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Abstract. We show that the Jordan decomposition of characters of finite reductive groups can be
chosen so that if the centralizer of the relevant semisimple element in the dual group is connected,
then the map is Galois-equivariant. Further, in this situation, we show that there is a unique
Jordan decomposition satisfying conditions analogous to those of Digne–Michel’s unique Jordan
decomposition in the connected center case.
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1. Introduction

Given a finite group G, the fields of values of the irreducible complex characters of G, Irr(G),
have revealed themselves to be valuable and interesting number-theoretic data corresponding to
the structure of G. Numerous examples of results demonstrating this involve the rational-valued
characters of G, real-valued characters of G, and the question of whether a representation of G
can be realized over the field of values of its characters. Thus, the Galois action on these fields of
character values becomes a key problem in the character theory of finite groups.

In this paper, we study the action of G := Gal(Qab/Q) on the set Irr(G), where G is a finite
reductive group. This family of groups is of particular interest because of their role as algebraic
groups, their actions on finite geometries, and their relation to finite simple groups. In particular, for
finite groups of Lie type, a key to understanding the action of G on the set Irr(G) is understanding
how various parametrizations of the set Irr(G) behave under the action of G. In [26, 27], Srinivasan
and the third-named author study this question for the Jordan decomposition of characters, in the
case that the underlying algebraic group has a connected center. In [22], the first-named author
studies this question for the Howlett–Lehrer parametrization of Harish-Chandra series. More results
have been obtained in [8] for the case of connected center, and the authors have studied the question
of fields of values of characters in [25, 24].

The question of the action of G on Irr(G) is particularly difficult in the case that the underlying
algebraic group has disconnected center, and will play a crucial role in, for example, proving the
inductive Galois–McKay conditions of [18] to prove the McKay–Navarro conjecture for odd primes.
(Note that for the prime 2, this was finished in [20, 21].)

The results of [26, 27] make essential use of the unique Jordan decomposition proved by Digne
and Michel in [6] in the case of connected center. The goal of the present paper is twofold: we
extend the results of [27] on the action of G on Jordan decomposition to the case that the underlying
group does not necessarily have a connected center, but that the semisimple element in question
has a connected centralizer in the dual group; and we extend the results of [6] to show that there is
a unique Jordan decomposition satisfying certain properties in the same situation. In this context,
we may embed the underlying connected reductive group G into another connected reductive group
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G̃ with a connected center, using a so-called regular embedding ι : G ↪→ G̃, which in turn yields a

dual surjection ι∗ : G̃∗ → G∗ of the dual groups. Our main result is the following:

Theorem 1.1. Let G be a connected reductive group and F : G→ G a Frobenius endomorphism,
and let G = GF be the corresponding group of Lie type. Let (G∗, F ∗) be dual to (G, F ) and s ∈
G∗ := (G∗)F

∗
a semisimple element such that (CG∗(s)/C◦

G∗(s))
F ∗

= 1, or equivalently CG∗(s)F
∗
⩽

C◦
G∗(s).

(1) Given any regular embedding ι : G→ G̃, there is a Jordan decomposition map Js,ι : E(G, s)→
E(CG∗(s), 1) that is invariant under the choice of preimage s̃ ∈ (G̃∗)F

∗
such that ι∗(s̃) = s,

and such that the collection {Js,ι | CG∗(s)F
∗
⩽ C◦

G∗(s)} is G-equivariant (in the sense of
Lemma 4.2 below).

(2) Further, there exists a unique Jordan decomposition map Js : E(G, s)→ E(CG∗(s), 1) satisfy-
ing properties (1)-(7) of Condition 5.1 below. (In particular, the collection {Js | CG∗(s)F

∗
⩽

C◦
G∗(s)} is also G-equivariant.)

1.1. Notation. For any group G and element g ∈ G we denote by Adg : G → G the inner
automorphism defined by Adg(x) = gxg−1. If H ⩽ G is a subgroup, then we obtain an isomorphism
Adg : H → gH = gHg−1, which we also denote by Adg.

Suppose now that G is finite. We write cf(G) for the space of complex-valued class functions on
G and Irr(G) ⊆ cf(G) for the set of complex irreducible characters of G. We let 1 ∈ Irr(G) denote
the trivial character of G. If H ⩽ G is a subgroup, then for any φ ∈ cf(H) and χ ∈ cf(G) we use
IndGH(φ) and ResGH(χ) to denote induction from H to G and restriction from G to H, respectively.

Further, we let Irr(G|φ) denote the irreducible constituents of IndGH(φ) and Irr(H|χ) denote the
irreducible constituents of ResGH(χ). In particular, Irr(G|χ) is the set of irreducible constituents of
χ ∈ cf(G).

If ϕ : G→ H is a homomorphism between finite groups, we write ⊤ϕ for the function ⊤ϕ : cf(H)→
cf(G) defined by ⊤ϕ(χ) = χ ◦ ϕ. In particular, if ϕ is injective and we identify G with ϕ(G), then
this map can be viewed as restriction; similarly if ϕ is surjective then this map can be viewed as
inflation through the quotient map G→ G/kerϕ.

2. Digne–Michel’s Unique Jordan Decomposition

In this section, we develop some basic notation and recall the main result of [6]. Throughout,
p > 0 will be a fixed prime integer and F = Fp will be an algebraic closure of the finite field of
cardinality p. All algebraic groups are assumed to be affine F-varieties.

If T is a torus, then we denote by X(T) and qX(T) the character and cocharacter groups of T.
Recall that for any two tori T and T′ we have bijections

Hom(T,T′)
X(−)−→ HomZ(X(T′), X(T))

}(−)−→ HomZ( qX(T), qX(T′))
qX(−)←− Hom(T,T′)

where Hom(T,T′) denotes the set of homomorphisms of algebraic groups. If ϕ ∈ Hom(T,T′) then

X(ϕ) is the map χ 7→ χ ◦ ϕ and qX(ϕ) is the map γ 7→ ϕ ◦ γ.
If G is connected reductive and T ⩽ G is a maximal torus, then we denote by ΦG(T) ⊆ X(T)

and qΦG(T) ⊆ qX(T) the roots and coroots of G, respectively. We also call W = NG(T)/T the
Weyl group of G (with respect to T).

Now let (G, F ) be a pair consisting of an algebraic group G and a Frobenius endomorphism
F : G → G. Following Steinberg [28, p. 78] we say (G, F ) is F -simple if G = G1 · · ·Gn is an
almost direct product of quasisimple groups permuted cyclically by F . We refer to the type of
(G, F ) as the type of the underlying root system of G1.
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If G is connected reductive, then we refer to the pair (G, F ), or the finite group of fixed points
G = GF ⩽ G, as a finite reductive group. The morphism L = LF = LG,F : G → G, defined by
L (g) = g−1F (g), is called the Lang map of (G, F ). It is surjective when G is connected.

Let (G, F ) and (G∗, F ∗) be two finite reductive groups and assume (T,T∗, δ) is a triple consisting
of: an F -stable maximal torus T ⩽ G, an F ∗-stable maximal torus T∗ ⩽ G∗, and an isomorphism

δ : X(T)→ qX(T∗) satisfying

(2.1) qX(F ∗) ◦ δ = δ ◦X(F ).

We say (G, F ) and (G∗, F ∗) are dual if for some triple T = (T,T∗, δ) we have δ is an isomorphism
of root data, see [7, Def. 11.1.10]. We call T a witness to the duality and D = ((G, F ), (G∗, F ∗),T )
a rational duality. Note that this induces a duality between the corresponding Weyl groups W =
NG(T)/T and W ∗ = NG∗(T∗)/T∗.

Let us fix once and for all an embedding F× ↪→ C× and an isomorphism F× → (Q/Z)p′ . If two tori
(T, F ) and (T∗, F ∗) are dual, then each isomorphism δ : X(T)→ qX(T∗) satisfying (2.1) determines
a group isomorphism T∗F ∗ → Irr(TF ) which we denote by s 7→ ŝ, see [7, Prop. 11.1.14]. This
depends on δ and our preceding choices of embedding F× ↪→ C× and isomorphism F× → (Q/Z)p′ .

Assume we have a rational duality and let G∗ := G∗F ∗
be the finite dual group. Given a

semisimple element s ∈ G∗, we denote by E(G, s) ⊆ Irr(G) the rational Lusztig series corresponding
to the G∗-conjugacy class of s, see [7, Def. 12.4.3]. Lusztig [15] has shown that there exists a
(not necessarily canonical) Jordan decomposition map E(G, s)→ E(CG∗(s), 1). Assuming Z(G) is
connected, Digne and Michel [6] have shown that this map can be chosen uniquely to satisfy certain
nice properties.

Theorem 2.1 (Digne–Michel, 1990). For each rational duality D = ((G, F ), (G∗, F ∗),T0) with
Z(G) connected and each semisimple element s ∈ G∗F ∗

, there exists a unique bijection

JG
s : E(G, s) −→ E(CG∗(s), 1)

such that the following properties hold:

(1) If T ⩽ G and T∗ ⩽ G∗ are dual maximal tori with T∗ ⩽ CG∗(s) then for any χ ∈ E(G, s)
we have

⟨χ,RG
T (ŝ)⟩ = ⟨JG

s (χ), ϵGϵCG∗ (s)R
CG∗ (s)
T∗ (1)⟩.

(2) If s = 1 then:
(a) Let d be the smallest positive integer such that F d is a split Frobenius endomorphism,

see [7, Def. 4.3.2]. The eigenvalues of F d associated to χ are equal, up to an integer

power of qd/2, to the eigenvalues of F ∗d associated to JG
1 (χ).

(b) If χ is in the principal series then JG
1 (χ) and χ correspond to the same character of the

Hecke algebra EndCG(Ind
G
B(1)), where B = BF and B is an F -stable Borel subgroup

of G.
(3) If z ∈ Z(G∗) is central and χ ∈ E(G, s), then JG

sz (χ⊗ ẑ) = JG
s (χ).

(4) If L ⩽ G and L∗ ⩽ G∗ are dual Levi subgroups with CG∗(s) ⩽ L∗ then the following
diagram is commutative:

ZE(G, s) JG
s−−−−→ ZE(CG∗(s), 1)xRG

L

∥∥∥
ZE(L, s) JL

s−−−−→ ZE(CL∗(s), 1)

Here RG
L denotes Lusztig’s twisted induction and we extend JG

s by linearity to a map on
class functions.
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(5) Assume (G, F ) is F -simple of type E8 and (CG∗(s), F ∗) is of type E7.A1 (respectively,
E6.A2, respectively

2E6.
2A2). If L ⩽ G and L∗ ⩽ G∗ are dual Levi subgroups of type E7

(respectively, E6, respectively E6) with s ∈ Z(L∗) then the following diagram is commutative:

ZE(G, s) JG
s−−−−→ ZE(CG∗(s), 1)xRG

L

xRCG∗ (s)

L∗

ZE(L, s)• JL
s−−−−→ ZE(L∗, 1)•

where the superscript • denotes the cuspidal part of the Lusztig series.
(6) Given an epimorphism φ : (G, F ) → (G1, F1), with kernel ker(φ) a central torus, the

following diagram is commutative:

E(G, s) JG
s−−−−→ E(CG∗(s), 1)x⊤φ

y⊤φ∗

E(G1, s1)
J
G1
s1−−−−→ E(CG∗

1
(s1), 1),

where s1 ∈ G∗
1 is the unique semisimple element such that s = φ∗(s1) ∈ G∗.

(7) If G =
∏
iGi is a direct product of F -stable subgroups, then JG∏

i si
=

∏
i J

Gi
si .

We close by making a few remarks. Let T = (T0,T
⋆
0, δ0) be the witness to the duality occurring

in the statement of Theorem 2.1. In (1) of the theorem, we must choose an isomorphism δ : X(T)→
qX(T⋆) for the map s 7→ ŝ to be defined. In other words, such a choice is needed to make (T, F )
and (T∗, F ∗) dual. Moreover, in (4) and (5) of the statement, we must choose a witness to the
duality of (L, F ) and (L∗, F ∗) for the bijection JL

s to be defined. We briefly recall how this is done.
For any (g, g∗) ∈ G×G∗ we may consider the tuple

(g, g∗) ·T0 = (gT, g
∗
T⋆

0,
qX(Adg∗) ◦ δ0 ◦X(Adg)).

In general, this will not be a witness to the duality between (G, F ) and (G∗, F ∗). Precisely when
this is the case is described in [5, Lem. 4.3.3].

To say that two Levi subgroups L ⩽ G and L∗ ⩽ G∗ are dual is to say that some T = (g, g∗) ·T0

is a witness to the duality between (L, F ) and (L∗, F ∗). If T = (T,T∗, δ) then this is equivalent
to requiring that: T is a witness to the duality between (G, F ) and (G∗, F ∗), T ⩽ L, T∗ ⩽ L∗,

and δ(ΦL(T)) = qΦL∗(T∗).
Finally, let us point out that condition (2a) of Theorem 2.1 has been strengthened by Srinivasan–

Vinroot in [27] to the following:

(2a*) If s = 1 then the eigenvalues of F d associated to χ are equal, up to an integer power of qd,
to the eigenvalues of F ∗d associated to JG

1 (χ).

3. Clifford Theory in the Connected Centralizer Case

Given a semisimple element s ∈ G∗, we write AG(s) := CG∗(s)/C◦
G∗(s). Here C◦

G∗(s) :=
CG∗(s)◦. (When there is no confusion, we simply write A(s) := AG(s).) In the present paper, we
adjust Digne–Michel’s unique Jordan decomposition in the case Z(G) is connected (Theorem 2.1) to
allow for the case that Z(G) is disconnected but A(s)F = 1. That is, the case CG∗(s)F = C◦

G∗(s)F .
To do this, we use the concept of a regular embedding, as in [15, Section 7].

As in [15], we define a regular embedding to be an injective homomorphism ι : G ↪→ G̃, where

(G̃, F̃ ) is a connected reductive group defined over Fq such that Z(G̃) is connected, ι commutes

with the Frobenius morphisms in the sense that ι ◦ F = F̃ ◦ ι, the map ι induces an isomorphism

of G with a closed subgroup ι(G) of G̃, and [ι(G), ι(G)] = [G̃, G̃]. Given such a map, there is a
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corresponding dual surjection ι∗ : G̃∗ → G∗, such that ker ι∗ is a central torus, see Definition 7.3
for further details.

Given a fixed regular embedding ι, we will write G := GF , G̃ := G̃F̃ , G∗ := G∗F ∗
, and

G̃∗ := (G̃∗)
F̃ ∗

. (For the time being, we do not specify the regular embedding, but in Section 8,
we will fix a specific regular embedding ῑ to prove Theorem 1.1.) By an abuse of notation, we will

sometimes write simply F for F̃ , F ∗, and F̃ ∗. We will also identify G with ι(G)F , so we view G as

a subgroup of G̃. Recall that Theorem 2.1 yields a unique Jordan decomposition for G̃.
By [9, Prop. 2.6.16], if s ∈ G∗ is semisimple, then E(G, s) is exactly the set of irreducible

constituents of the restrictions of characters from E(G̃, s̃), where s̃ ∈ G̃∗ is any semisimple element
satisfying ι∗(s̃) = s.

Now, recall that G̃/G is abelian and has multiplicity-free restrictions, by [15, Prop. 10] (see also

Theorem 6.7). Let χ ∈ E(G, s) and let G̃χ denote the stabilizer in G̃ of χ. Then χ extends to G̃χ

and by Clifford theory, the characters of G̃ above χ are of the form IndG̃
G̃χ

(χ̄β) where χ̄ is a fixed

extension of χ to G̃χ and β ranges through characters of G̃χ/G. Note that β ∈ Irr(G̃χ/G) can be

viewed as ResG̃
G̃χ

(β̃) for some β̃ ∈ Irr(G̃/G). Then IndG̃
G̃χ

(χ̄β) = IndG̃
G̃χ

(χ̄)β̃ by [10, Prob. (5.3)].

Now by [6, Prop. 2.6 and 2.7], β̃ is of the form ẑ for some z ∈ Z(G̃∗) and IndG̃
G̃χ

(χ̄)β̃ ∈ E(G̃, s̃z)

where IndG̃
G̃χ

(χ̄) ∈ E(G̃, s̃).

By [6, Prop. 2.5], E(G̃, s̃) and E(G̃, s̃z) are equal if and only if z ∈ [[A, s]], where [[A, s]] ∼= A(s)

is the set of commutators of preimages in G̃∗ of a ∈ A(s) and s. In our case, since z ∈ G̃∗, we have
z ∈ [[A, s]]F ∼= A(s)F . In particular, we have

Lemma 3.1. Keep the notation above. If |AG(s)F | = 1, then every character of G̃ above χ lies in
a different Lusztig series.

Now, given χ̃ ∈ E(G̃, s̃), the number of constituents of ResG̃G(χ̃) is the number of β̃ = ẑ ∈ Irr(G̃/G)

such that χ̃β̃ = χ̃, see [7, Lem. 11.3.9]. But if χ̃ẑ = χ̃, then the corresponding element z ∈ Z(G̃∗)

satisfies s̃z is G̃∗-conjugate to s̃. But the number of such z is |A(s)F |, as above (see also [3,
Cor. 2.8]).

Hence, if |A(s)F | = 1, then further every χ ∈ E(G, s) extends to G̃. That is:

Lemma 3.2. Keep the notation above. Let s ∈ G∗ be semisimple such that |AG(s)F | = 1. Then

for any s̃ ∈ G̃∗ with ι∗(s̃) = s, the restriction map induces a bijection ResG̃G : E(G̃, s̃)→ E(G, s).

4. Defining the Jordan Decomposition

Keep the notation from Section 3. We aim to show that the Jordan decomposition for G may
also be chosen in a nice way when A(s)F = 1. The next lemma establishes the map we will work
with.

Lemma 4.1. Let ι : G→ G̃ be a regular embedding, let s ∈ G∗ be semisimple, and let s̃ ∈ G̃∗ such

that ι∗(s̃) = s. Let Js̃ be the unique Jordan decomposition E(G̃, s̃) → E(C
G̃∗(s̃), 1) guaranteed by

Digne and Michel (see Theorem 2.1). Assume AG(s)F = 1. Then the unique map Js,ι for which
the following diagram commutes:

E(G̃, s̃) Js̃−−−−→ E(C
G̃∗(s̃), 1)yResG̃G

x⊤ι∗

E(G, s) Js,ι−−−−→ E(CG∗(s), 1)
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is independent of the choice of s̃.

Proof. Let s̃ and s̃′ be two preimages of s in G̃∗ under ι∗. Then s̃′ must be of the form s̃z for

z ∈ Z(G̃∗), so the characters of E(G̃, s̃′) are just χ̃ ⊗ ẑ for χ̃ ∈ E(G̃, s̃). Hence it suffices to note

that ResG̃G(χ̃⊗ ẑ) = ResG̃G(χ̃) and C
G̃∗(s̃) = C

G̃∗(s̃z) and apply property (3) of Theorem 2.1. □

Our next goal is to show that, given a fixed regular embedding ι, the map Js,ι in Lemma 4.1
above yields a G-equivariant Jordan decomposition map. The next lemma shows that the collection
of maps {Js,ι | A(s)F = 1} is G-equivariant. By the proof of [23, Lemma 3.4], there is some sσ ∈ G∗

such that E(G, s)σ = E(G, sσ). (Namely, if σ maps |s|th roots of unity to the kth power with
(|s|, k) = 1, then we have sσ = sk.) Further, if A(s)F = 1, then A(sσ)F = 1 as well.

The main result of [27] is that when Z(G) is connected and Js is the map as in Theorem 2.1, we
have Jsσ(χ

σ) = Js(χ)
σ. We prove the analogous statement for the map defined in Lemma 4.1.

Lemma 4.2. Let s ∈ G∗ be semisimple with A(s)F = 1, let ι : G→ G̃ be a regular embedding, and
let Js,ι be the map in Lemma 4.1. Then for any χ ∈ E(G, s) and σ ∈ G, we have Jsσ ,ι(χσ) = Js,ι(χ)

σ.

Proof. Let χ ∈ E(G, s) and σ ∈ G. Letting s̃ ∈ G̃∗ be such that ι∗(s̃) = s, we have by Lemma

3.2 and the discussion preceding it that there is a unique χ̃ ∈ E(G̃, s̃) lying above χ and a unique

character in E(G̃, s̃)σ = E(G̃, s̃σ) above χσ. By uniqueness, the latter must therefore be equal to

χ̃σ. Hence the left-hand map ResG̃G is G-equivariant. The right-hand map is inflation, which is also
G-equivariant. Finally, the main result of [27] gives Js̃(χ̃)

σ = Js̃σ(χ̃
σ), which forces the claim. □

Next, we show that Js,ι is indeed a Jordan decomposition.

Lemma 4.3. Let s ∈ G∗ be semisimple with A(s)F = 1, let ι be a regular embedding, and let
T ⩽ G and T∗ ⩽ G∗ be dual maximal tori with T∗ ⩽ CG∗(s). If Js,ι is the map in Lemma 4.1,
then Js,ι is a Jordan decomposition, in the sense that

⟨χ,RG
T (ŝ)⟩G = ⟨Js,ι(χ), ϵGϵC◦

G∗ (s)R
CG∗ (s)
T∗ (1)⟩CG∗ (s)

for any χ ∈ E(G, s).

Proof. This statement follows from the more general case covered in [15], also appearing in [4, 15.2],

but we give some details here for the sake of clarity. Let χ̃ ∈ E(G̃, s̃) and χ = ResG̃G(χ̃). We have

⟨χ,RG
T (ŝ)⟩G = ⟨ResG̃G(χ̃), RG

T (ŝ)⟩G = ⟨χ̃, IndG̃G(RG
T (ŝ))⟩

G̃
,

by Frobenius reciprocity. We have IndG̃G(R
G
T (ŝ)) = RG̃

T̃
(IndT̃T (ŝ)), by [2, Cor. 2.1.3]. Then IndT̃T (ŝ)

is a multiplicity-free sum of linear characters of T̃ , exactly one of which is ̂̃s. By disjointness of
Lusztig series, we then have

(4.1) ⟨χ,RG
T (ŝ)⟩G = ⟨χ̃, RG̃

T̃
(IndT̃T (ŝ)⟩G̃ = ⟨χ̃, RG̃

T̃
(̂̃s)⟩

G̃
.

Now let ψ̃ ∈ E(C
G̃∗(s̃), 1), and ψ ∈ E(CG∗(s), 1) with ψ̃ = ψ ◦ ι∗ = ⊤ι∗(ψ). Since ι∗ restricts

to a surjective isotypy from C
G̃∗(s̃) to CG∗(s) (since A(s)F = 1), and from T̃ ∗ to T ∗, we have

R
CG∗ (s)
T∗ (1) ◦ ι∗ = R

C
G̃∗ (s̃)

T̃∗ (1), also by [2, Cor. 2.1.3]. Then

⟨ψ̃, RC
G̃∗ (s̃)

T̃∗ (1)⟩C
G̃∗ (s̃) = ⟨ψ ◦ ι

∗, R
CG∗ (s)
T∗ (1) ◦ ι∗⟩C

G̃∗ (s̃).

Since the kernel of ι∗ is central, on which unipotent characters act trivially, we have

⟨ψ ◦ ι∗, RCG∗ (s)
T∗ (1) ◦ ι∗⟩C

G̃∗ (s̃) = ⟨ψ,R
CG∗ (s)
T∗ (1)⟩CG∗ (s).
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Finally, by either a computation of ranks, or noting that both signs come from the length of the
same element of the identified Weyl group, we have ϵ

G̃
ϵC

G̃∗ (s̃) = ϵGϵC◦
G∗ (s). That is,

(4.2) ⟨ψ̃, ϵ
G̃
ϵC

G̃∗ (s̃)R
C

G̃∗ (s̃)

T̃∗ (1)⟩C
G̃∗ (s̃) = ⟨ψ, ϵGϵC◦

G∗ (s)R
CG∗ (s)
T∗ (1)⟩CG∗ (s).

Since Js̃ is a Jordan decomposition map, then (4.1) and (4.2) give the result when taking ψ̃ = Js̃(χ̃)
so that ψ = Js,ι(χ). □

5. Toward Unique Jordan Decomposition in Case A(s)F = 1

The following is a list of conditions along the lines of those in Theorem 2.1, but adjusted for a
more general situation.

Condition 5.1. If D = ((G, F ), (G∗, F ∗),T ) is a rational duality, then we denote by SD ⊆ G∗

the set of semisimple elements with CG∗(s) ⩽ C◦
G∗(s). For each D and set of bijections

JG
s : E(G, s) −→ E(CG∗(s), 1),

indexed by s ∈ SD, we define the following conditions:

(1) If T ⩽ G and T∗ ⩽ G∗ are dual maximal tori with T∗ ⩽ CG∗(s) then for any χ ∈ E(G, s)
we have

⟨χ,RG
T (ŝ)⟩ = ⟨JG

s (χ), ϵGϵCG∗ (s)R
CG∗ (s)
T∗ (1)⟩.

(2) If s = 1 then:
(a) The eigenvalues of F d associated to χ are equal, up to an integer power of qd, to the

eigenvalues of F ∗d associated to JG
1 (χ).

(b) If χ is in the principal series, then JG
1 (χ) and χ correspond to the same character of the

Hecke algebra EndCG(Ind
G
B(1)), where B = BF , and B is an F -stable Borel subgroup

of G.
(3) If z ∈ ῑ∗(Z(G̃∗)) and χ ∈ E(G, s), then JG

sz (χ⊗ ẑ) = JG
s (χ). Here ῑ : G→ G̃ is the specific

regular embedding defined below in Definition 8.1.
(4) If L ⩽ G and L∗ ⩽ G∗ are dual Levi subgroups with C◦

G∗(s) ⩽ L∗ then the following
diagram is commutative:

ZE(G, s) JG
s−−−−→ ZE(CG∗(s), 1)xRG

L

∥∥∥
ZE(L, s) JL

s−−−−→ ZE(CL∗(s), 1)

where L := LF and L∗ := L∗F ∗
, and we extend Js by linearity to class functions.

(5) Property (5) of Theorem 2.1. (Note: this holds vacuously if Z(G) ̸= Z(G)◦.)

(6) Given a surjective isotypy φ : (G, F ) → (G1, F1) such that φ = φ̃ ◦ ῑ, where ῑ : G → G̃

is the specific regular embedding defined below in Definition 8.1; φ̃ : (G̃, F ) → (G̃1, F1) is

an epimorphism with ker(φ̃) a central torus; and G1 := φ̃(ῑ(G)) and ι1 : G1 → G̃1 are as
in Lemma 8.4, and given semisimple elements s1 ∈ G∗

1, s = φ∗(s1) ∈ G∗, the maps in the
following diagram are well-defined and the diagram is commutative:

ZE(G, s) JG
s−−−−→ ZE(CG∗(s), 1)x⊤φ

y⊤φ∗

ZE(G1, s1)
J
G1
s1−−−−→ ZE(CG∗

1
(s1), 1).

(7) If G is a direct product G =
∏
iGi of F -stable subgroups, then JG∏

i si
=

∏
i J

Gi
si .



8 A. A. SCHAEFFER FRY, JAY TAYLOR, AND C. RYAN VINROOT

In the next two subsections and in Section 8, we continue to keep the notation from the previous
sections and we prove three propositions that will be key to our proof of Theorem 1.1. We remark
that in Sections 5.1 and 5.2, which deal with properties (1)-(5), we work without any assumption

on the choice of regular embedding ι : G→ G̃. On the other hand, in Section 8, which deals with
(6) and (7), we will fix a specific regular embedding ῑ.

5.1. On Properties (1)-(3). We begin by considering properties (1)-(3) of Condition 5.1 and
Theorem 2.1.

Proposition 5.2. Let s ∈ G∗ be a semisimple element and suppose that A(s)F = 1. Let ι : G ↪→ G̃
be a regular embedding. Given bijections

fs,ι : E(G, s)→ E(CG∗(s), 1)

and

fs̃ : E(G̃, s)→ E(CG̃∗(s̃), 1)

such that fs̃ =
⊤ι∗ ◦ fs,ι ◦ResG̃G for each s̃ ∈ G̃∗ such that ι∗(s̃) = s, we have fs,ι satisfies properties

(1)-(3) of Condition 5.1 if and only if the collection of fs̃ satisfies properties (1)-(3) of Theorem
2.1.

We prove Proposition 5.2 by proving the statement for each condition individually.

Lemma 5.3. Keep the hypotheses of Proposition 5.2. Then Property (1) of Condition 5.1 holds
for fs,ι if and only if Property (1) of Theorem 2.1 holds for fs̃.

Proof. Let χ̃ ∈ E(G̃, s̃) with χ = ResG̃G(χ̃). Also let T ⩽ G and T∗ ⩽ G∗ be dual maximal tori

with T∗ ⩽ CG∗(s), with T̃ ⩽ G̃ and T̃∗ ⩽ G̃∗ dual maximal tori with T ⩽ T̃. By (4.1) and (4.2),
we have

⟨χ,RG
T (ŝ)⟩G = ⟨χ̃, RG̃

T̃
(̂̃s)⟩

G̃
, and

⟨fs̃(χ̃), ϵG̃ϵCG̃∗ (s̃)R
C

G̃∗ (s̃)

T̃∗ (1)⟩C
G̃∗ (s̃) = ⟨fs,ι(χ), ϵGϵC◦

G∗ (s)R
CG∗ (s)
T∗ (1)⟩C◦

G∗ (s),

from which the result follows. □

Lemma 5.4. Keep the hypotheses of Proposition 5.2. Then Property (2) of Condition 5.1 holds
for fs,ι if and only if Property (2) of Theorem 2.1 holds for fs̃.

Proof. Let χ̃ ∈ E(G̃, 1), χ = ResG̃G(χ̃) ∈ E(G, 1), ψ = f1,ι(χ) ∈ E(G∗, 1), and ψ̃ = ⊤ι∗(ψ) = f1(χ̃).

Consider Condition (2a). Both ι : G→ G̃ and ι∗ : G̃∗ → G∗ are isotypies, which yield our natural
bijections of unipotent characters. By arguments in [12, (1.18)], together with [7, Prop. 8.1.13],
these bijections of unipotent characters from isotypies preserve the corresponding eigenvalues of
the Frobenius, so that the eigenvalues corresponding to χ and χ̃ are equal, and the eigenvalues

corresponding to ψ and ψ̃ are equal. The claim for Condition (2a) follows.
For Property (2b), we now assume χ̃ is in the principal series, and from which it follows that so are

χ, ψ, and ψ̃. Let B be an F -stable Borel subgroup of G, and B = BF . The Hecke algebra for G̃ (or

for G, G∗, or G̃∗) may be described as eCGe, with e = 1
|B|

∑
b∈B b, and the bijection from characters

in the principal series IndGB(1) to characters of eCGe is given by extending χ from G to CG linearly,
and restricting to the subalgebra eCGe. Thus the natural bijection between the characters of Hecke

algebras corresponding to G̃ and G is again through restriction, and the natural bijection between

the characters of Hecke algebras corresponding to G̃∗ and G∗ is through composition with ι∗,
and then extending linearly. That is, χ̃ and χ correspond to the same character of the identified

Hecke algebras through this bijection, as do ψ̃ and ψ. These identifications commute with the
canonical bijection between the Hecke algebras corresponding to G and G∗, which depends only on
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the underlying Weyl groups, the duality between Weyl groups W and W ∗, and the canonical map
of Lusztig between the Weyl group and the Hecke algebra, see [13]. The claim follows. □

Lemma 5.5. Keep the hypotheses of Proposition 5.2. Then Property (3) of Condition 5.1 (with ῑ
replaced with the general ι) holds for fs,ι if and only if Property (3) of Theorem 2.1 holds for the
collection of fs̃.

Proof. To ease notation, write fs := fs,ι. First, suppose that Property (3) of Theorem 2.1 holds

for fs̃. Let z ∈ ι∗(Z(G̃∗)) and z̃ ∈ Z(G̃∗) such that ι∗(z̃) = z. Then for each χ̃ ∈ E(G̃, s̃), we
have fs̃z̃(χ̃ ⊗ ˆ̃z) = fs̃(χ̃). In particular, let χ ∈ E(G, s) and let χ̃ ∈ E(G̃, s̃) lie above χ. Note
that ι∗(s̃z̃) = sz. Then by the proof of Lemma 4.1, we may write fsz = Is ◦ fs̃z̃ ◦ Υsz, where Υsz

denotes the inverse of the restriction map ResG̃G : E(G̃, s̃z̃) → E(G, sz) and Is denotes the inverse

of the inflation map ⊤ι∗ : E(CG∗(s), 1) → E(C
G̃∗(s̃), 1). Further, note that Υsz(χ ⊗ ẑ) = χ̃ ⊗ ˆ̃z,

applying Lemma 3.1, since χ̃ ⊗ ˆ̃z lies above χ ⊗ ẑ and is a member of E(G̃, s̃z̃). Hence, we have

fsz(χ⊗ ẑ) = Is

(
fs̃z̃(χ̃⊗ ˆ̃z)

)
= Is (fs̃(χ̃)) = fs(χ), as desired.

Conversely, assume that Property (3) of Condition 5.1 holds for fs. Let z̃ ∈ Z(G̃∗) and χ̃ ∈
E(G̃, s̃). We may now write fs̃z̃ as ⊤ι∗ ◦ fsz ◦ ResG̃G for z := ι∗(z̃). Then for χ := ResG̃G(χ̃), we have

fs̃z̃(χ̃⊗ ˆ̃z) = ⊤ι∗ ◦ fsz(χ⊗ ẑ) = ⊤ι∗ ◦ fs(χ) = fs̃(χ̃), completing the proof. □

5.2. On Properties (4) and (5). Here we want to keep the hypotheses from Proposition 5.2,
and consider the situation of Properties (4) and (5). Note that by [3, Prop. 2.3 and the preceeding

discussion], C◦
G∗(s) ⊆ L∗ for some F ∗-stable Levi subgroup L∗ of G∗ if and only if C

G̃∗(s̃) ⊆ L̃∗

for some F ∗-stable Levi subgroup L̃∗ of G̃∗, where ι∗(L̃∗) = L∗. Let L ⩽ L̃ be the dual Levi

subgroups of G and G̃, and write L := LF and L̃ := L̃F . The condition AG(s)F = 1 implies that

also AL(s)
F = 1, see [17, 1.4], so we obtain a bijection ResL̃L : E(L̃, s̃)→ E(L, s) by applying Lemma

3.2. We may therefore further consider bijections

fLs,ι : E(L, s)→ E(CL∗(s), 1)

and

f L̃s̃ : E(L̃, s)→ E(C
L̃∗(s̃), 1)

such that f L̃s̃ = ⊤ι∗ ◦ fLs,ι ◦ ResL̃L.

Proposition 5.6. Keep the hypotheses of Proposition 5.2. Then, keeping the considerations above,
Property (4) (respectively (5)) of Condition 5.1 holds for fs,ι and f

L
s,ι if and only if Property (4)

(respectively (5)) of Theorem 2.1 holds for fs̃ and f L̃s̃ .

Proof. Again to ease notation, write fs := fs,ι and fLs := fLs,ι. Consider the 3D-diagram whose
Bottom and Top, respectively, are:

E(G, s) fs−−−−→ E(CG∗(s), 1)xRG
L

∥∥∥
E(L, s) fLs−−−−→ E(CL∗(s), 1)

and

E(G̃, s̃) fs̃−−−−→ E(C
G̃∗(s̃), 1)xRG̃

L̃

∥∥∥
E(L̃, s̃)

f L̃s̃−−−−→ E(C
L̃∗(s̃), 1)
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Back and Front, respectively, are:

E(G̃, s̃) fs̃−−−−→ E(C
G̃∗(s̃), 1)yResG̃G

x⊤ι∗

E(G, s) fs−−−−→ E(CG∗(s), 1)

and

E(L̃, s̃)
f L̃s̃−−−−→ E(C

L̃∗(s̃), 1)yResL̃L

x⊤ι∗

E(L, s) fLs−−−−→ E(CL∗(s), 1)

and whose Left and Right, respectively, are:

E(L̃, s̃)
RG̃

L̃−−−−→ E(G̃, s̃)yResL̃L

yResG̃G

E(L, s)
RG

L−−−−→ E(G, s)

and

E(C
G̃∗(s̃), 1)

=−−−−→ E(C
L̃∗(s̃), 1)x⊤ι∗

x⊤ι∗

E(CG∗(s), 1)
=−−−−→ E(CL∗(s), 1)

The Back and Front diagrams commute by our assumption on fs, fs̃, f
L
s , and f

L̃
s̃ . The Left dia-

gram commutes because restriction through a regular embedding commutes with twisted induction
(see, e.g. [9, Cor. 3.3.25]). The Right diagram commutes because of the equalities. Thus, the Top
diagram commutes if and only if the Bottom diagram commutes, completing the proof for property
(4).

The case of property (5) has a similar but simpler proof as the above, by noting that the natural
bijection between E(L, 1) and E(L∗, 1) preserves cuspidal elements. □

6. Multiplicity Free Restrictions

In this section, we use a difficult result of Lusztig on spin groups to show that restriction from
G to Op′(G) is multiplicity free. From this, we conclude Lusztig’s multiplicity freeness result [15,

Prop. 10]. Namely, this says that if G→ G̃ is a regular embedding, then restriction from G̃ = G̃F

to G is multiplicity free.
We note that Li [11, Lem. 2.1] has shown that the restriction map ResG[G,G] is multiplicity free

assuming “q is large enough”. From the proof in [11] we see this is meant to mean that Op′(G) =
[G,G]. The proof in [11, Lem. 2.1] relies on [15, Prop. 10], whereas our proof does not utilise regular
embeddings at all. We believe the approach taken here may be of interest for other reductions in
the future.

As in Lusztig’s original approach [15], we need to reduce to the case where G is simple and
simply connected. It is not enough to prove the statement in this case (which is trivial because

G = Op′(G) when G is simply connected), so we need to prove a different statement. For this we
wish to consider finite overgroups of G contained in the normalizer NG(G).

If g ∈ G satisfies L (g) ∈ Z(G), i.e., g ∈ L −1(Z(G)), then L (g)−1 = L (g−1) and for any x ∈ G
we have

F (gxg−1) = L (g)−1(gF (x)g−1)L (g) = gxg−1

so g ∈ NG(G). It is well known that the centralizer CG(G) = Z(G) is the center of G, see [2,
Lem. 6.1]. The normalizer may also be described in terms of the center.

Lemma 6.1. We have NG(G) = L −1(Z(G)).

Proof. If g ∈ NG(G) then for any x ∈ G we have gxg−1 ∈ G so L (g) ∈ CG(x). Therefore
L (g) ∈ CG(G) = Z(G) so NG(G) ⩽ L −1(Z(G)). That L −1(Z(G)) ⩽ NG(G) is clear. □

Let us draw some conclusions of this equality. Firstly, the natural map NG(G)/CG(G) →
(G/Z(G))F is an isomorphism, hence the automizer NG(G)/CG(G) is a finite group. The image
of the natural map NG(G)→ Aut(G) is the group of inner diagonal automorphisms, as defined in
[7, §11.5].
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Recall that G = Gder · Z◦(G), where Gder ⩽ G is the derived subgroup of G. If NGder
(G) :=

Gder ∩NG(G) then we have a natural map NGder
(G)→ NG(G)/CG(G) whose kernel CGder

(G) :=
Gder ∩ CG(G) = Z(Gder) is finite.

Finally, by the Lang–Steinberg Theorem, the Lang map defines an isomorphism of abstract
groups NG(G)/G→ Z(G). The image of the subgroup (G · Z(G))/G is the image L (Z(G)) of the
Lang map. Hence, we have an isomorphism

NG(G)/(G · Z(G)) ∼= Z(G)/L (Z(G)).

As G is finite, we see that there is a bijection A 7→ L −1(A) between the finite subgroups of Z(G)
and the finite overgroups X ⩽ NG(G) of G.

Lemma 6.2. If Gder = (Gder)
F then the following hold:

(i) NGder
(G) = NGder

(Gder) is finite and NG(G) = NGder
(G) · CG(G),

(ii) L −1(Z(Gder)) = G ·NGder
(G) is a finite overgroup of G,

(iii) if X ⩽ NG(G) is a finite overgroup of G then X ⩽ NGder
(G) · Z for some finite subgroup

Z ⩽ CG(G).

Proof. (i). As Z(Gder) ⩽ Z(G) we have by Lemma 6.1 that

NGder
(G) = Gder ∩L −1(Z(G)) = Gder ∩L −1(Z(Gder)) = NGder

(Gder)

which is clearly finite. That NG(G) = NGder
(G) · CG(G) follows immediately from the fact that

G = Gder · Z◦(G).
(ii). By the Lang–Steinberg Theorem L (NGder

(G)) = Z(Gder) and the fibre of the Lang map
over any point is a coset of the finite group G in G. This gives the equality.

(iii). We may simply take Z to be the inverse image of the finite group (X ·NGder
(G))/NGder

(G)
under the natural surjective map CG(G) ↠ NG(G)/NGder

(G). □

It will be useful at several points to have some properties regarding the normalizer NG(G) with
respect to isotypies. Recall that a homomorphism of algebraic groups ϕ : G → G′ is an isotypy
if G′

der ⩽ ϕ(G) and ker(ϕ) ⩽ Z(G). An isotypy ϕ : (G, F ) → (G′, F ′) is an isotypy ϕ : G → G′

satisfying ϕ ◦ F = F ′ ◦ ϕ.

Lemma 6.3. Suppose ϕ : G→ G′ is a homomorphism of algebraic groups. If G is connected and
the intersection ker(ϕ) ∩Gder ⩽ Z(G) is finite and central, then

ϕ−1(Z(G′)) ⩽ Z(G).

Proof. Let A = ker(ϕ) ∩ Gder. If g ∈ ϕ−1(Z(G′)) then we have a map [g,−] : G → A where
[g, x] = gxg−1x−1 is the commutator. If x, y ∈ G then

[g, xy] = gxyg−1y−1x−1 = gxg−1[g, y]x−1 = [g, x][g, y]

because A ⩽ Z(G) so [g,−] is a group homomorphism. The kernel of [g,−] is the centralizer CG(g)
so we have an injective homomorphism G/CG(g) → A. As A is finite so is G/CG(g) but as G is
connected we must have CG(g) = G so g ∈ Z(G). □

Lemma 6.4. If ϕ : (G, F )→ (G′, F ′) is an isotypy and G = GF and G′ = G′F ′
then the following

hold:

(i) ϕ(Gder) = G′
der,

(ii) ϕ(NG(G)) = Nϕ(G)(G
′),

(iii) ϕ(L −1
G,F (Z(Gder))) = L −1

ϕ(G),F ′(Z(G
′
der)),

(iv) ϕ(Z(G)F ) ≤ Z(G′)F
′
.
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Proof. (i). As G′ = G′
der ·Z◦(G′) we see that G′ = ϕ(G) ·Z◦(G′) and so G′

der = ϕ(G)der = ϕ(Gder).
(ii). Assume g ∈ G is such that ϕ(g) ∈ NG′(G′). Then ϕ(LG,F (g)) = LG′,F ′(ϕ(g)) ∈ Z(G′) and

so LG,F (g) ∈ Z(G) by Lemma 6.3, which shows that g ∈ NG(G).
(iii). Using (i) we may argue exactly as in (ii).
(iv). This follows from the observation G′ = ϕ(G) · Z◦(G′). □

We next consider extendability in the case of semisimple groups.

Proposition 6.5. If G = Gder is semisimple, then any character χ ∈ Irr(Op′(G)) extends to its
stabiliser NG(G)χ in the finite group NG(G).

Proof. Let ϕ : Gsc ↠ G be a simply connected covering map. As ϕ is a bijection on unipotent
elements we see that ϕ(Op′(Gsc)) = Op′(G). Denote by ψ = χ ◦ ϕ ∈ Irr(Op′(Gsc)) the inflation of
χ. By Lemma 6.4 we have ϕ(NGsc(Gsc)) = NG(G) so if ψ extends to its stabiliser NGsc(Gsc)ψ then
deflating this extension gives an extension of χ to NG(G)χ.

Therefore, we can assume that G = Gsc is simply connected, which means G = Op′(G) by a

theorem of Steinberg [28, Thm 12.4]. Suppose G = G(1)× · · · ×G(r) is an F -stable decomposition

where G(i) is a product of quasisimple groups. As NG(G) = NG(1)(G(1)) × · · · × NG(r)(G(r)) we
may clearly assume that G = G1 × · · · ×Gn is a direct product of quasisimple groups permuted
transitively by F .

Let π : G ↠ G1 be the natural projection map. If g ∈ NG(G) then

gZ(G) ∈ (G/Z(G))F ⩽ (G/Z(G))F
n ∼= (G1/Z(G1))

Fn × · · · × (Gn/Z(Gn))
Fn

so π(g) ∈ NG1(G1) where G1 = GFn
1 . Moreover, if h ∈ NG1(G1) then hF (h) · · ·Fn−1(h) ∈ NG(G)

so π restricts to a surjective homomorphism NG(G) ↠ NG1(G1) which further restricts to an

isomorphism G
∼→ G1. Identifying χ with a character of G1 we see that if χ extends to NG1(G1)χ

then inflating we get an extension of χ to NG(G). Hence, we can assume that G is quasisimple
and simply connected.

Now if the quotient NG(G)/G ∼= Z(G)/L (Z(G)) is cyclic then χ will extend to its stabiliser.
This is the case unless F is split, G = Spin4n(F) is a spin group, and q is odd. But this very tricky
case has been dealt with by a counting argument due to Lusztig. A detailed proof of this statement
appears in [4, Thm 5.11] and [16]. □

With this, we can now establish the desired extendibility statement for any finite reductive group.

Theorem 6.6. If X ⩽ NG(G) is a finite overgroup of Op′(G), then any character χ ∈ Irr(Op′(G))
extends to its stabiliser Xχ.

Proof. Let H = NGder
(G). Then by Lemma 6.2, we have X ⩽ Ĝ := HZ for some finite subgroup

Z ⩽ CG(G) = Z(G). It suffices to show that χ extends to its stabilizer Ĝχ. As Z centralises H, we

have the product map π : Hχ ×Z ↠ Ĝχ is a surjective group homomorphism. By Proposition 6.5,
χ has an extension χ̂ ∈ Irr(Hχ) because H = NGder

(Gder) by Lemma 6.2.

Now Hχ ∩Z ⩽ Z(Ĝ) so Res
Hχ
Hχ∩Z(χ̂) = χ̂(1)λ for a unique irreducible character λ ∈ Irr(Hχ ∩Z).

If η ∈ Irr(Z) is an extension of λ−1, which exists because Z is abelian, then we obtain an irreducible
character ψ = χ̂ ⊠ η ∈ Irr(Hχ × Z) with ker(π) ⩽ ker(ψ). Deflating ψ gives an extension of χ to

Ĝχ. □

Theorem 6.7. If X ⩽ Y ⩽ NG(G) are finite overgroups of Op′(G), then restriction from Y to X
is multiplicity free and every character χ ∈ Irr(X) extends to its stabiliser Yχ.

Proof. Let N = Op′(G). Any character ψ ∈ Irr(N) extends to its stabiliser Yψ by Theorem 6.6.

As Y/N is abelian, we have by Gallagher’s Theorem that Ind
Yψ
N (ψ) is multiplicity free, hence so is

IndYN (ψ) by Clifford’s correspondence. Frobenius reciprocity now implies that restriction from Y to
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N is multiplicity free and so clearly restriction from Y to X must also be multiplicity free. For the
last statement we reverse the argument using Frobenius reciprocity and Clifford’s correspondence

to conclude that IndYX(χ) and hence Ind
Yχ
X (χ) are multiplicity free. Frobenius reciprocity now shows

that χ extends to Yχ. □

If G → G̃ is a regular embedding then, identifying G with its image, we have Op′(G̃) ⩽ G ⩽
G̃ ⩽ N

G̃
(G̃) so from this we obtain Lusztig’s result [15, Prop. 10]. The following shows that the

usual information one obtains from a regular embedding can be read off from the finite overgroup
G ·NGder

(G) ⩽ NG(G) of G.

Lemma 6.8. Assume ι : (G, F ) → (G̃, F ) is an injective isotypy and Z(G̃) is connected. Let

Ĝ = G ·NGder
(G). For any χ ∈ Irr(G) we have an isomorphism G̃/G̃χ ∼= Ĝ/Ĝχ where G̃ = G̃F .

Proof. We identify G, as an abstract group, with its image in G̃. Let Γ = ĜZ where Z =

Z(G̃) ∩L −1

G̃,F
(Z(Gder)). It suffices to show that Γ = G̃Z because this implies that

Ĝ/Ĝχ ∼= Γ/Γχ ∼= G̃/G̃χ.

Suppose g ∈ Ĝ so that L (g) ∈ Z(Gder). As Z(G̃) is connected and contains Z(Gder) we have by the

Lang–Steinberg Theorem that L (g) = L (z) for some z ∈ Z(G̃). Certainly z ∈ Z and gz−1 ∈ G so

g ∈ G̃Z. This shows that Γ ⩽ G̃Z. But if g ∈ G̃ then g = hz for some h ∈ Gder and z ∈ Z(G̃). As

L (g) = 1 we have L (h) = L (z−1) ∈ Gder ∩ Z(G̃) = Z(Gder) so G̃Z ⩽ Γ. □

7. Isotypies and Deligne–Lusztig Induction

In this section, we develop further results on isotypies. For this, we will need the following
result on Deligne–Lusztig induction, which generalises a standard result found in [7, Prop. 11.3.10].
A related statement on 2-variable Green functions is found in [2, Prop. 2.2.2]. One could prove
Proposition 7.1 by reducing to the statement in [2, Prop. 2.2.2]. However, we prefer to give a proof
of Proposition 7.1, from which [2, Prop. 2.2.2] is then an easy consequence.

Before stating the result, let us introduce the following notation. IfX is a variety and g ∈ Aut(X)
is an element of finite order, then we denote by

L(g | X) =
∑
i∈Z

(−1)iTr(g | H i
c(X,Qℓ))

the Lefschetz trace of g acting on the cohomology of X.

Proposition 7.1. Suppose ϕ : (G, F ) → (G′, F ′) is an isotypy with kernel K = ker(ϕ) ⩽ Z(G)
and let L′ ⩽ G′ be an F ′-stable Levi complement of a parabolic subgroup P′ ⩽ G′. If (L,P) =
(ϕ−1(L′), ϕ−1(P′)) then

⊤ϕ ◦RG′
L′⊆P′ =

1

|K/L (K)|
∑

zL (K)∈K/L (K)

RG
L⊆P ◦ ⊤Adlz ◦ ⊤ϕ

where lz ∈ L is an element satisfying L (lz) = z.

Proof. Let U ⩽ P be the unipotent radical of P then U′ = ϕ(U) is the unipotent radical of P′. We
define Y′ = {g ∈ G′ | L (g) ∈ U′}. If z ∈ Z(G) then we let Yz = {g ∈ G | L (g) ∈ Uz}, which is a
closed subset of G. Note that Yz ∩Yz′ = ∅ if z ̸= z′. Fix an element lz ∈ L such that L (lz) = z.
If g ∈ Yz then

L (gl−1
z ) = lzL (g)l−1

z L (l−1
z ) ∈ (Uz)z−1 = U

because l(Uz)l−1 = Uz for any l ∈ L. This shows that Yz = Y1lz.



14 A. A. SCHAEFFER FRY, JAY TAYLOR, AND C. RYAN VINROOT

We choose a finite subgroup A ⩽ K such that K = A ·L (K). One can obtain such a subgroup as
the group ⟨a1, . . . , ar⟩ generated by a set of representatives a1, . . . , ar ∈ K for the cosets K/L (K).
This is a finite group because K is abelian, K/L (K) is finite, and each ai has finite order.

As A is finite we have Y =
⊔
a∈AYa is a closed subset of G. If g ∈ Ya for some a ∈ A then

L (ϕ(g)) = ϕ(L (g)) ∈ ϕ(Ua) = U′ so ϕ(Y) ⊆ Y′. We show that ϕ(Y) = Y′. Suppose h ∈ Y′

so that u = L (h) ∈ U′. If g ∈ G satisfies ϕ(g) = h and v ∈ U is the unique element satisfying
ϕ(v) = u then L (g) = vt for some t ∈ K. We can write t = L (z)a for some z ∈ K and a ∈ A.
Then gz−1 ∈ Ya and ϕ(gz−1) = h.

Let K̂ = K∩L −1
G,F (A), which is a finite subgroup of K. We will now show that the fibres of the

map ϕ : Y ↠ Y′ are the orbits of K̂ acting by translations. Suppose g, h ∈ Y satisfy ϕ(g) = ϕ(h)
so that g = ht for some t ∈ K. We have g ∈ Ya for some a ∈ A and h ∈ Yb for some b ∈ A. But
L (g) = L (h)L (t) ∈ UL (t)b ∩Ua which forces L (t)b = a and so L (t) = ab−1 ∈ A. Therefore

ϕ : Y ↠ Y′ factors through a bijective morphism Y/K̂ → Y′.

The finite group L̂ = L −1
L,F (A) satisfies ϕ(L̂) = L′ := L′F and ϕ factors through an isomorphism

L̂/K̂ → L′. If l ∈ L̂ and x ∈ Ya, with a ∈ A, then L (xl) ∈ UaL (l) and so Yal = YaL (l). This

shows that L̂ acts on Y by right translation. Moreover, Yal = Ya if and only if l ∈ LF . Therefore,
if G× L̂opp acts on Y via the action (g, l) · x = gxl then

L((g, l) | Y/K̂) =
1

|K̂|

∑
z∈K̂

L (lz)=1

∑
a∈A
L((g, lz) | Ya)

=
1

|K̂|

∑
z∈K̂

L (lz)=1

∑
a∈A
L((g, l−1

a lzla) | Y1).

Here we use [7, 8.1.10(ii)] and [7, Prop. 8.1.7(iii)] for the first equality, together with the fact that
Ya = Y1la for the second equality.

Let π : L̂ × K̂ → L be the product map given by π(l, z) = lz. If g = π(l, z) then the fibre

π−1(g) = {(lx, x−1z) | x ∈ K̂} is in bijection with L̂ ∩ K̂ = K̂. Summing over L̂ we get

1

|L|
∑
l∈L̂

L((g, l) | Y/K̂) =
1

|L||K̂|

∑
(l,z)∈L̂×K̂
L (lz)=1

∑
a∈A
L((g, l−1

a lzla) | Y1)

=
1

|L|
∑
l∈L

∑
a∈A
L((g, l−1

a lla) | Y1)

Now using Lemma 9.1.5 and Proposition 9.1.6 from [7] we see that

RG′
L′⊆P′(χ)(ϕ(g)) =

1

|L′|
∑
l∈L′F

L((ϕ(g), l) | Y′)χ(l−1)

=
1

|L̂|

∑
l∈L̂

L((g, l) | Y/K̂) · (χ ◦ ϕ)(l−1)

=
1

|A|
∑
a∈A

1

|L|
∑
l∈L
L((g, l) | Y1) · (χ ◦ ϕ)((lall−1

a )−1)

=
1

|A|
∑
a∈A

RG
L (χ ◦ ϕ ◦Adla)(g)

If a ∈ A is contained in the kernel of the map A → K/L (K) then Adla restricts to an inner
automorphism of L. Hence, we may take the sum over A/(A ∩L (K)) ∼= K/L (K). □
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Corollary 7.2. If K ⩽ L (Z(L)) in the setting of Proposition 7.1, then ⊤ϕ ◦RG′
L′ = RG

L ◦⊤ϕ. This
condition is satisfied if either K is connected or Z(L) is connected.

Proof. Under our assumption, we may choose lz ∈ Z(L) such that L (lz) = z. In this case Adlz |L
is trivial and the statement follows. Note that K ⩽ Z(G) ⩽ Z(L) and if K is connected then
K = L (K) ⩽ L (Z(L)) and if Z(L) is connected then L (Z(L)) = Z(L). □

Note that Corollary 7.2 applies in particular to the case where L = Z(L) is a torus. We investigate
the implications this has for Lusztig series, following the arguments presented in [29, Prop. 7.2].
First we need to extend the discussion of dual isogenies to isotypies. For this, we follow [19,
Def. 2.11].

Definition 7.3. Assume (G, F ) and (G′, F ′) are finite reductive groups with dual groups (G∗, F ∗)
and (G′∗, F ′∗) with the dualities witnessed by (T0,T

∗
0, δ) and (T′

0,T
′∗
0 , δ

′) respectively. Two iso-
typies ϕ : (G, F )→ (G′, F ′) and ϕ∗ : (G′∗, F ′∗)→ (G∗, F ∗) are said to be dual if

(7.1) qX(ϕ∗ ◦Adg∗) ◦ δ′ = δ ◦X(ϕ ◦Adg)
for some (g, g∗) ∈ G×G′∗ satisfying ϕ(gT0) ⩽ T′

0 and ϕ∗(g
∗
T′∗

0 ) ⩽ T∗
0.

Note the condition in (7.1) generalises the condition in (2.1). We need the following.

Lemma 7.4. Any isotypy ϕ : (G, F ) → (G′, F ′) admits a dual ϕ∗ : (G′∗, F ′∗) → (G∗, F ∗), which
is unique up to composing with some Adh with h ∈ NG′∗(G′∗).

Proof. Note that ϕ(T0) is a torus so is contained in a maximal torus of G′. By the conjugacy of

maximal tori there exists an element g′ ∈ G′ such that g
′
ϕ(T0) ⩽ T′

0. As G
′ = G′

der ·Z◦(G′) we can
assume that g′ ∈ G′

der. Using (i) of Lemma 6.4 there is an element g ∈ Gder such that ϕ(g) = g′

and so ϕ(gT0) ⩽ T′
0.

The composition ϕ̃ = ϕ ◦ Adg is an isotypy (G, F̃ ) → (G′, F ′), where F̃ = AdL (g) ◦ F , which
satisfies ϕ̃(T0) ⩽ T′

0. Using the bijections stated in Section 2 we see that we have a bijection

∗ : Hom(T0,T
′
0)

∼−→ Hom(T′∗
0 ,T

∗
0),

which is defined by requiring that X(f) = δ−1 ◦ qX(f∗) ◦ δ′.
If f̃ = ϕ̃|T0 then as ϕ̃ is an isotypy we have X(f̃) defines a p-morphism of root data as defined

in [30, 3.2]. It is easy to see that qX(f̃∗) will be a p-morphism of root data, because X(f̃) is, and so

X(f̃∗) will be as well. By an extension of the isogeny theorem, see [30, Thm 3.8] and the references

therein, there exists an isotypy ϕ∗ : G′∗ → G∗ such that ϕ∗(T′∗
0 ) ⩽ T∗

0 and ϕ∗|T′∗
0
= f̃∗. This is

clearly dual to ϕ.
We now consider the unicity of ϕ∗. If h ∈ NG′∗(G′∗) and ψ = ϕ∗ ◦ Adh then certainly F ∗ ◦

ψ = ψ ◦ F ′∗ so ψ is an isogeny (G′∗, F ′∗) → (G∗, F ∗). As ψ ◦ Adh−1g∗ = ϕ∗ ◦ Adg∗ it follows
straightforwardly that ϕ and ψ are dual.

Conversely, suppose ϕ and ψ are dual and let y ∈ G′∗ be an element such that ψ(yT′∗
0 ) ⩽ T∗

0.
By the conjugacy of maximal tori there exists an element x ∈ G′∗ such that xyT′∗

0 = g∗T′∗
0 . Hence

ψ′ = ψ ◦Adx−1 satisfies ψ′(g
∗
T′∗

0 ) ⩽ T∗
0. Because ψ and ϕ∗ both satisfy (7.1) we must have

qX(ψ′ ◦Adxy) = qX(ψ ◦Ady) = qX(ϕ∗ ◦Adg∗).
This implies that ψ′ ◦ Adxyt = ϕ∗ ◦ Adg∗ for some t ∈ T′∗

0 , see [30, Thm 3.8]. In particular,
ψ = ϕ∗ ◦Adh for some h ∈ G′∗.

As ψ and ϕ∗ both commute with F ′∗ and F ∗, which are bijective, we must have ϕ∗AdF ′∗(h)h−1 =

ϕ∗. Hence, there exists a homomorphism π : G′∗ → ker(ϕ∗) ⩽ Z(G′∗) such that AdF ′∗(h)h−1(x) =

xπ(x) for all x ∈ G′∗. However G′∗
der ⩽ ker(π), because ker(ϕ∗) is abelian, and Z(G′∗) must

also be in ker(π) by definition. Therefore π is trivial so F ′∗(h)h−1 ∈ Z(G′∗) and we may apply
Lemma 6.1. □
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We can now give the analogue of [29, Prop. 7.2] for arbitrary isotypies.

Proposition 7.5. Assume ϕ : (G, F ) → (G′, F ′) is an isotypy and ϕ∗ : (G′∗, F ′∗) → (G∗, F ∗) is

dual to ϕ. If χ′ ∈ E(G′F ′
, s′), for some s′ ∈ G′F ′

, then every irreducible constituent of ϕ⊤(χ′) is
contained in E(GF , ϕ∗(s′)).

Proof. Recall that the regular character is uniform [7, Cor. 10.2.6] and projecting that expression
onto the subspace spanned by E(GF , s) we see that∑

χ′∈E(G′F ′ ,s′)

χ′(1)χ′ =
1

|G′F ′ |p′
∑

(T′,θ′)∈∈∇[s′](G
′,F ′)

εG′εT′RG′
T′ (θ′).

Here ∇[s′](G
′, F ′) denotes the set of pairs (T′, θ′) that are dual to some (T′∗, s′). Now applying ϕ⊤

to this expression we get∑
χ′∈E(G′F ′ ,s′)

χ′(1)ϕ⊤(χ′) =
1

|G′F ′ |p′
∑

(T′,θ′)∈∈∇[s′](G
′,F ′)

εG′εT′RG
ϕ−1(T′)(ϕ

⊤(θ′)).

If χ ∈ Irr(GF ) is an irreducible constituent of ϕ⊤(χ′) then χ occurs with non-zero multiplicity in
the left-hand sum. Hence, there must exist a pair (T, θ) = (ϕ−1(T′), ϕ⊤(θ′)) such that ϕ⊤(χ′) is a
consituent of RG

T (θ).
We now just need to show that if (T′, θ′) corresponds to (T′∗, s′) then (T, θ) corresponds to

(T∗, ϕ∗(s′)). The argument here is exactly the same as that given in the proof of [29, Prop. 7.2],
which we note relies only on the property in (7.1). □

The G′∗-conjugacy class of s′ and hs′ is the same for any h ∈ NG′∗(G′∗). This is because CG′∗(s′)
contains a maximal torus of G′∗, so Z(G′∗) is contained in the connected component of CG′∗(s′).
Hence, the series E(GF , ϕ∗(s′)) is the same regardless of which dual isotypy we pick by Lemma 7.4.

8. On properties (6) and (7)

In this section, we will sometimes want to fix a regular embedding ῑ : G → G̃ with some nice
properties. Throughout, ῑ will refer to the following regular embedding:

Definition 8.1. Let (G, F ) be a finite reductive group with fixed F -stable maximal torus T ⩽ G

and define G̃ = (G×T)/∆ where

∆ = {(z, z−1) | z ∈ Z(G)}.

We have G̃ inherits a Frobenius endomorphism, defined by F ((g, t)∆) = (F (g), F (t))∆ and the

natural map ῑ : (G, F )→ (G̃, F ), given by g 7→ (g, 1)∆, is a regular embedding.

Here we prove the following:

Proposition 8.2. Assume ((G, F ), (G∗, F ∗),T ) is a rational duality and let ῑ : G → G̃ be the
particular regular embedding defined in Definition 8.1. For each semisimple s ∈ G∗ with AG(s)F =

1, let s̃ ∈ G̃∗ be an element such that ῑ∗(s̃) = s, and assume we have bijections

fs,ῑ : E(G, s)→ E(CG∗(s), 1)

and

fs̃ : E(G̃, s)→ E(CG̃∗(s̃), 1)

such that fs̃ =
⊤̄ι∗ ◦ fs,ῑ ◦ResG̃G. Then we have fs,ῑ satisfies properties (6) and (7) of Condition 5.1

if and only if fs̃ satisfies properties (6) and (7) of Theorem 2.1.

We start with property (7).
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Lemma 8.3. Keep the hypotheses of Proposition 8.2. Then Property (7) of Condition 5.1 holds
for fs,ῑ if and only if Property (7) of Theorem 2.1 holds for fs̃.

Proof. We need only consider when both G and G̃ are direct products with F -stable factors. If
G =

∏
j Gj is such a direct product, then an F -stable maximal torus of G is of the form

∏
j Tj

with Tj an F -stable maximal torus of Gj . Defining ∆j = {(z, z−1) | z ∈ Z(Gj)}, we then have

G̃ =

∏
j

Gj ×
∏
j

Tj

 /
∏
j

∆j
∼=

∏
j

((Gj ×Tj)/∆j) =
∏
j

G̃j ,

where ῑj : Gj → G̃j are regular embeddings as in Definition 8.1. That is, the regular embedding ῑ

directly factors as ῑ =
∏
j ῑj . We have s =

∏
j sj and s̃ =

∏
j s̃j . Since fs̃ =

⊤̄ι∗ ◦ fs,ῑ ◦ResG̃G, where
⊤̄ι∗ factors over the direct product, and ResG̃G naturally factors over the direct product, it follows
that fs̃ =

∏
j fs̃j if and only if fs,ῑ =

∏
j fsj ,ῑj , as claimed. □

8.1. On Property (6). Finally, we move on to discussing Property (6).

Lemma 8.4. Let ι : G ↪→ G̃ be a regular embedding. Let G̃1 be a connected reductive algebraic

group defined over Fq with Frobenius map F1 such that Z(G̃1) is connected. Given an epimorphism

φ̃ : (G̃, F ) → (G̃1, F1) such that ker(φ̃) is central, define G1 := φ̃(ι(G)). Then the natural

embedding ι1 : G1 ↪→ G̃1 is also a regular embedding.

Proof. Since the image of a morphism of algebraic groups is closed, we see G1 is a closed subgroup

of G̃1. Since φ̃ is surjective, any element of [G̃1, G̃1] can be written as a product of elements of the

form [φ̃(g), φ̃(h)] = φ̃([g, h]) for g, h ∈ G̃. Then [G̃1, G̃1] ≤ φ̃([G̃, G̃]) = φ̃([ι(G), ι(G)]) since ι is

a regular embedding. Hence [G̃1, G̃1] ≤ [φ(G), φ(G)] = [G1,G1]. □

Lemma 8.5. Let s ∈ G∗ be semisimple such that AG(s)F = 1. Let φ : (G, F ) → (G1, F1) be an
epimorphism such that ker(φ) is central and let φ∗ : G∗

1 → G∗ be a dual map. Let s1 ∈ G∗
1 such

that φ∗(s1) = s. Then AG1(s1)
F1 = 1.

Proof. This follows from the discussion after [3, 2.A], applied to φ∗. □

Recall now that we let ῑ be the specific regular embedding from Definition 8.1. Recall that
ϕ : G→ G1 is an isotypy if the following hold: G and G1 are connected reductive, [ϕ(G), ϕ(G)] =
[G1,G1], and ker(ϕ) ⩽ Z(G). The regular embedding ῑ has the following lifting property with
respect to isotypies.

Lemma 8.6. Suppose ϕ : G→ G1 is an isotypy and let ῑ be the regular embedding from Definition

8.1. Then there exists a regular embedding ι1 : G1 → G̃1 and an isotypy ϕ̃ : G̃→ G̃1 such that the
following diagram commutes

G G1

G̃ G̃1

ϕ

ῑ ι1

ϕ̃

Moreover, ker(ϕ̃) = ῑ(ker(ϕ)) and if ϕ is surjective, then so is ϕ̃.

Proof. We have T1 = ϕ(T) ·Z(G1)
◦ is a maximal torus of G1. If we take G̃1 = (G1×T1)/∆1 and

ι1 : G1 ↪→ G̃1 as above then we have a homomorphism π : G×T→ G̃1 defined by

π((g, t)) = (ϕ(g), ϕ(t))∆1.

It is clear that ι1(ϕ(G1)) ⩽ π(G×T) contains the image of G1 in G̃1.
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We have (g, t) ∈ ker(π) if and only if ϕ(g) = ϕ(t−1) ∈ Z(G1). As ker(ϕ) ⩽ Z(G) and G is
reductive we have the assumptions of Lemma 6.3 hold so g, t ∈ Z(G). Clearly gt ∈ ker(ϕ) so

ker(π) = {(zt−1, t) | z ∈ ker(ϕ) and t ∈ Z(G1)} = ῑ(ker(ϕ)) ·∆.

As this contains ∆ we have π factors through a homomorphism ϕ̃ : G̃ → G̃1. The last two
statements are clear. □

Hypothesis 8.7. Let ῑ : G→ G̃ be the regular embedding constructed in Definition 8.1. Assume
that s ∈ G∗ with AG(s)F = 1. Assume we are in one of the following situations:

• We have fixed an epimorphism φ : G→ G1 with central kernel, so that we obtain a regular

embedding ι1 : G1 → G̃1 and an epimorphism φ̃ : G̃→ G̃1, by Lemma 8.6.

• We have fixed an epimorphism φ̃ : G̃→ G̃1 with central kernel, so we obtain an epimorphism

φ : G → G1 with central kernel and a group G1 with ι1 : G1 → G̃1 a regular embedding
by Lemma 8.4.

In either case, further let s1 ∈ G∗
1 be such that φ∗(s1) = s, so that AG1(s1)

F = 1 by Lemma 8.5.

Note that in either situation of Hypothesis 8.7, we obtain commutative diagrams:

G̃
φ̃−−−−→ G̃1xῑ xι1

G
φ−−−−→ G1.

and

G̃∗ φ̃∗←−−−− G̃∗
1yῑ∗ yι∗1

G∗ φ∗
←−−−− G∗

1..
We next consider the maps ⊤φ and ⊤φ̃.

Lemma 8.8. Assume Hypothesis 8.7. Write G1 := GF
1 and G̃1 := G̃F

1 . Then ⊤φ induces a map

E(G1, s1)→ E(G, s) and ⊤φ̃ induces a map E(G̃1, s̃1)→ E(G̃, s̃), where ῑ∗(s̃) = s and ι∗1(s̃1) = s1.

Proof. Write K := (kerφ)F . Note that φ(G) = φ(GF ) ∼= G/K may be a proper subgroup of G1.
Here given χ1 ∈ E(G1, s1), we have

⊤φ(χ1), defined by ⊤φ(χ1)(g) = χ1(φ(g)) gives a character of G.

Note that ⊤φ(χ1) is the inflation to G of ResG1

φ(G)(χ1). We claim that this restriction is irreducible.

Let χ0 be a constituent of ResG1

φ(G)(χ1). Since φ(G) contains Op′(G1) = Op′(φ(G)) = φ(Op′(G)),

restrictions from G1 to Op′(G1) are multiplicity free by Theorem 6.7. As G1/φ(G) is abelian, we
see it suffices to know that (G1)χ0 = G1.

Let χ ∈ E(G, s) be the inflation of χ0 to G. Since AG(s)F = 1, we have χ extends to G̃, so

G̃χ = G̃. Then by Theorem 6.7 and Proposition 6.8, we also have χ extends to Ĝ. Thus χ0 extends

to Ĝ/K ∼= φ(Ĝ) = Ĝ1, which contains G1 (see Lemma 6.4). This forces (G1)χ0 = G1, as desired.

Now, by Proposition 7.5, we have ⊤φ(χ1) further lies in E(G, s) since s = φ∗(s1). A similar

argument shows that ⊤φ̃ gives a map E(G̃1, s̃1)→ E(G̃, s̃). □

With this, we have:

Lemma 8.9. Assume Hypothesis 8.7. Write G1 := GF
1 and G̃1 := G̃F

1 . Then the following diagram
commutes:

E(G, s) Υs−−−−→ E(G̃, s̃)x⊤φ

x⊤φ̃

E(G1, s1)
Υs1−−−−→ E(G̃1, s̃1),

where Υs is the inverse of the restriction map ResG̃G : E(G̃, s̃)→ E(G, s) and similar for Υs1.
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Proof. From Lemma 8.8, we see that the maps ⊤φ and ⊤φ̃ in the diagram are well-defined. Further,
recalling that AG1(s1)

F1 = 1 by Lemma 8.5, we have Υs1 is well-defined, by Lemma 3.2. We now
show that the diagram commutes.

Let χ1 ∈ E(G1, s1) and let χ̃1 ∈ E(G̃1, s̃1) such that ResG̃1
G1
χ̃1 = χ1. (That is, χ̃1 = Υs1(χ1).)

We claim that ⊤φ(χ1) is a constituent of ResG̃G
(⊤φ̃(χ̃1)

)
, which will imply that Υs ◦ ⊤φ(χ1) =

⊤φ̃ ◦Υs1(χ1).
We have

⟨⊤φ(χ1),Res
G̃
G

(
⊤φ̃(χ̃1)

)
⟩G =

1

|G|
∑
g∈G

χ1(φ(g))χ̃1(φ̃(ῑ(g)))

=
1

|G|
|(kerφ)F |

∑
x∈G1

χ1(x)χ̃1(ι1(x))) =
1

|G1|
∑
x∈G1

χ1(x)χ̃1(ι1(x))).

But this is just ⟨χ1,Res
G̃1
G1
χ̃1⟩G1 , completing the proof. □

Lemma 8.10. Assume Hypothesis 8.7. Then the following diagram commutes:

E(C
G̃∗(s̃), 1)

⊤φ̃∗
−−−−→ E(C

G̃∗
1
(s̃1), 1)yIs yIs1

E(CG∗(s), 1)
⊤φ∗
−−−−→ E(CG∗

1
(s1), 1),

where we define Is := (⊤̄ι∗)−1 and Is1 := (⊤ι∗1)
−1.

Proof. Note that the maps ⊤φ∗ and ⊤φ̃∗ in the diagram make sense, as A(s)F and A(s1)
F are both

trivial.
Let ψ̃ ∈ E(C

G̃∗(s̃), 1) and let ψ = Is(ψ̃), so that ψ̃ = ψ ◦ ῑ∗. Since ῑ∗ ◦ φ̃∗ = φ∗ ◦ ι∗1, we see for

g ∈ C
G̃∗

1
(s̃1), we have ⊤φ∗(ψ)(ι∗1(g)) = ψ(φ∗(ι∗1(g))) = ψ(ῑ∗(φ̃∗(g))) = ψ̃(φ̃∗(g)) = ⊤φ̃∗(ψ̃)(g). This

means ⊤φ∗(ψ) ◦ ι∗1 = ⊤φ̃∗(ψ̃), and hence Is1 ◦ ⊤φ̃∗ = ⊤φ∗ ◦ Is. □

Corollary 8.11. Assume Hypothesis 8.7. Let fs : E(G, s) → E(CG∗(s), 1) and fs̃ : E(G̃, s̃) →
E(C

G̃∗(s̃), 1) be bijections constructed such that the following diagram is commutative:

E(G̃, s̃) fs̃−−−−→ E(C
G̃∗(s̃), 1)yResG̃G

x⊤̄ι∗

E(G, s) fs−−−−→ E(CG∗(s), 1)

Let fs1 and fs̃1 be analogous. Then the diagram

E(G, s) fs−−−−→ E(CG∗(s), 1)x⊤φ

y⊤φ∗

E(G1, s1)
fs1−−−−→ E(CG∗

1
(s1), 1),

commutes if and only if

E(G̃, s̃) fs̃−−−−→ E(C
G̃∗(s̃), 1)x⊤φ̃

y⊤φ̃∗

E(G̃1, s̃1)
fs̃1−−−−→ E(C

G̃∗
1
(s̃1), 1)

does.

Proof. Consider the 3-D diagram whose top and bottom diagrams are those discussed regarding
fs, fs̃ and fs1 , fs̃1 ; whose left and right diagrams are those discussed in Lemmas 8.9 and 8.10, and
whose back and front diagrams are those being considered here. Since the top and bottom diagrams
commute by assumption (which makes sense by the fact that A(s)F = 1 = A(s1)

F1) and the left
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and right diagrams commute by Lemmas 8.9 and 8.10, we see that the back commutes if and only
if the front commutes. □

We now immediately obtain:

Corollary 8.12. Keep the hypotheses of Proposition 8.2. Then Property (6) of Condition 5.1 holds
for fs,ῑ if and only if Property (6) of Theorem 2.1 holds for fs̃.

We have now completed the proof of Proposition 8.2, by combining Corollary 8.12 with Lemma
8.3.

9. Uniqueness of Jordan Decomposition in Case A(s)F = 1

We now complete the proof of Theorem 1.1, with the following:

Theorem 9.1. For each (G, F ) a finite reductive group defined over Fq, let D = ((G, F ), (G∗, F ∗),T )
be a fixed rational duality. Then there is a unique set of bijections

JG
s : E(G, s) −→ E(CG∗(s), 1),

indexed by s ∈ SD, such that properties (1)-(7) of Condition 5.1 hold. Moreover, this bijection
satisfies

(a) For the regular embedding ῑ : G ↪→ G̃ as in Definition 8.1 and any s̃ ∈ G̃∗ such that
ῑ∗(s̃) = s, the following diagram commutes:

E(G̃, s)
JG̃
s̃−−−−→ E(C

G̃∗(s), 1)yResG̃G

x⊤̄ι∗

E(G, s) JG
s−−−−→ E(CG∗(s), 1)

where JG̃
s̃ is the unique map for G̃ satisfying Theorem 2.1.

(b) Further, the collection {JG
s | A(s)F = 1} is G-equivariant.

Proof. We take the regular embedding ῑ : G → G̃ as in Definition 8.1, with semisimple element

s̃ ∈ G̃∗ such that ῑ∗(s̃) = s, and JG̃
s̃ the uniquely defined Jordan decomposition map in Theorem

2.1. Then by Propositions 5.2, 5.6, and 8.2, the map JG
s defined by

JG
s = (⊤̄ι∗)−1 ◦ JG̃

s̃ ◦ (ResG̃G)−1

satisfies properties (1)-(7) of Condition 5.1, giving the existence.
If fs : E(G, s) −→ E(CG∗(s), 1) is any other bijection satisfying these properties, then again from

Propositions 5.2, 5.6, and 8.2, the map

fs̃ :=
⊤̄ι∗ ◦ fs ◦ ResG̃G : E(G̃, s̃)→ E(CG∗(s), 1)

can be constructed for any s̃ such that ῑ∗(s̃) = s and the collection of such maps satisfies properties

(1)-(7) of Theorem 2.1. It follows from this result that fs̃ = JG̃
s̃ , and so we have

fs = (⊤̄ι∗)−1 ◦ JG̃
s̃ ◦ (ResG̃G)−1 = JG

s ,

giving uniqueness. This together with Lemmas 4.1 and 4.2 yield (a) and (b). □
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