ(j1) and λ(j2) are two distinct partitions of [λ(j)] with columns of length the same
as columns i and i+1 of λ̃. Again from the process from Section 2.3, from the tableau
T of shape λ̃ and weight μ, we can construct a semistandard Young r-multitableau
of shape [λ(j)] and weight μ by taking columns of T and making them columns of
any individual tableau of shape some λ(j), as long as left-to-right order is preserved
in individual tableau. This means we can take column i of T and make it a column
in a tableau of shape λ(j1) and column i + 1 of T a column in a tableau of shape
λ(j2), or vice versa. This implies K[λ(j)]μ > 1, a contradiction.

We may now prove the main theorem. We note that in the bipartition (r = 2)
case, this is presumably implied by the case of a type B/C Lie algebra in the result
of Berenshtĕın and Zelevinskĭı [2, Theorem 1.2].

Theorem 5.3. Let [λ(j)] ∈ Pn[r] and μ ∈ Pn with �(μ) = l. Then K[λ(j)]μ = 1 if
and only if there exists a choice of indices 0 = i0 < i1 < · · · < it = l such that, for
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each k = 1, . . . , t, the r-multipartition [λ(j)k] defined by

λ(j)k = (λ(j)ik−1+1, λ(j)ik−1+2, . . . , λ(j)ik),

where λ(j)i is the ith part of λ(j) with definition λ(j)i = 0 if i > �(λ(j)), and the
partition μk = (μik−1+1, μik−1+2, . . . , μik), satisfy the following:

(1) λ̃k � μk (so |λ̃k| = |μk|), and
(2) for at most one j, either λ(j)ik−1+1 = λ(j)ik−1+2 = · · · = λ(j)ik−1 > λ(j)ik

or λ(j)ik−1+1 > λ(j)ik−1+2 = λ(j)ik−1+3 = · · · = λ(j)ik , and for all other j,
λ(j)ik−1+1 = λ(j)ik−1+2 = · · · = λ(j)ik−1 = λ(j)ik .

Proof. We first assume that [λ(j)] and μ satisfy the listed conditions, and show that
K[λ(j)]μ = 1. This direction of the proof parallels the same direction of the proof

of Theorem 3.1. Since λ̃k � μk for k = 1, . . . , t, then λ̃ � μ, and so K[λ(j)]μ > 0 by
Lemma 2.3. Let [T (j)] be some r-multitableau of shape [λ(j)] and weight μ. The
entries in each column of each T (j) strictly increase, and so the entries in row i of
any T (j) must be all at least i. Since row i1 + 1 of each T (j) must have entries
at least i1 + 1, then all entries 1 through i1 must appear in rows 1 through i1 of
[T (j)]. Since |λ̃1| = |[λ(j)1]| = |μ1| = μ1 + · · · + μi1, then also the only entries in
rows 1 through i1 of [T (j)] can be 1 through i1. By induction, for each k, the only
entries in rows ik−1+1 through ik of [T (j)] are ik−1+1 through ik, and these are the
only rows in which these entries appear. Thus, we may consider each [λ(j)k] with μk

independently, and K[λ(j)]μ =
∏t

k=1K[λ(j)k]μk . Like in the partition case, the above

shows that this factorization holds for any set of indices, as long as |λ̃k| = |μk| for
each k.

It is now enough to show that K[λ(j)]μ = 1 whenever λ̃� μ, �(μ) = l, and for at
most one j either λ(j)1 = λ(j)2 = · · ·λ(j)l−1 > λ(j)l or λ(j)1 > λ(j)2 = λ(j)3 =
· · · = λ(j)l, and for all other j, λ(j)1 = λ(j)2 = · · · = λ(j)l. As above, let [T (j)]
denote some r-multitableau of shape [λ(j)] and weight μ. For all j such that λ(j)1 =
λ(j)2 = · · · = λ(j)l, then �(λ(j)) = l (or λ(j) = (0)), and every column of T (j) must
have the entries 1 through l in sequential order (when λ(j) �= (0)). If these are the
only nonempty λ(j), then [T (j)] is uniquely determined and we are done. Otherwise,
consider the unique j = j′ such that λ(j′)1 > λ(j′)2 = λ(j′)3 = · · · = λ(j′)l or
λ(j′)1 = λ(j′)2 = · · · = λ(j′)l−1 > λ(j′)l. Let s be the total number of columns in
all other nonempty λ(j), and define the partition ν by νi = μi − s. Then λ(j′)� ν.
Since all other T (j) are uniquely determined, it is enough to show that Kλ(j′)ν = 1.
This is implied by Lemma 3.2.

We now assume that K[λ(j)]μ = 1. Throughout, let [T (j)] be the unique r-
multitableau of shape [λ(j)] and weight μ. By Lemma 5.1, we have Kλ̃μ = 1. By
Theorem 3.1, there exists a choice of indices, say 0 = ι0 < ι1 < · · · < ιu = l such
that, for each k = 1, . . . , u, we have

λ̃k = (λ̃ιk−1+1, λ̃ιk−1+2, . . . , λ̃ιk) and μk = (μιk−1+1, μιk−1+2, . . . , μιk),
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where λ̃i = 0 if i > �(λ̃), satisfy λ̃k � μk and either

λ̃ιk−1+1 = λ̃ιk−1+2 = · · · = λ̃ιk−1 or λ̃ιk−1+1 > λ̃ιk−1+2 = λ̃ιk−1+3 = · · · = λ̃ιk .

For each k = 1, . . . , u, consider the r-multipartition [λ(j)k] given by

λ(j)k = (λ(j)ιk−1+1, λ(j)ιk−1+2, . . . , λ(j)ιk),

where λ(j)ι = 0 if ι > �(λ(j)). Then we have λ̃k = λ̃k, so that λ̃k � μk.
Note that whenever λ̃i = λ̃i+1 then λ(j)i = λ(j)i+1 for each j, since λ(j)i

≥ λ(j)i+1 for each j, and if λ(j)i > λ(j)i+1 for some j, then λ̃i =
∑

j λ(j)i >∑
j λ(j)i+1 = λ̃i+1. Thus, for each k = 1, . . . , u, we have

λ(j)ιk−1+1 = λ(j)ιk−1+2 = · · · = λ(j)ιk−1 or λ(j)ιk−1+2 = λ(j)ιk−1+3 = · · · = λ(j)ιk ,

where either the first holds for every j or the second holds for every j. If for each
k, there is at most one j such that either λ(j)ιk−1+1 = λ(j)ιk−1+2 = · · · = λ(j)ιk−1 >
λ(j)ιk or λ(j)ιk−1+1 > λ(j)ιk−1+2 = λ(j)ιk−1+3 = · · · = λ(j)ιk , then we can take t = u,
and ik = ιk for k = 1, . . . , t, and the desired conditions are satisfied. Otherwise, we
consider the following possibilities.

Consider any k such that there are at least two j such that λ(j)ιk−1+1 > λ(j)ιk−1+2,
or at least two j such that λ(j)ιk−1 > λ(j)ιk . We take as a running example
[λ(j)] with λ(1) = (35, 22, 12), λ(2) = (35, 2, 13), and λ(3) = (5, 35, 2, 12), and
μ = (102, 93, 7, 5, 32). In this example, we have the unique r-multitableau [T (j)]
of shape [λ(j)] and weight μ is given by

T (1) =

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6
7 7
8
9

, T (2) =

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6
7
8
9

, T (3) =

1 1 1 1 2
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7
8
9

.

Then λ̃ = (11, 94, 7, 5, 32), and Kλ̃μ = 1. We may then take as indices satisfying
the conditions of Theorem 3.1 to be ι1 = 3, ι2 = 6, and ι3 = 9 = �(μ), which gives
λ̃1 = (11, 92), μ1 = (102, 9), λ̃2 = (92, 7) = μ2, and λ̃3 = (5, 32) = μ3. Suppose first
that λ(j)ιk−1+1 > λ(j)ιk−1+2 for at least two j. In our example, this holds for k = 3,
where λ(j)7 > λ(j)8 for j = 1, 3. Then for each such j, there is at least one column
of length ιk−1+1 in λ(j) (in the example, λ(1) and λ(3) each have a column of length
7). By Lemma 5.2, every column of length ιk−1 +1 must be filled identically in each
T (j). This means that the right-most λ(j)ιk−1+1 − λ(j)ιk−1+2 entries of row ιk−1 + 1
of T (j) must be identical. Consider those j for which λ(j)ιk−1+2 > 0. Then λ(j)k

has no parts equal to 0 for these j, and so �(λ(j)k) = �(μk) = ιk − ιk−1 for these j.
It follows that the left-most λ(j)ιk−1+2 columns of λ(j)k, in T (j), must contain the
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entries ιk−1 + 1 through ιk in sequential order, as there is no other choice. Of these,
for the j satisfying λ(j)ιk−1+1 > λ(j)ιk−1+2, the entries in the rest of row ιk−1 + 1 in
T (j) must also be ιk−1+1, since μιk−1+1 ≥ μιk−1+2. For those j where λ(j)ιk−1+2 = 0,
since all entries in T (j) of row ιk−1+1 must be the same, then every entry must also
be ιk−1 + 1. We have now shown that in this situation, every entry in row ιk−1 + 1
must be ιk−1 + 1 in every T (j), and no other ιk−1 + 1 entries appear. Note that this
is indeed the case in the example, where every entry in row 7 of each T (j) is 7. In
this case, we define [λ(j)k

−
], [λ(j)k

+
], μk−, and μk+ by

λ(j)k
−
= (λ(j)ιk−1+1), λ(j)k

+

= (λ(j)ιk−1+2, . . . , λ(j)ιk),

μk
−
= (μιk−1+1), and μk

+

= (μιk−1+2, . . . , μιk),

and we define ιk− = ιk−1 + 1 and ιk+ = ιk. In the example, this means we take
ι3− = 7, ι3+ = 9, with

λ(1)3
−
= (2) = λ(3)3

−
, λ(2)3

−
= (1), λ(1)3

+

= λ(2)3
+

= λ(3)3
+

= (12),

μ3− = (5), and μ3+ = (32).

Note that for every j, the parts of λ(j)k
+
satisfy λ(j)ιk−1+2 = · · · = λ(j)ιk , and we

also have λ̃k− � μk
−
and λ̃k+ � μk

+
.

Next suppose that λ(j)ιk−1 > λ(j)ιk for at least two j. In the running example,
this occurs when k = 2, where λ(j)5 > λ(j)6 for j = 1, 2. The analysis of this case
is very similar to the above. We know that there is a column of length ιk − 1 in at
least two λ(j) (both λ(1) and λ(2) have columns of length 5 in the example), and so
by Lemma 5.2, every column of this length must be filled identically in every T (j).
For those j such that λ(j)ιk > 0, we have �(λ(j)k) = �(μk), and so the left-most
λ(j)ιk columns of λ(j)k must have the sequential entries ιk−1 +1 through ιk in T (j).
It then follows that the right-most λ(j)ιk−1 − λ(j)ιk columns in λ(j)k must have
the sequential entries ιk−1 + 1 through ιk − 1 in every T (j), in order for μk to be
a partition. This must also then hold for those j where λ(j)ιk = 0. Thus, every
entry in row ιk of every T (j) must be ιk, and no other ιk entries appear in any T (j)
(which again may be observed to be the case in the example). In this case, we define
[λ(j)k

−
], [λ(j)k

+
], μk

−
, and μk

+
by

λ(j)k
−
= (λ(j)ιk−1+1, λ(j)ιk−1+2, . . . , λ(j)ιk−1), λ(j)k

+

= (λ(j)ιk),

μk
−
= (μιk−1+1, μιk−1+2, . . . , μιk−1), and μk

+

= (μιk),

and we define ιk− = ιk − 1 and ιk+ = ιk. In the example, ι2− = 5, ι2+ = 6,

λ(1)2
−
= λ(2)2

−
= λ(3)2

−
= (32), λ(1)2

+

= λ(2)2
+

= (2), λ(3)2
+

= (3),

μ2− = (92), and μ2+ = (7).

For every j, the parts of λ(j)k
−
satisfy λ(j)ιk−1+1 = · · · = λ(j)ιk−1, and we again

have λ̃k− � μk
−
and λ̃k+ � μk

+
.
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We define [λ(j)k
−
], [λ(j)k

+
], μk

−
, μk

+
, ιk−, and ιk+ as above for every k with

the property that there are either at least two j such that λ(j)ιk−1+1 > λ(j)ιk−1+2

or at least two j such that λ(j)ιk−1 > λ(j)ιk . For all other k, we define [λ(j)k
−
] =

[λ(j)k
+
] = [λ(j)k], μk

−
= μk

+
= μk, and ιk+ = ιk− = ιk. We then define the indices

{ik | k = 1, . . . , t} = {ιk−, ιk+ | k = 1, . . . , u},

where t is equal to the sum of u and number of k such that there are at least two
j such that λ(j)ιk−1+1 > λ(j)ιk−1+2 or at least two j such that λ(j)ιk−1 > λ(j)ιk .
Continuing with the example above, this gives i1 = 3, i2 = 5, i3 = 6, i4 = 7, and
i5 = 9. Then [λ(j)k] and μk are given by

λ(1)1 = λ(2)1 = (33), λ(3)1 = (5, 32), μ1 = (102, 9)

λ(1)2 = λ(2)2 = λ(3)2 = (32), μ2 = (92),

λ(1)3 = λ(2)3 = (2), λ(3)3 = (3), μ3 = (7),

λ(1)4 = λ(3)4 = (2), λ(2)4 = (2), μ4 = (5),

λ(1)5 = λ(2)5 = λ(3)5 = (12), μ5 = (32).

By construction, we now have that the redefined [λ(j)k] and μk for k = 1, . . . , t, given
by

λ(j)k = (λ(j)ik−1+1, λ(j)ik−1+2, . . . , λ(j)ik),

where λ(j)i = 0 if i > �(λ(j)), and

μk = (μik−1+1, μik−1+2, . . . , μik),

satisfy the required conditions.

It follows from Theorem 5.3 that for any [λ(j)] ∈ Pn[r], we have K[λ(j)]λ̃ = 1. We
now give a generalization of Corollary 3.4, by classifying which multipartitions [λ(j)]
satisfy K[λ(j)]μ = 1 for only μ = λ̃.

Corollary 5.4. Let [λ(j)] ∈ Pn[r]. The only μ ∈ Pn satisfying K[λ(j)]μ = 1 is μ = λ̃

if and only if for each i either (1) λ̃i − λ̃i+1 ≤ 1, or (2) there exist at least two j
such that λ(j)i − λ(j)i+1 ≥ 1 (where we take λ̃i = 0 if i > �(λ̃) and λ(j)i = 0 if
i > �(λ(j))).

Proof. First suppose that there exists some i = i′, which we fix, such that λ̃i′−λ̃i′+1 >
1 and λ(j)i′ − λ(j)i′+1 ≥ 1 for at most one j. This implies that λ(j)i′ − λ(j)i′+1 ≥ 1
for a unique j = j′, and so λ̃i′ − λ̃i′+1 = λ(j′)i′ − λ(j′)i′+1 > 1. We will construct a
μ ∈ Pn such that μ �= λ̃ andK[λ(j)]μ = 1. Define μ to have parts μi = λ̃i if i �= i′, i′+1,

μi′ = λ̃i′ − 1, and μi′+1 = λ̃i′+1 + 1. Note that μ is a well-defined partition since
λ̃i′ − λ̃i′+1 ≥ 2. If �(λ̃) = l, then �(μ) = l by definition. Choose indices as in Theorem
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5.3 so that t = l− 1, with {ik | k = 1, . . . , l− 1} = {1, . . . , i′ − 1, i′ +1, i′ +2, . . . , l}.
Then for k = 1, . . . , l − 1, [λ(j)k] is given by

λ(j)k =

⎧⎨⎩
(λ(j)k) if k < i′,
(λ(j)k, λ(j)k+1) if k = i′,
(λ(j)k+1) if k > i′,

and μk is given by

μk =

⎧⎨⎩
(μk) if k < i′,
(μk, μk+1) if k = i′,
(μk+1) if k > i′.

Now λ̃k = μk if k �= i′, while μi
′
= (λ̃i′ − 1, λ̃i′+1 + 1) �= λ̃i′. These indices satisfy the

conditions of Theorem 5.3 and so K[λ(j)]μ = 1, while μ �= λ̃.

We now suppose that for every i, either λ̃i − λ̃i+1 ≤ 1, or there are at least two
j such that λ(j)i − λ(j)i+1 ≥ 1, and we assume that μ ∈ Pn satisfies K[λ(j)]μ = 1,

and we must show μ = λ̃. Let 0 = i0 < i1 < · · · < it = l, where �(μ) = l, be a
choice of indices satisfying Theorem 5.3, with the accompanying [λ(j)k] and μk for
k = 1, . . . , t. Let [T (j)] be the unique semistandard Young r-multitableau of shape
[λ(j)] and weight μ. We know from the first paragraph of the proof of Theorem 5.3
that K[λ(j)k]μk = 1 for k = 1, . . . , t, and we can consider each [T (j)k], the unique
semistandard Young r-multitableau of shape [λ(j)]k and weight μk. It is enough to

show that μk = λ̃k for each k. Note that if i is such that λ(j)i > λ(j)i+1 for at least
two j, then we must have ik = i for some k, otherwise some [λ(j)k] will not satisfy
the second condition of Theorem 5.3. That is, for every k, we have that every λ(j)k

has at most two distinct part sizes, and λ(j)k has exactly two distinct part sizes for
at most one j. By condition (1) above, these two part sizes can only differ by 1. For
those j where all part sizes of λ(j)k are equal, we know that in T (j), each column of
λ(j)k must have the entries ik−1+1 through ik in sequential order. If every j satisfies

this, we have λ̃k = μk and we are done. If j′ is such that λ(j′)k has two distinct part
sizes which differ by 1, define μk∗ to have parts

μk∗i = μki −
∑
j �=j′

λ(j)ki .

Then we have λ(j′)k � μk∗, and λ(j′)k has parts satisfying one of the conditions of
Lemma 3.2, where distinct part sizes differ by 1. It follows from Lemma 3.2 that

λ(j′)k = μk∗, and so λ̃k = μk.

As an example of applying Corollary 5.4, consider [λ(j)] with λ(1) = (32, 22, 12),
λ(2) = (32, 2, 13), and λ(3) = (33, 2, 12), so λ̃ = (92, 7, 5, 32). In terms of Young
diagrams,

λ(1) = , λ(2) = , λ(3) = ,
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and λ̃ = .

Note that for i = 1 and i = 5 we have λ̃i − λ̃i+1 = 0 ≤ 1, while λ̃i − λ̃i+1 > 1
for i = 2, 3, 4, 6. But, for j = 1, 2 we have λ(j)2 − λ(j)3 = 1; for j = 2, 3 we have
λ(j)3 − λ(j)4 = 1; for j = 1, 3 we have λ(j)4 − λ(j)5 = 1; and for j = 1, 2, 3 we have
λ(j)6 − λ(j)7 = 1. That is, for every i either condition (1) or (2) of Corollary 5.4
holds, and thus K[λ(j)]μ = 1 only for μ = λ̃.

6 Remarks on Computation and An Application to Finite

General Linear Groups

Narayanan considered the computational complexity of evaluating Kostka numbers
Kλμ and Littlewood-Richardson coefficients cλν,μ, and showed [19, Proposition 1] that
the question of whether Kλμ > 0 can be answered in polynomial time. It follows
immediately from Lemma 2.3 that the same is true for whether K[λ(j)]μ > 0. Further,
Ikenmeyer [10, Theorem 3.2] has shown that the question of whether cλν,μ takes any
particular value can be answered in polynomial time. It is likely that the methods
of Ikenmeyer translate to the multipartition case, but at the very least it is not
difficult to show from Theorem 5.3 that the question of whether K[λ(j)]μ = 1 can be
answered in polynomial time. Now let Fq be a finite field with q elements, and let
G = GL(n,Fq) be the group of invertible n-by-n matrices over Fq. In this section
we define another Kostka number which appears in the representation theory of G,
and we see that the computational complexity question for these numbers has quite
a different answer than the cases just mentioned.

The complex irreducible characters of G = GL(n,Fq) were first described by
Green [9]. We give a parameterization of the characters here which follows Macdonald
[16, Chapter IV]. If O is a collection of finite sets, and n is a non-negative integer,
then an O-multipartition of n is a function λ : O → P such that

|λ| =
∑
φ∈O

|φ||λ(φ)| = n.

So, an r-multipartition is an O-multipartition where we take O = {{1}, . . . , {r}}.
We let PO

n denote the set of all O-multipartitions of n, and PO =
⋃
n≥0PO

n .

Fix an algebraic closure F̄q of Fq, and let F̄
×
q be the multiplicative group of F̄q.

Then the Frobenius map F , defined by F (a) = aq, acts on F̄×
q , where the set of fixed

points of Fm is exactly F
×
qm, where m > 0 is an integer. Let F̂×

qm denote the group
of complex characters of F×

qm. When k|m, there is the standard norm map from F
×
qm

down to F
×
qk
, which gives rise to the transposed norm map of character groups from

F̂
×
qk

to F̂
×
qm. We define X to be the direct limit of the character groups F̂

×
qm with

respect to these norm maps, X = lim
→

F̂
×
qm .
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The set X is in some sense a dual of F̄×
q , by taking consistent (non-canonical)

bijections between each F
×
qm and its character group. The Frobenius map F acts

on X through the action on F̄×
q , and we define Θ to be the collection of F -orbits

of X . The irreducible complex characters of G = GL(n,Fq) are parameterized by
the set PΘ

n of all Θ-multipartitions of n. Given λ ∈ PΘ
n , we let χλ ∈ Irr(G) denote

the complex irreducible character of GL(n,Fq) to which it corresponds (not to be
confused with characters of the symmetric group, which are not used in this section).

Remark. The set of orbits Θ is in cardinality-preserving bijection with the set of
F -orbits of F̄×

q , which are in turn in bijection with monic non-constant irreducible
polynomials over Fq, where the degree of the polynomial is the same as the cardinal-
ity of the corresponding orbit.

Let U denote the group of unipotent upper triangular matrices in G, so

U = {(uij) ∈ G | uii = 1, uij = 0 if i > j}.
Fix a non-trivial linear character θ : F+

q → C× from the additive group of Fq to the
multiplicative group of complex numbers. Given any μ ∈ Pn, define Iμ to be the
complement in {1, 2, . . . , n} of the set of partial sums of μ, so

Iμ = {1, 2, . . . , n} \
{

j∑
i=1

μi | 1 ≤ j ≤ �(μ)

}
.

Define the linear character κμ of U by

κμ((uij)) = θ

⎛⎝∑
i∈Iμ

ui,i+1

⎞⎠ .

The degenerate Gel’fand-Graev character Γμ of G is now defined as

Γμ = IndGU(κμ).

Gel’fand and Graev [8] first considered Γμ for μ = (n), and proved its decomposi-
tion into irreducibles is multiplicity free. Zelevinsky [24, Theorem 12.1] decomposed
Γμ for arbitrary μ as a linear combination of the irreducible characters of G, which
in order to describe we must define another variant of the Kostka number. Given
λ ∈ PΘ

n , let Θλ = {ϕ ∈ Θ | λ(ϕ) �= (0)}, so Θλ is the support of λ. Given μ ∈ Pn, a
semistandard Young Θ-multitableau of shape λ and weight μ, call it T , is a sequence
of semistandard Young tableaux [T (ϕ)] indexed by ϕ ∈ Θλ, such that each T (ϕ) has
shape λ(ϕ), and if ω(ϕ) is the weight of T (ϕ), then the weight μ of T has parts

μi =
∑
ϕ∈Θλ

|ϕ|ω(φ)i.

Then the Kostka number Kλμ is defined to be the total number of semistandard
Young Θ-multitableaux of shape λ and weight μ.
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Theorem 6.1 (Zelevinsky). Given any μ ∈ Pn and any χλ ∈ Irr(G), we have
〈Γμ, χλ〉 = Kλμ. That is, the degenerate Gel’fand-Graev character Γμ has the decom-
position

Γμ =
∑
λ∈PΘ

n

Kλμχ
λ.

Zelevinsky noted that if μ has parts μi =
∑

ϕ∈Θ |ϕ|λ(ϕ)i, then Kλμ = 1, and
he applied this to show that every irreducible character of G has Schur index 1 [24,
Proposition 12.6].

If λ ∈ PΘ
n , let [λ(ϕ)] denote the |Θλ|-multipartition indexed by ϕ ∈ Θλ (where

we fix some order of the elements of Θλ). So if |Θλ| = r, then [λ(ϕ)] ∈ P[r], and
we may consider the partition λ̃, where |λ̃| = |[λ(ϕ)]|. If w > 0 is an integer, and
μ ∈ Pn is such that w divides every part of μ, then we let μ/w denote the partition
with parts μi/w. Now if λ ∈ PΘ

n has the property that w divides |ϕ| for every
ϕ ∈ Θλ, then note that we have |λ̃| = |[λ(ϕ)]| = |μ/w|. By restricting our attention
to those χλ such that all ϕ ∈ Θλ have the same size, we may apply our main results
Theorem 5.3 and Corollary 5.4 to Theorem 6.1 to obtain the following.

Corollary 6.2. Let μ ∈ Pn, and suppose λ ∈ PΘ
n is such that there exists an integer

w > 0 such that |ϕ| = w for every ϕ ∈ Θλ, and say |Θλ| = r. Then the following
statements hold.

1. 〈Γμ, χλ〉 = 1 if and only if [λ(ϕ)] ∈ Pn/w[r] and μ/w ∈ Pn/w satisfy the
conditions of Theorem 5.3.

2. If [λ(ϕ)] ∈ Pn/w[r] satisfies the conditions of Corollary 5.4, then 〈Γμ, χλ〉 = 1

if and only if μ/w = λ̃.

The next natural problem is to understand the Kostka numbersKλμ in the general
case, when the orbits ϕ ∈ Θλ have arbitrary sizes. This appears to be a much more
difficult problem, which is perhaps reflected when considering complexity. As we
see now, even in a simple case, the computational complexity of checking whether
Kλμ > 0 is in stark contrast with the results mentioned at the beginning of this
section. We conclude with the following.

Proposition 6.3. Let λ ∈ PΘ
n and μ ∈ Pn. The problem of determining whether

Kλμ > 0, even if �(μ) = 2 and λ(ϕ) = (1) for all ϕ ∈ Θλ, is NP -complete.

Proof. To show that the general problem is NP , consider as a certificate a semis-
tandard Young Θ-multitableau T of shape λ with entries 1 through �(μ). Then T
has storage size which is polynomial in size(λ, μ), where size(λ, μ) is the number
of bits needed to input λ and μ (see [20, Section 1]). If ω(ϕ)i is the number of i’s
in T (ϕ), to check that T has weight μ and thus to verify that Kλμ > 0, we must
check if

∑
ϕ∈Θλ

|ϕ|ω(ϕ)i = μi for every i. Since this can be checked in time which is
polynomial in size(λ, μ), the problem is NP .

As remarked above, the orbits in Θ are in bijection with non-constant monic
irreducible polynomials over Fq, where the cardinality of ϕ ∈ Θ is the degree of the
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corresponding polynomial. It follows that as we increase q and n, the sizes of the
orbits in Θ can be any positive integer, and these sizes might occur with multiplicity
as large as we like. Now consider the case that λ(ϕ) = (1) for all ϕ ∈ Θλ (in which
case χλ ∈ Irr(G) is a regular semisimple character), and �(μ) = 2, μ = (μ1, μ2). Then
deciding whether Kλμ > 0 is the same as determining whether the multiset of positive
integers {|ϕ| | ϕ ∈ Θλ} has some sub-multiset which has sum μ1. This is exactly
the subset sum problem, which is known to be NP -complete (see [1, Exercise 2.17],
for example). Thus to determine whether Kλμ > 0 in general is NP -complete.

Acknowledgments

The authors thank the anonymous referees for very helpful suggestions to improve
this paper. The authors also thank Nick Loehr, Nat Thiem, Sami Assaf, Frans
Schalekamp, Andreas Stathopoulos, and Arthur Gregory for helpful conversations.
The second-named author was supported in part by a grant from the Simons Foun-
dation (#280496).

References

[1] S. Arora and B. Barak, “Computational complexity, a modern approach”, Cambridge
University Press, Cambridge, 2009.
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