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Abstract. Let G be a connected reductive group with connected cen-
ter defined over Fq, with Frobenius morphism F . Given an irreducible
complex character χ of GF with its Jordan decomposition, and a Galois
automorphism σ ∈ Gal(Q/Q), we give the Jordan decomposition of the
image σχ of χ under the action of σ on its character values.
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1. Introduction

If G is a finite group, the problem of understanding the action of the
absolute Galois group on the irreducible characters of G is a natural one.
The problem also has useful applications, an interesting example being a
conjecture of G. Navarro [23] which is a refinement of the McKay conjecture
to take into account the Galois action on characters. In particular, it is
an important problem to understand the action of the Galois group on the
irreducible characters of finite groups of Lie type, see [26, 25] for example,
where a consequence of the conjecture of Navarro is confirmed by checking
it holds for certain groups of Lie type.

In this paper, we describe the action of the Galois group on the irre-
ducible characters of finite reductive groups with connected center, in terms
of the Jordan decomposition of characters. This is a generalization of our
results from a previous paper [28] where we accomplish this for the action
of complex conjugation, and so describe the real-valued characters in terms
of the Jordan decomposition. M. Cabanes and B. Späth have described the
effect of group automorphisms on the Jordan decomposition parameters in
the connected center case [4], and so our main result in this paper is also
an extension of that picture to the Galois action. Our main result may be
stated as follows, where σχ is defined as σχ(g) = χ(σ(g)).

Theorem (Theorem 5.1). Let G be a connected reductive group with con-
nected center, defined over Fq with Frobenius morphism F . Let m be the
exponent of GF , and σ ∈ Gal(Q(ζm)/Q) where ζm is a primitive mth root
of unity, with σ(ζm) = ζrm where r ∈ Z and (r,m) = 1.

Let χ be an irreducible complex character of GF with Jordan decomposi-
tion (s0, ν), where s0 ∈ G∗F

∗
is a semisimple element in a dual group and ν
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is a unipotent character of CG∗(s0)
F ∗. Then σχ has Jordan decomposition

(sr0,
σν).

We also give in Corollary 5.1 criteria to determine the field of character
values of an irreducible character based on Jordan decomposition, and in
Corollary 5.2 we give a particularly simple condition which implies a char-
acter is rational-valued. These results reduce the question of the image
of an irreducible character of GF under a Galois automorphism to under-
standing conjugacy of semisimple elements, which is well understood, and
understanding the fields of character values of, and the action of group auto-
morphisms on unipotent characters, both of which are well-studied problems
[11, 18, 21].

The organization of this paper is as follows. In Section 2, we establish
notation for reductive groups, and in Proposition 2.1 we prove that a finite
reductive group GF and its dual G∗F

∗
have the same exponent. If this

common exponent is m, this allows us to work with automorphisms from
Gal(Q(ζm)/Q) which act on all irreducible characters of GF , G∗F

∗
, and all

of their subgroups. While we could just as easily work with the Galois group
of Gal(Q(ζn)/Q), where n = |GF | = |G∗F ∗ |, it is nicer to work with this
more refined result, and Proposition 2.1 may also be of independent interest.

In Section 3, we give the basic character theory of finite reductive groups,
including Lusztig series and unipotent characters, and we prove several lem-
mas needed for the main result. We introduce the Jordan decomposition
of characters in Section 4, including the crucial result of Digne and Michel
in Theorem 4.1 that there exists a unique Jordan decomposition map with
respect to a list of properties when the center Z(G) is connected. In Propo-
sition 4.1, we are able to slightly strengthen one property of Theorem 4.1
regarding unipotent characters. Finally, our main results are proved in Sec-
tion 5.

Acknowledgements. The authors would like to thank Paul Fong, Meinolf
Geck, Alan Roche, Amanda Schaeffer Fry, Jay Taylor, Donna Testerman,
and Pham Huu Tiep for helpful communication over the course of work-
ing on this paper. The authors also thank Gunter Malle for pointing out
an inaccuracy in a lemma in an earlier draft of this paper, and the referee
for some very helpful corrections and suggestions. The second-named au-
thor was supported in part by a grant from the Simons Foundation, Award
#280496.

2. Preliminaries on Reductive Groups

In this paper we follow the notation of [28, Section 2], which we now
recall. Let G be a connected reductive group defined over a finite field
Fq (with p = char(Fq) and fixed algebraic closure Fq), with corresponding
Frobenius morphism F : G→ G. For any F -stable subgroup G1 of G, GF
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will denote the group of F -fixed elements of G1. For any g ∈ G, we write
gG1 = gG1g

−1.
Fix a maximally split F -stable torus T of G, contained in a fixed F -

stable Borel subgroup B of G. Through the root system associated with
T, we define a dual reductive group G∗ with dual Frobenius morphism F ∗,
and with F ∗-stable maximal torus T∗ dual to T, contained in the F ∗-stable
Borel B∗ of G∗. Define the Weyl group W = NG(T)/T, and the dual Weyl
group W ∗ = NG∗(T

∗)/T∗. There is a natural isomorphism ∂ : W →W ∗ [5,
Sec. 4.2], and a corresponding anti-isomorphism, w 7→ w∗ = ∂(w)−1. The
isomorphism ∂ restricts to an isomorphism between WF = NG(T)F /TF

and (W ∗)F
∗

[5, Sec. 4.4]. Let l denote the standard length function on
these Weyl groups.

Recall that the GF -conjugacy classes of F -stable maximal tori in G may
be classified by F -conjugacy classes of W as follows [3, Sec. 8.2]. For any
F -stable maximal torus T′ in G, we have T′ = gT for some g ∈ G. Then
g−1F (g) ∈ NG(T) and w = g−1F (g)T ∈ W . The GF -conjugacy class of
T′ then corresponds to the F -conjugacy class of w in W . Then we have
T′F = g(TwF )g−1, where wF acts as (wF )(t) = F (wtw−1) for t ∈ T, and
TwF denotes the group of (wF )-fixed points in T. We say that T′ is an
F -stable torus of G of type w (noting that the reference torus T is fixed).
Since T′F and TwF are isomorphic, we work with TwF instead of T′F .

Similar to the case of tori, the GF -conjugacy classes of F -stable Levi
subgroups are classified as follows. Let L be a Levi subgroup of a standard
parabolic P, and given w ∈ W , let ẇ denote an element in NG(T) which
reduces to w in W . Then any Levi subgroup of GF is isomorphic to LẇF for
some w ∈ W , and we work with LẇF instead of the Levi subgroup of GF .
For precise statements, see [3, Sec. 8.2], [9, Prop. 4.3], or [22, Prop. 26.2].

If T′ is an F -stable torus of G which is type w, then the F ∗-stable maximal
torus of type F ∗(w∗) in G∗ (with respect to T∗) is the dual torus (T′)∗ of

T′. It follows that the finite tori TwF and T∗(wF )∗ are in duality, and there
is an isomorphism, which we fix as in [3, Sec. 8.2], between T∗F

∗
and the

group of characters T̂F of TF ,

T∗F
∗ ←→ T̂F

s 7−→ θ = ŝ.

Since TwF is in duality with T∗(wF )∗ , then we may replace F with wF , and
F ∗ with (wF )∗ in the correspondence above. In particular, if s ∈ T∗(wF )∗

for some w ∈W , then we denote by ŝ the corresponding character in T̂wF .
Consider any semisimple element s0 ∈ G∗F

∗
. Then s0 is contained in an

F ∗-stable maximal torus of G∗, and as above, we have s0 ∈ g(T∗(wF )∗)g−1

for some w ∈ W and g ∈ G∗. We may correspond to s0 (non-uniquely) the
element s = g−1s0g ∈ T∗, where s is (wF )∗-fixed, and vice versa. We then
say that s0 and s are associated semisimple elements, and we obtain that
the G∗F

∗
-conjugacy class of s0 is associated with the W ∗-conjugacy class of
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s through this correspondence. Given any element s ∈ T∗, define WF (s) as

WF (s) = {w ∈W | (wF )∗s = s}.

Then, the semisimple elements in G∗F
∗

correspond to elements s ∈ T∗ such
that WF (s) is nonempty. Given such an s ∈ T∗, consider CG∗(s) and its
Weyl group W ∗(s) relative to T∗, and define W (s) to be the collection of
elements w ∈ W such that w∗ ∈ W ∗(s). Then, as in [9, Section 2], we may
write

WF (s) = w1W (s),

where w1 ∈ WF (s) is such that T∗(w1F )∗ is a maximally split torus inside

of CG∗(s)
(ẇ1F )∗ , and also inside of (CG∗(s)

◦)(ẇ1F )∗ . The maximal tori in

(CG∗(s)
◦)(ẇ1F )∗ are then isomorphic to a torus of the form T∗(wF )∗ , for

w ∈ WF (s), by the same classification of maximal tori which we applied to
G∗F

∗
.

We denote the exponent of a finite group H as e = e(H). Thus e(H) is
the smallest positive integer e such that he = 1 for all h ∈ H. We have the
following result.

Proposition 2.1. For any connected reductive group G defined over Fq,
with Frobenius F , and dual G∗ with dual Frobenius F ∗, we have e(GF ) =
e(G∗F

∗
).

Proof. By the Jordan decomposition of elements, we have that any g ∈ GF

can be written as g = su = us where s, u ∈ GF with s semisimple and u
unipotent. If p = char(Fq), then p-power order elements in GF are exactly
the unipotent elements, and elements with order prime to p in GF are exactly
the semisimple elements [22, Theorem 2.5]. It follows that the exponent of
GF is given by the product of the maximum order of unipotent elements in
GF with the least common multiple of the orders of semisimple elements.
Thus in order to show GF and G∗F

∗
have the same exponent, we must

show that their maximal p-power order elements have the same order, and
the least common multiple of the orders of their semisimple elements are the
same.

Let s0 ∈ GF be any semisimple element. Then s0 ∈ g(TwF )g−1 for some

g ∈ G and w ∈ W . We have TwF is in duality with T∗(wF )∗ in G∗, and
these are isomorphic as finite groups. For some g1 ∈ G∗, g1(T

∗(wF )∗)g−11 is

a torus in G∗F
∗

containing an element of the same order as s0. It follows
that the least common multiple of orders of semisimple elements in GF and
G∗F

∗
are equal.

The notion of a regular element in a semisimple algebraic group was
introduced by R. Steinberg [29] and was studied by him and others. Here,
an element in G is regular if its centralizer in G has minimal dimension. We
now recall a proof given by D. Testerman [31, p. 70, Proof of Corollary 0.5]
that when G is a simple algebraic group, then amongst unipotent elements
of G, regular unipotent elements have maximum order, and we note that
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this argument also holds when G is a connected reductive group. If u ∈ G
is regular unipotent of order o(u), take some Borel subgroup B1 of G with
unipotent radical U such that u ∈ U. If x ∈ G is any other unipotent
element, we have gxg−1 ∈ U for some g ∈ G. The B1-orbit of u under
conjugation is then dense in U by [5, Theorem 5.2.1], and all elements in
this orbit have order o(u). However, if x (and gxg−1) has order greater than
o(u), then this dense orbit must intersect the nonempty open set {v ∈ U |
vo(u) 6= 1}, a contradiction. Since the regular unipotent class of G intersects
GF [5, Proposition 5.1.7], and p-power order elements are always unipotent,
then the orders of the maximal p-power order elements of GF and G are
the same.

We first assume that G is a simple algebraic group. By [5, Proposition
5.1.1], for any connected reductive G with center Z(G), the natural homo-
morphism G → G/Z(G) induces a bijection between unipotent classes of
G and G/Z(G), and in particular preserves orders of unipotent elements.
So when G is simple, any other simple algebraic group isogenous to G has
maximal p-power order elements of the same order, and this only depends
on root system type. The only time G is simple and G∗ has different root
system type is when G is type Bm or Cm, and these types are dual to each
other. Testerman [31, Corollary 0.5] has computed the order of the maxi-
mal p-power order elements for all types. For type Cm or Bm, the maximal
p-power order is the smallest p-power larger than 2m − 1 (see [31, Proofs
of Corollary 0.5 and Proposition 3.4]). It follows that when G is a simple
algebraic group, then the maximal p-power order elements of GF and G∗F

∗

have the same order.
If G is any connected reductive group, consider the adjoint quotient map

from G to Gad, where Gad is a semisimple group of adjoint type. Since
there is a bijection between the unipotent classes of G and those of G/Z(G),
it is enough to prove that Gad and (G∗)ad have the same order maximal
p-power order elements, where (G∗)ad is an adjoint quotient of G∗. We
have Gad =

∏
iHi is a direct product of simple algebraic groups of adjoint

type Hi. The adjoint quotient (G∗)ad is then isomorphic to
∏
iH
∗
i where

H∗i is a dual group to Hi, and since the statement holds for each simple
factor Hi from the previous paragraph, the statement holds for their direct
product. Thus for any connected reductive group G, we have GF and
G∗F

∗
have the same order maximal p-power order elements, and we have

e(GF ) = e(G∗F
∗
). �

3. Characters of Finite Reductive Groups

In this section we give some general theory and establish several prelim-
inary results on the complex characters of finite reductive groups GF . We
fix a prime ` which is distinct from p = char(Fq), we let Q` denote the `-adic

numbers, and fix an algebraic closure Q`. We fix an abstract isomorphism
of fields C ∼= Q`, so that our characters take values in Q`. In particular
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we identify a fixed algebraic closure Q of the rationals with its image in Q`

under this isomorphism.
For any finite group H, any complex character (or Q`-valued character) η

of H, and any σ ∈ Gal(Q/Q), we define the character ση by ση(h) = σ(η(h)).
If ρ is the representation with character η, then σρ is the representation with
character ση.

3.1. Lusztig induction. Deligne and Lusztig [7] defined certain virtual
representations of finite reductive groups GF through the `-adic cohomology
with compact support associated to algebraic varieties over Fq. If X is such
a variety, we denote its ith `-adic cohomology space with compact support
with coefficients in Q` as H i

c(X,Q`), and then H∗c (X) =
∑

i(−1)iH i
c(X,Q`)

is a virtual Q`-vector space.
Let L be an F -stable Levi subgroup of G of a standard parabolic P (as

in Section 2) with Levi decomposition P = LU. If L : G → G is the
Lang map, L(g) = g−1F (g), then L−1(U) is an algebraic variety over Fq.
Then the virtual Q`-space H∗c (L−1(U)) may be taken to be a (GF × LF )-
bimodule. If we identify LF with LẇF as in Section 2, then we may regard
this as a (GF × LẇF )-bimodule, and it is through this structure that one

defines the Lusztig induction functor RGF

LẇF
which takes characters of LẇF to

virtual characters of GF , and which is Harish-Chandra induction when the
parabolic P is F -stable. While the definition of Lusztig induction depends
on the choice of parabolic P, it is known in all but very few cases that this
functor is independent of this choice [1, 30]. We will need the following
statement (see also [27, Lemma 2.1]).

Lemma 3.1. For any Levi subgroup LẇF of GF , any character γ of LẇF ,

and any σ ∈ Gal(Q/Q), we have σRGF

LẇF
(γ) = RGF

LẇF
(σγ).

Proof. By [10, Proposition 11.2], we have for any g ∈ GF ,

(3.1)
(
RGF

LẇF (γ)
)

(g) =
1

|LẇF |
∑
l∈LẇF

Tr((g, l) | H∗c (L−1(U)))γ(l−1).

By [10, Corollary 10.6], for example, every Tr((g, l) | H∗c (L−1(U))) is a
rational integer, so is stable under the action of σ. By applying σ to both
sides of (3.1), we have(

σRGF

LẇF (γ)
)

(g) =
1

|LẇF |
∑
l∈LẇF

Tr((g, l) | H∗c (L−1(U)))(σγ(l−1))

=
(
RGF

LẇF (σγ)
)

(g),

proving the claim. �

3.2. Lusztig series. If one takes a torus TwF for the Levi subgroup in
Lusztig induction, and θ is an irreducible character of TwF , then we get

the Deligne-Lusztig virtual character RGF

TwF
(θ), originally defined in [7]. If
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s ∈ T∗ is semisimple such that WF (s) is nonempty, then the rational Lusztig
series of GF corresponding to s, denoted E(GF , s), is the set of irreducible
characters χ of GF such that, for some w ∈WF (s) we have

〈χ,RGF

TwF (ŝ)〉 6= 0,

where 〈·, ·〉 denotes the standard inner product on class functions. Given
s, t ∈ T∗ with bothWF (s) andWF (t) nonempty, then E(GF , s) and E(GF , t)
are either disjoint or equal, and are equal precisely when s and t are W ∗-
conjugate. If s0 and t0 are semisimple elements of G∗F

∗
associated with s

and t, respectively, as in Section 2, then this is equivalent to s0 and t0 being
G∗F

∗
-conjugate (see [10, Propositon 13.13] and its proof). We will either

denote the rational Lusztig series by E(GF , s) when it is parameterized by
the W ∗-class of some s ∈ T∗ with WF (s) nonempty, or by E(GF , s0) when it
is parameterized by the G∗F

∗
-class of some semisimple element s0 ∈ G∗F

∗
.

One may further define the geometric Lusztig series, which is parame-
terized by the G-conjugacy class of a semisimple element s0 ∈ GF , and
contains the associated rational Lusztig series. We only remark that when
the centralizer CG∗(s0) (or CG∗(s)) is connected, then the geometric and
rational Lusztig series coincide.

Recall an irreducible character χ of GF is cuspidal if it does not appear
in the truncation to any standard parabolic subgroup of GF , see [5, Section
9.1]. The set of cuspidal characters in the Lusztig series E(GF , s) will be
denoted by E(GF , s)•.

By Proposition 2.1, we have e(GF ) = e(G∗F
∗
) = m, and so any irre-

ducible character of GF , G∗F
∗
, or any of their subgroups, takes values in

Q(ζm) for ζm a primitive mth root of unity. If σ ∈ Gal(Q/Q), we also denote
by σ its projection to Gal(Q(ζm)/Q). So σ acting on Q(ζm) is generated
by σ(ζm) = ζrm for some r ∈ Z with (r,m) = 1. We will need the following
result, which is also a special case of [26, Lemma 3.4].

Lemma 3.2. Let χ be an irreducible character of GF , σ ∈ Gal(Q/Q), and
r ∈ Z such that σ(ζm) = ζrm. Then we have χ ∈ E(GF , s) if and only if
σχ ∈ E(GF , sr).

Proof. We have χ ∈ E(GF , s) if and only if

〈χ,RGF

TwF (ŝ)〉 = 〈σχ, σRGF

TwF (ŝ)〉 6= 0

for some w ∈WF (s), where the first equality is obtained by the fact that the
inner product is a rational integer, and so stable under σ, and by applying
σ to each term of the sum defining the inner product.

Each linear character ŝ takes values in mth roots of unity, since e(TwF )
divides m, and since s 7→ ŝ is a homomorphism, we have σ ŝ = ŝr = ŝr. From
Lemma 3.1, we thus have

σRGF

TwF (ŝ) = RGF

TwF (ŝr).



8 BHAMA SRINIVASAN AND C. RYAN VINROOT

Now χ ∈ E(GF , s) if and only if

〈σχ,RGF

TwF (ŝr)〉 6= 0,

which is true exactly when σχ ∈ E(GF , sr). �

3.3. Unipotent characters. The unipotent characters of GF are those
irreducible characters in the Lusztig series E(GF , 1). The unipotent char-
acters of GF may be viewed as generic objects associated with GF (see [2,
Section 1B]), and there exists a canonical labeling of unipotent characters
with certain uniqueness properties by a result of Lusztig [19] (see also [12,
Section 4]).

In this section we consider the eigenvalues of the Frobenius map acting
on certain algebraic varieties, which correpsond to unipotent characters, as
studied by Lusztig in [14, 15]. In particular, for any w ∈ W , we let Xw be
the algebraic variety over Fq given by the set of all Borel subgroups B of
G which are mapped to F (B) by w (that is, the Deligne-Lusztig variety).
We may thus consider the spaces H i

c(Xw,Q`). If δ is the smallest positive
integer such that F δ acts trivially on W , then as in [15, Chapter 3] there
is a natural action of F δ on H i

c(Xw,Q`). By [15, Corollary 3.9], for any
unipotent representation π of GF with character χ, there exists a w ∈ W ,

i ≥ 0, and α ∈ Q×` such that α is an eigenvalue of F δ acting on H i
c(Xw,Q`),

and π is isomorphic to a GF -submodule of the generalized α-eigenspace of
F δ on H i

c(Xw,Q`). Then we say α is an eigenvalue of F δ associated with χ
(or π).

As in [13, Section 4.1], for any unipotent character χ of GF , any eigenvalue
α of F δ corresponding to χ is uniquely determined by χ up to a factor of
the form qkδ for some integer k. There is then a root of unity ωχ and a

factor βχ ∈ {1, qδ/2} such that α = ωχβχq
kδ for some non-negative integer

k. We will need the following property of these values, which is given in [13,
Lemma 4.3], where the first statement was first proved in [8, Cor. III.3.4].

Lemma 3.3. Let χ be any unipotent character of GF and σ ∈ Gal(Q/Q).
Then we have

σ(ωχβχ) = ωσχβσχ,

and ωχβχ is contained in the field of character values of χ.

Note that if χ is a unipotent character of GF , then the fact that σχ is
also a unipotent character follows from Lemma 3.2.

When G is a simple algebraic group, then the values ωχβχ have all been
calculated for unipotent characters χ of GF , and follow from work done
in [14, 15, 16, 8, 13]. Based on those calculations, we make the following
observation which we will apply in the next section.

Lemma 3.4. Let G be a simple algebraic group of adjoint type defined over
Fq with Frobenius F , and let (G∗, F ∗) be the dual group. Let χ be any

unipotent character of GF and ψ any unipotent character of G∗F
∗
. Suppose
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(G, F ) is not type E8. Then we have ωχ = ωψ implies βχ = βψ. If (G, F )
is type E8, we have ωχ = ωψ and χ(1) = ψ(1) implies βχ = βψ.

Proof. Suppose that (G, F ) and (H, F ′) are such that G and H are simple
algebraic groups defined over Fq, and f : (G, F ) → (H, F ′) is an isogeny.
It follows from [15, Proposition 3.15] that the isogeny f induces a natural

bijection between the unipotent characters of GF and those of HF ′ . The
Weyl groups of G and H may be identified through the isogeny (call it W )
with F and F ′ acting on W in a compatible way. It follows from [14, 1.18]
that the isogeny f allows an identification of the varieties Xw corresponding
to G and H, with compatibility of the actions of F δ and F ′δ on H i

c(Xw,Q`)
for any w ∈W , so that the eigenvalues from each action are the same. Thus
the isogeny f preserves the eigenvalues of the Frobenius corresponding to
unipotent characters of GF and HF ′ . We now assume that G is a simple
algebraic group of adjoint type, and we note the only time that (G, F ) and
(G∗, F ∗) are not isogenous in this case are when G is type Bn or Cn, which
are then dual to each other.

Next, it follows from [8, Cor. II.3.4] and [13, Lemma 4.4] that we must
have βχ = 1 for any unipotent character χ of GF , unless (G, F ) is of type
E7, E8,

2E6, or 2An−1. Since we always have βχ = 1 in types other than
these, the statement follows immediately in all other types. We consider
specific values in the remaining types.

By [15, Theorem 3.34(ii)], when (G, F ) is type 2An−1 (so δ = 2), for any
unipotent character of GF we must either have ωχ = 1 and βχ = 1, or
ωχ = −1 and βχ = q, and the statement follows in this case. When (G, F )
is type E7 (so δ = 1), it follows from [15, Theorem 3.34(iv)] that the only

values taken by ωχβχ in this case are {1,−1, ω, ω2, iq1/2,−iq1/2}, where ω

is a primitive cube root of unity. Since the only time we have βχ = q1/2 is
if ωχ = ±i, and we never have ωχ = ±i and βχ = 1, the statement follows
in this case. When (G, F ) is of type 2E6 (so δ = 2), it follows from [15,
Table 1] along with [13, Lemma 4.2 and Remark 4.9] that the set of possible
values of ωχβχ are {1, ω, ω2,−q} with ω a primitive cube root of unity, and
the desired statement follows.

Finally, we consider the case that GF = E8(q), and the unipotent char-
acters of E8(q) as they are labeled in [5, pgs. 484–488]. The values for ωχβχ
follow from [15, Table 1], [16, Chapter 11], [8, Cor II.3.4], along with [13,
Lemma 4.2], and are given by

{1,−1, i,−i, ρ, ρ2, ρ3, ρ4, ω, ω2,−ω,−ω2, iq1/2,−iq1/2},

where ω is a primitive cube root of unity, and ρ is a primitive fifth root of
unity. Further, the above references give that the only time ωχβχ = i is

when χ is labeled by E8[i], and the only times when ωχβχ = iq1/2 are for χ
labeled by E7[ξ], 1 or E7[ξ], ε, and these all have distinct character degrees.
Similarly, the only time when ωχβχ = −i is when χ is labeled by E8[−i],
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and the only times when ωχβχ = −iq1/2 are when χ is labeled by E7[−ξ], 1
or E7[−ξ], ε, and again these all have distinct character degrees. �

If G is a direct product, say G = G1 ×G2 with each Gi reductive, then
the unipotent characters of GF are all of the form χ1 × χ2, where χ1 and
χ2 are unipotent characters of GF

1 and GF
2 , respectively, which is in [15, pg.

28]. We have the following.

Lemma 3.5. Let G be a direct product, say G =
∏
iGi, where each Gi

is reductive and F -stable. For any unipotent character χ =
∏
i χi of GF ,

where χi is a unipotent character of GF
i , we have ωχ =

∏
i ωχi, and βχ = 1

if
∏
i βχi is an integer power of qδ, and βχ = qδ/2 otherwise.

Proof. We consider the statement when G = G1 × G2, and the general
case follows. Any Borel subgroup of G is of the form B1 × B2 with Bi

a Borel subgroup of Gi, and the Weyl group W is also a direct product,
W = W1 × W2. It follows that, given w ∈ W with w = (w1, w2), the
Deligne-Lusztig variety Xw is a direct product, Xw = Xw1 ×Xw2 . We then
have by the Künneth formula [10, Proposition 10.9(i)]

H i
c(Xw,Q`) ∼=

⊕
j1+j2=i

Hj1
c (Xw1 ,Q`)⊗Q`

Hj2
c (Xw2 ,Q`).

Thus the eigenvalues of F δ associated with χ are obtained as products of the
eigenvalues of F δ associated with χ1 and χ2, and the statement follows. �

Remark. If G is a direct product, say G =
∏k
i=1Gi, with F (Gi) = Gi+1

for 1 ≤ i ≤ k − 1, and F (Gk) = G1, then it follows that GF ∼= GFk
1 . We

can thus assume Gi = G1 for each i, and F cyclically permutes k direct
product copies of G1, and so F k may be viewed as an endomorphism of G1.
Then the Weyl group W of G is a direct product of k copies of the Weyl
group W1 of G1. If F δ is the least power of F which acts trivially on W ,
then we may write δ = kδ′, where (F k)δ

′
is the least power of F k which

acts trivially on W1. As in [14, (1.18)] and [9, Proof of Proposition 6.4], any
Xw for w ∈ W is isomorphic to one of the form (w1, 1, . . . , 1) ∈ W k

1 , which
is then isomorphic to Xw1 associated with G1 and F kδ1 , with compatible
actions. It follows that the eigenvalues of F δ acting on H i

c(Xw,Q`) are equal

to those of F kδ
′

acting on H i
c(Xw1 ,Q`). Note that the dual group in this

case satisfies G∗F
∗ ∼= G∗F

∗k
1 .

3.4. Principal series. The unipotent characters in the principal series of

GF are the constituents of IndGF

BF (1). Associated with the module IndGF

BF (1)
is the Hecke algebra

H = H(GF ,BF ) = EndQ`GF

(
IndGF

BF (1)
)
.
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Then we have H = eQ`G
F e, where e ∈ Q`G

F is the idempotent element

e =
1

|BF |
∑
b∈BF

b.

There is a natural bijection between unipotent characters in the principal
series and the irreducible characters of the Hecke algebra H, which is defined
as follows [6, Theorem 11.25(ii)]. Given a unipotent character χ in the
principal series of GF , extend χ linearly to a character χ̃ of Q`G

F , and then
restrict to H to obtain an irreducible character χ̃|H of the Hecke algebra.

Now let σ ∈ Aut(Q`/Q), and we consider the action of σ on χ and its
effect on the bijection with irreducible characters of the Hecke algebra. We
note that this is a special case of work done by A. A. Schaeffer Fry in [25].

Lemma 3.6. Given a unipotent character χ in the principal series of GF ,
and σ ∈ Aut(Q`/Q), we have

σ̃χ|H = σ ◦ (χ̃|H) ◦ σ−1.

Proof. Given an element
∑

g αgg ∈ Q`G
F , the action of σ is defined as

σ

(∑
g

αgg

)
=
∑
g

σ(αg)g.

Note that we then have σ(e) = e, and sinceH = eQ`G
F e, then σ◦(χ̃|H)◦σ−1

is a well-defined character of H. We compute

σ̃χ

(∑
g

αgg

)
=
∑
g

αgσ(χ(g))

= σ

(∑
g

σ−1(αg)χ(g)

)

= σ

(
χ̃

(∑
g

σ−1(αg)g

))

= (σ ◦ χ̃ ◦ σ−1)

(∑
g

αgg

)
.

Thus σ̃χ = σ ◦ χ̃ ◦ σ−1. Since we also have

(σ ◦ χ̃ ◦ σ−1)|H = σ ◦ (χ̃|H) ◦ σ−1,
the result follows. �

The Hecke algebra H(GF ,BF ) has a basis indexed by the fundamental
generating set of simple reflections for the Weyl group WF (see [5, Chapter
10], for example). There is also the Hecke algebra H∗ = H(G∗F

∗
,B∗F

∗
),

corresponding to the dual group G∗F
∗
, again with a basis indexed by the

fundamental reflections of the Weyl group W ∗F
∗
. Through the isomorphism
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∂ between WF and W ∗F
∗
, we identify the Hecke algebras H and H∗, and

their irreducible characters.

4. Jordan Decomposition of Characters

Given the connected reductive group G and a rational Lusztig series
E(GF , s), where s ∈ T∗ with WF (s) nonempty, a Jordan decomposition
map is a bijection JG

s = Js,

Js : E(GF , s) −→ E(CG∗(s)
(ẇ1F )∗ , 1),

with the property that, for any χ ∈ E(GF , s) and any w ∈WF (s), we have

(4.1) 〈χ,RGF

TwF (ŝ)〉 = 〈Js(χ), (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉.

The Jordan decomposition map was proved to exist in the case that the
center Z(G) is connected by Lusztig [16], and in the case that the center
is disconnected by Lusztig [17] and by Digne and Michel [9]. In the case
that Z(G) is disconnected, then there are rational Lusztig series E(GF , s)
such that CG∗(s) is disconnected. In this case, one defines the unipotent

characters in the set E(CG∗(s)
(ẇ1F )∗ , 1) to be those characters which appear

in the induction from unipotent characters of the group of (CG∗(s)
◦)(ẇ1F )∗ .

Lusztig found [16] that in many cases the Jordan decomposition map Js
is completely determined by the property (4.1), although this is not always
true. In the case that Z(G) is connected, and so CG∗(s) is connected for
any s, Digne and Michel [9, Theorem 7.1] found a list of properties which
uniquely determines the Jordan decomposition map, which we now state.

Theorem 4.1 (Digne and Michel, 1990). Suppose that Z(G) is connected.
Given any s ∈ T∗ such that WF (s) is nonempty, there exists a unique bijec-
tion

Js : E(GF , s) −→ E(CG∗(s)
(ẇ1F )∗ , 1)

which satisfies the following conditions:

(1) For any χ ∈ E(GF , s), and any w ∈WF (s),

〈χ,RGF

TwF (ŝ)〉 = 〈Js(χ), (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉.

(2) If s = 1 then:
(a) The eigenvalues of F δ associated to χ are equal, up to an integer

power of qδ/2, to the eigenvalues of F ∗δ associated to J1(χ).
(b) If χ is in the principal series then J1(χ) and χ correspond to

the same character of the Hecke algebra.
(3) If z ∈ Z(G∗F

∗
) is central, and χ ∈ E(GF , s), then Jsz(χ⊗ẑ) = Js(χ).

(4) If L is a standard Levi subgroup of G such that L∗ contains CG∗(s)
and such that L is ẇF -stable, then the following diagram is commu-
tative:
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E(GF , s)
Js−−−−→ E(CG∗(s)

(ẇ1F )∗ , 1)xRGF

LẇF

∥∥∥
E(LẇF , s)

JL
s−−−−→ E(CL∗(s)

(v̇ẇF )∗ , 1)

where v̇ẇ = ẇ1, and we extend Js by linearity to generalized charac-
ters.

(5) Assume (W,F ) is irreducible, (G, F ) is of type E8, and (CG∗(s), (ẇ1F )∗)
is of type E7 × A1 (respectively, E6 × A2, respectively 2E6 × 2A2).
Let L be a Levi of G of type E7 (respectively E6, respectively E6)
which contains the corresponding component of CG∗(s). Then the
following diagram is commutative:

E(GF , s)
Js−−−−→ E(CG∗(s)

(ẇ1F )∗ , 1)xRGF

Lẇ2F

xRCG∗ (s)
(ẇ1F )∗

L∗(ẇ2F )∗

E(Lẇ2F , s)•
JL
s−−−−→ E(L∗(ẇ2F )∗ , 1)•

where the superscript • denotes the cuspidal part of the Lusztig se-
ries, and w2 = 1 (respectively 1, respectively the WL-reduced element
of WF (s) which is in a parabolic subgroup of type E7 of W ).

(6) Given an epimorphism ϕ : (G, F ) → (G1, F1) such that ker(ϕ) is a
central torus, and semisimple elements s1 ∈ G∗1, s = ϕ∗(s1) ∈ G∗,
the following diagram is commutative:

E(GF , s)
Js−−−−→ E(CG∗(s)

(ϕ(ẇ1)F )∗ , 1)x>ϕ y>ϕ∗
E(GF1

1 , s1)
J
G1
s1−−−−→ E(CG∗1

(s1)
(ẇ1F1)∗ , 1),

where >ϕ denotes the transpose map, >ϕ(χ(g)) = χ(ϕ(g)).
(7) If G is a direct product, G =

∏
iGi, then J∏

i si
=
∏
i J

Gi
si .

We will need the following result, which follows from Theorem 4.1. It has
the exact same proof as [28, Lemma 3.1].

Lemma 4.1. Let s, t ∈ T∗(w1F )∗, so that s, t ∈ CG∗(s)
(ẇ1F )∗, and suppose

that there exists v̇ ∈ NG∗(T
∗)(ẇ1F )∗ such that v̇sv̇−1 = t. Let Js, Jt be the

maps as described in Theorem 4.1. If Js(χ) = ψ, then Jt(χ) = v̇ψ.

We slightly strengthen one part of Theorem 4.1 in the following, based
on observations made in Section 3.3.

Proposition 4.1. In Property (2a) of Theorem 4.1, we may replace “up to

an integer power of qδ/2” with “up to an integer power of qδ”.
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Proof. Note if J1(χ) = ψ, then property (2a) of Theorem 4.1 is equivalent to
the statement that ωχ = ωψ, and our claim is that we have ωχβχ = ωψβψ.
First assume G is a simple algebraic group of adjoint type. In all cases
other than G being of type E8, then from Lemma 3.5 we have ωχ = ωψ
implies βχ = βψ. But also, when J1(χ) = ψ, property (1) of Theorem 4.1
implies that χ and ψ must have the same degree (by [10, Remark 13.24]
with s = 1). By Lemma 3.5 in the case G is type E8, since we have ωχ = ωψ
and χ(1) = ψ(1), then βχ = βψ. Thus ωχβχ = ωψβψ whenever G is a simple
algebraic group of adjoint type. We now reduce to this case by essentially
following the arguments in [14, (1.18)] and [9, pg. 144].

Assume that G =
∏
iHi is a direct product with each Hi a simple al-

gebraic group of adjoint type. Each factor Hi is either fixed by F , or is
permuted cyclically by F within a subset of the factors. By the remark
after Lemma 3.4, we may view GF as a direct product of factors with each

of the form HF
i , or of the form HFk

i when Hi is cyclically permuted by F
amongst k factors. By that same remark, and from the case of simple alge-
braic groups of adjoint type, the statement we desire holds true for either
type of factor. By property (7) of Theorem 4.1, since the statement holds
for each direct factor of GF , the statement also holds for GF itself.

Next suppose that (G, F ) is such that there is an epimorphism ϕ :
(G, F ) → (G1, F1), with kernel a central torus, where the desired state-
ment on the eigenvalues of the Frobenius holds for the unipotent characters
of the group GF1

1 . By [15, Proposition 3.15], the map ϕ induces (through
the transpose map >ϕ) a bijection between the unipotent characters of GF

and of GF1
1 , and the dual map ϕ∗ yields a bijection between the unipotent

characters of G∗F
∗

and of G
∗F ∗1
1 . The Weyl groups of G and G1 may be

identified (as W ) via ϕ with F and F1 having the same action. For any
w ∈W it follows from [14, (1.18)] that we may identify the Deligne-Lusztig
varieties Xw corresponding to G and to G1, and that we may identify the
actions of F δ and F δ1 on H i

c(Xw,Q`) (for any i ≥ 0). It follows that the
bijections >ϕ and >ϕ∗ between sets of unipotent characters preserve the
corresponding eigenvalues of Frobenius maps. We are assuming that if χ1

is a unipotent character of GF1
1 with JG1

1 (χ1) = ψ1, then ωχ1βχ1 = ωψ1βψ1 .
From the commutative diagram in property (6), it follows that we must
also have ωχ = ωψβψ, that is, the statement holds for (G, F ) if it holds for
(G1, F1).

Finally suppose that G is any connected reductive group with connected
center, with Frobenius map F . There exists an epimorphism with kernel
a central torus from (G, F ) to its adjoint quotient, say (G1, F1). Then
(G1, F1) has the property that G1 is a direct product of finite simple alge-
braic groups of adjoint type, with each direct factor being either fixed by
F1, or is in a subset of factor which are permuted cyclically by F1. By the
previous two paragraphs, the desired statement now follows for the arbitrary
GF . �
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5. Main Results

We may now prove our main result, which essentially states that the
action of the Galois group on the Jordan decomposition (s, ψ) of characters
is the natural one. In particular, this image may be calculated with the
knowledge of the images of ŝ and ψ under the given Galois automorphism.

Theorem 5.1. Suppose Z(G) is connected, and let χ be an irreducible
complex character of GF . Let σ ∈ Gal(Q/Q), so σ acts on Q(ζm), where
m = e(GF ) = e(G∗F

∗
) and σ(ζm) = ζrm with r ∈ Z and (r,m) = 1.

Let s ∈ T∗ such that WF (s) is nonempty, where χ ∈ E(GF , s) and Js(χ) =
ψ. Then σχ ∈ E(GF , sr) and Jsr(

σχ) = σψ.

Proof. It is enough to consider σ ∈ Gal(Q(ζm)/Q). By Lemma 3.2, we have
σχ ∈ E(GF , sr), and we show that in particular Jsr(

σχ) = σψ. Note that
σψ ∈ E(CG∗(s

r)(ẇ1F )∗ , 1) = E(CG∗(s)
(ẇ1F )∗ , 1).

Our proof follows the same structure as the proof of [28, Theorem 4.1],
replacing complex conjugation by a Galois automorphism. We prove the
claim by induction on the semisimple rank of G, where the first case is
when G = T is a torus, so that each Lusztig series contains exactly one
character, and the statement follows immediately. Assume now that the
statement holds for any group with semisimple rank smaller than (G, F ),
and we prove the statement holds for (G, F ).

If λ ∈ E(GF , sr), it follows from Lemma 3.2 that σ−1
λ ∈ E(GF , s). That

is, every character in E(GF , sr) is of the form σχ for some χ ∈ E(GF , s).
Given this fact, we have a well-defined map

µsr : E(GF , sr) −→ E(CG∗(s
r)(ẇ1F )∗ , 1) = E(CG∗(s)

(ẇ1F )∗ , 1),

where µsr(
σχ) = σψ when Js(χ) = ψ. We apply the uniqueness described

by Theorem 4.1 to show that µsr = Jsr , which will give the desired result.
We prove the map µsr satisfies each of the properties listed in Theorem 4.1,
where the induction hypothesis on the semisimple rank is employed only for
properties (4) and (5).

For property (1) of Theorem 4.1, we can apply Lemma 3.1. Using the

fact that 〈χ,RGF

TwF
(ŝ)〉 ∈ Z, we have

〈χ,RGF

TwF (ŝ)〉 = σ〈χ,RGF

TwF (ŝ)〉 = 〈σχ, σRGF

TwF (ŝ)〉 = 〈σχ,RGF

TwF (ŝr)〉,

and similarly,

〈ψ, (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉 = σ〈ψ, (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉

= 〈σψ, (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉.

Since we have

〈χ,RGF

TwF (ŝ)〉 = 〈ψ, (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉,
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then it follows we have

〈σχ,RGF

TwF (ŝr)〉 = 〈σψ, (−1)l(w1)R
CG∗ (s)

(ẇ1F )∗

T∗(wF )∗ (1)〉,

so that µsr satisfies (1).
For property (2), we take s = 1 and assume χ ∈ E(GF , 1) is unipotent

and J1(χ) = ψ. Instead of property (2a), we can use the refined property
in Proposition 4.1, which is equivalent to ωχβχ = ωψβψ, and so σ(ωχβχ) =
σ(ωψβψ). By Lemma 3.3, we have σ(ωχβχ) = ωσχβσχ and σ(ωψβψ) =
ωσψβσψ. Thus ωσχβσχ = ωσψβσψ, and so the property in Proposition 4.1

holds for the map µ1. Now assume that χ is a constituent of IndGF

BF (1), that
is, χ is in the principal series, which means ψ = J1(χ) is in the principal series
for G∗F

∗
. By (2b) of Theorem 4.1, χ and ψ both correspond to the same

character κ of the Hecke algebraH(GF ,BF ) (identified withH(G∗F
∗
,B∗F

∗
)

as in Section 3.4). Note that if χ and ψ are principal series characters, then
so are σχ and σψ, where µ1(

σχ) = σψ. By Lemma 3.6, since χ and ψ both
correspond to the character κ of the Hecke algebra, then σχ and σψ both
correspond to the character σ ◦ κ ◦ σ−1 of the Hecke algebra. (Technically,
we must replace σ by any extension of σ to Aut(Q`/Q) for σ ◦ κ ◦ σ−1 to be
well-defined, although it is immediate that this is independent of the choice
of extension.) It follows that property (2b) also holds for µ1.

For property (3), let z ∈ Z(G∗F
∗
), and recall r satisfies (r,m) = 1 and

σ(ζm) = ζrm. We must show µsr(
σχ) = µsrz(

σχ ⊗ ẑ). Let k ∈ Z such that

rk = 1 mod m. If Js(χ) = ψ, then Jszk(χ ⊗ ẑk) = ψ, while µsr(
σχ) = σψ.

Since (szk)r = srz and σ(ẑk) = ẑkr = ẑ, then by definition we have

µsrz(
σχ⊗ ẑ) = σJszk(χ⊗ ẑk) = σψ,

and property (3) for µsr follows.
For property (4), since the Levi subgroup L has semisimple rank strictly

smaller than G, we may apply the induction hypothesis. So for any ξ ∈
E(LẇF , s), if JL

s (ξ) = ψ, then JL
sr(

σξ) = σψ. Also, if RGF

LẇF
(ξ) = χ, then

RGF

LẇF
(σξ) = σχ by Lemma 3.1. It follows that the diagram in property (4)

commutes when we replace Js with µsr in the top row and JL
s with JL

sr in
the bottom row, as desired.

The proof that the map µsr satisfies property (5) is very similar to the
proof for (4) above. We may again apply the induction hypothesis to the

Levi subgroup L, and so if ξ ∈ E(Lẇ2F , s)• and JL
s (ξ) = λ ∈ E(L∗(ẇ2F )∗ , 1)•,

then JL
sr(

σξ) = σλ. If RGF

Lẇ2F
(ξ) = χ, then RGF

Lẇ2F
(σξ) = σχ, and if

R
CG∗ (s)

(ẇ1F )∗

L∗(ẇ2F )∗ (λ) = ψ, then R
CG∗ (s)

(ẇ1F )∗

L∗(ẇ2F )∗ (σλ) = σψ.

We know Js(χ) = ψ, and thus µsr(
σχ) = σψ. The diagram in property (5)

therefore commutes when JL
sr is on the bottom row and µsr is on the top

row, and it follows that property (5) holds for µsr .
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For property (6), let ϕ : (G, F ) → (G1, F1) be an epimorphism with
kernel a central torus, and ϕ∗ : (G∗1, F

∗
1 ) → (G∗, F ∗) the induced map

between the dual groups. Let χ1 ∈ E(GF1
1 , s1),

>ϕ(χ1) = χ ∈ E(GF , s),
with Js(χ) = ψ and JG1

s1 (χ1) = ψ1. By applying property (6) to Js and

JG1
s1 , we have >ϕ∗(ψ) = ψ1. We have σψ1 = σ(>ϕ∗(ψ)) = σψ(ϕ∗). Thus,
>ϕ∗(σψ) = σψ1. We also have ϕ(sr) = sr1, and >ϕ(σχ1) = σχ1(ϕ) = σχ.
Now, the diagram from property (6) is commutative when we have µsr1 in
the bottom row and µsr in the top row, as desired.

For the final property (7), suppose χ =
∏
i χi and Js(χ) = ψ =

∏
i ψi,

with s =
∏
i si and JGi

si (χi) = ψi. Then

µ∏
i s
r
i
(σχ) = µsr(

σχ) = σψ =
∏
i

σψi =
∏
i

µsr(
σχi).

Since all properties from Theorem 4.1 hold for the map µsr , we must have
µsr = Jsr , and it follows that if Js(χ) = ψ, then Jsr(

σχ) = σψ. �

We consider an example when the center of G is disconnected to show
that Theorem 5.1 does not hold in this case, and we thank the referee for
suggesting the following example. Let GF = SL2(Fq) with q odd, take any

semisimple s0 ∈ G∗F
∗

of order 2, and we consider E(GF , s0). Then e(GF )
is even, and for any odd r we have sr0 = s0. In this case, the connected
centralizer (CG∗(s0)

◦)F
∗

is a torus of cardinality q±1, and so its only unipo-
tent character is trivial. This is an index 2 subgroup in the full centralizer
CG∗(s0)

F ∗ , and so this has as unipotent characters two extensions of the
trivial character, both of which are thus rational-valued. However, the two
irreducible characters in E(GF , s0), of degree (q + 1)/2 or (q − 1)/2, both
take quadratic-irrational values (see [10, pg. 157, Table 2]). Thus Theorem
5.1 cannot hold for these characters, and what seems to be crucial is that
CG∗(s0)

F ∗ 6= (CG∗(s0)
◦)F

∗
in this example.

The following is our main application of Theorem 5.1, which allows us
to reduce the problem of computing the field of character values of an irre-
ducible character of GF to the question of conjugacy of powers of semisimple
elements, and the computation of the actions of group and Galois automor-
phisms on unipotent characters.

Corollary 5.1. Let L be any subfield of Q` (or of C if these are identified),
let m = e(GF ) = e(G∗F

∗
), and K = Q(ζm)∩L. For any σ ∈ Gal(Q(ζm)/K),

let rσ ∈ Z such that (rσ,m) = 1 and σ(ζm) = ζrσm .
Suppose Z(G) is connected, and let χ be an irreducible character of GF ,

where s0 ∈ G∗F
∗

is semisimple, χ ∈ E(GF , s0), and Js0(χ) = ν. Then
Q(χ) ⊆ L if and only if the following hold for every σ ∈ Gal(Q(ζm)/K):

(i) The element s0 is G∗F
∗
-conjugate to srσ0 .

(ii) If h0 ∈ G∗F
∗

satisfies h0s0h
−1
0 = srσ0 , then h0ν = σν.

Proof. In the notation of Theorem 5.1, we suppose that χ ∈ E(GF , s) with
s ∈ T∗ and WF (s) nonempty (so s corresponds to s0). First, consider
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some h ∈ G∗(ẇ1F )∗ which normalizes CG∗(s)
(ẇ1F )∗ . The automorphism of

CG∗(s)
(ẇ1F )∗ given by conjugation by h permutes the unipotent characters

E(CG∗(s)
(ẇ1F )∗ , 1), by [2, (1.27)] for example. If hsh−1 = sr for some r ∈ Z

such that (r,m) = 1, then h normalizes CG∗(s)
(ẇ1F )∗ = CG∗(s

r)(ẇ1F )∗ . Any

other element h1 ∈ G∗(ẇ1F )∗ satisfying h1sh
−1
1 = sr must have the property

that h1 ∈ hCG∗(s)
(ẇ1F )∗ . This implies that the action on E(CG∗(s)

(ẇ1F )∗ , 1)
given by conjugation by an element h such that hsh−1 = sr, is independent
of the choice of h.

Suppose that Q(χ) ⊆ L, which is equivalent to σχ = χ for each σ ∈
Gal(Q(ζm)/K) since Q(χ) ⊆ Q(ζm). Then for each σ, χ = σχ ∈ E(GF , srσ)
by Lemma 3.2. So E(GF , s) = E(GF , srσ), which is equivalent to condition

(i). Since s, srσ ∈ T∗(w1F )∗ , then by [28, Lemma 2.2] we have v̇sv̇−1 = srσ

for some v̇ ∈ NG∗(T
∗)(ẇ1F )∗ . By Lemma 4.1, if Js(χ) = ψ, then we have

Jv̇s(χ) = v̇ψ. Since Jsrσ (χ) = σψ and v̇s = srσ , then v̇ψ = σψ. By the
previous paragraph, we also then have hψ = σψ, which gives condition (ii).

Conversely, suppose that conditions (i) and (ii) hold for each σ. That is,

for each σ we have hsh−1 = srσ for some h ∈ G∗(ẇ1F )∗ , and if Js(χ) = ψ,

then hψ = σψ. Again by [28, Lemma 2.2], there is some v̇ ∈ NG∗(T
∗)(ẇ1F )∗

such that v̇s = srσ , and so also v̇ψ = σψ. We have Jsrσ (σχ) = σψ by
Theorem 5.1, and Jv̇s(χ) = v̇ψ by Lemma 4.1. Now Jsrσ (σχ) = Jsrσ (χ),
and thus σχ = χ. Since this holds for every σ ∈ Gal(Q(ζm)/K), we have
Q(χ) ⊆ K ⊆ L. �

We conclude with a criterion for an irreducible character χ of GF to be
rational-valued. Recall that an element g of a finite group G is rational if,
for every r ∈ Z such that (|g|, r) = 1, g and gr are conjugate in G, see [24,
Section 5] for example. It follows from Lemma 3.2 that if χ has Jordan
decomposition (s0, ν), and s0 is not rational in G∗F

∗
, then χ is not rational-

valued. The following gives a partial converse to this statement. Note that
there are many unipotent characters which are rational-valued [18] and many
which are invariant under group automorphisms [20, Proposition 3.7].

Corollary 5.2. Suppose Z(G) is connected, and χ is an irreducible char-
acter of GF with Jordan decomposition (s0, ν). If s0 is rational in G∗F

∗
,

and ν is both rational-valued and invariant under the automorphism group
of CG∗(s0)

F ∗, then χ is rational-valued.

Proof. If s0 is rational, then for every r ∈ Z such that (|s0|, r) = 1, we have
hs0h

−1 = sr0 for some h ∈ G∗F
∗
. For any σ ∈ Gal(Q/Q), we have σν = ν

since ν is rational-valued, and since ν is invariant under automorphisms
of CG∗(s0)

F ∗ , which includes conjugation by elements in G∗F
∗
, we have

hν = ν = σν. It follows from Corollary 5.1 that χ is rational-valued. �

Remark. Through conversations with Jay Taylor, it appears that the
uniqueness statement for the Jordan decomposition map in Theorem 4.1
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might be generalized to Lusztig series E(GF , s) such that CG∗(s) is con-
nected (or, more generally, if CG∗(s0)

F ∗ = (CG∗(s0)
◦)F

∗
, as suggested by

Gunter Malle), while Z(G) is not necessarily connected. If this holds, then
the results of this section immediately generalize to this situation.
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[2] M. Broué, G. Malle, and J. Michel, Generic blocks of finite reductive groups,
Représentations unipotentes génériques et blocs des groupes réductifs finis, Astérisque
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Soc., Zürich, 2018.

[13] M. Geck and G. Malle, Fourier transforms and Frobenius eigenvalues for finite Coxeter
groups, J. Algebra 260 (2003), 162–193.

[14] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976),
101–159.

[15] G. Lusztig, Representations of finite Chevalley groups, Expository lectures from the
CBMS Regional Conferences held at Madison, Wis., August 8-12, 1977, CBMS Con-
ference Series in Mathematics, 39, American Mathematical Society, Providence, R.I.,
1978.

[16] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics
Studies, 107, Princeton University Press, Princeton, NJ, 1984.

[17] G. Lusztig, On the representations of reductive groups with disconnected centre.
Orbites unipotentes et représentations, I, Astérisque No. 168 (1988), 10, 157–166.
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