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Abstract

We prove that the finite exceptional groups Fy(q), F7(q)ad, and Eg(q) have no irreducible
complex characters with Frobenius—Schur indicator —1, and we list exactly which irreducible
characters of these groups are not real-valued. We also give a complete list of complex irre-
ducible characters of the Ree groups 2 F;(¢?) which are not real-valued, and we show the only
character of this group which has Frobenius—Schur indicator —1 is the cuspidal unipotent
character yo1 found by M. Geck.
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1 Introduction

Given a finite group GG and its table of complex irreducible characters, it is a natural question
to ask the value of the Frobenius-Schur indicator of each irreducible character of G. That
is, we may ask whether each character is real-valued, and if it is, whether it is afforded by a
representation which is defined over the real numbers. The Frobenius—Schur indicator is given,
for example, in each character table in the Atlas of finite groups [7]. If we have the full character
table of GG, and we know the square of each conjugacy class of GG, then the Frobenius—Schur
indicator may be computed directly from its character formula. Without directly applying the
formula, we could also identify which characters of G are not real-valued from its character
table, and if we have proven that certain irreducible characters of G have indicator equal to —1,
we can check if these are the only such characters by counting the involutions in G and using
the Frobenius—Schur involution count. We do exactly this for many finite exceptional groups.
In some cases where the generic character table is not known (for example, Eg(q)), we use
results from the character theory of finite reductive groups to identify precisely those irreducible
characters which are not real-valued, and so we obtain complete results for the Frobenius—Schur
indicators for the characters of these groups.

After preliminary notions and results in Section 2, we give examples of this method for some
small-rank exceptional groups in Section 3, namely for the groups 3Dy(q), 2B2(¢?), 2Ga(q?),
and G2(q). We confirm some known results on the Frobenius—Schur indicators in these groups,
which are all 1 or 0 in these cases. We also discuss two related problems for these groups in
Section 3. First is the computation of the Schur index of the irreducible characters of a group;
the index is conjectured to be at most 2 for any finite quasisimple group (see Section 2.1), and is
known to be 1 for every irreducible character of the exceptional groups just listed. The second
related problem is the determination of the strongly real classes of a group, which are the real
classes which can be inverted by an involution. It is known that every real class is strongly real
for each of the above finite exceptional groups, except for Ga(q) when ¢ is a power of 2 or 3. In
Proposition 3.1, we confirm this statement for those remaining cases by using the known generic
character table of Ga(q).



In Section 4, we study the exceptional groups Fy(q) and 2Fy(g?). While the full generic
character table of Fy(q) is not yet fully known, the fields of character values and the Schur
indices of unipotent characters of Fy(q) (and all other exceptional groups) have been determined
by Geck [18, 19, 20]. It turns out that the only characters of Fy(q) which are not real-valued
are unipotent, and we show that the other characters all have Frobenius—Schur indicator 1 in
Theorem 4.1. As a corollary, we check that the Schur index of every character of Fy(q) is at
most 2 in Corollary 4.1. The generic character table of 2F,(g?) can be accessed in the package
CHEVIE [21], and much of its character table is available in the literature [25, 33]. With this
information, and the work of Geck on unipotent characters, we compute the Frobenius—Schur
indicators for the characters of 2Fy(¢?) in Theorem 4.2. In particular we show that the only
character of this group which has indicator equal to —1 is the cuspidal unipotent character found
by Geck [18].

We develop some results in Section 5 on the character theory of finite reductive groups
which are applied to extend our method to some exceptional groups of larger rank in Section
6. Lemma 5.1 gives some conditions on arbitrary connected reductive groups over finite fields
to ensure all unipotent characters are invariant under any rational outer automorphism. We
combine this with a previous result on the Jordan decomposition of real-valued characters of
certain finite reductive groups [43] to give manageable conditions for an irreducible character to
be real-valued in Lemma 5.2. These results, along with the work of Geck on unipotent characters
and computations of Liibeck [28, 29] allow us to compute the Frobenius—Schur indicators of all
irreducible characters of F7(q)aq and Eg(g) in Theorems 6.1 and 6.2. In particular, all real-
valued characters of these groups have indicator 1, and a list of all characters of these groups
which are not real-valued is given, along with their character degrees, in Tables A.4 and A.5.

In Section 7, we discuss the remaining cases and what results and information are needed in
order to complete the computations of Frobenius—Schur indicators for these finite exceptional
groups. Finally, all tables of the results from the computations made are given in the Appendix.
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2 Preliminaries

2.1 Frobenius—Schur indicators and Schur indices

If G is a finite group, we denote by Irr(G) the set of irreducible complex characters of G. Given
X € Irr(G), we recall the Frobenius—Schur indicator of x (see [26, Chapter 4]), which we denote
by €(x), may be defined as

1 2
00 = a1 > x(g?).
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Then £(x) = 1,—1, or 0, where £(x) = 0 precisely when x is not real-valued. When x is real-
valued, £(x) = 1 precisely when y is afforded by a complex representation which may be defined
over the real numbers, and otherwise e(x) = —1. The Frobenius—Schur involution count is the



equation [26, Corollary 4.6]
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Every g € G such that g? = 1 is an involution of G, where we include the identity as an involution
for convenience. Note that from (2.1), since e(x) < 1 for each x € Irr(G), the sum of the degrees
of the real-valued characters y € Irr(G) is always at least the number of involutions, and there
is equality precisely when e(x) = 1 for all real-valued x € Irr(G). This observation is the main
strategy in computing Frobenius—Schur indicators in this paper.

If K is a subfield of C, and x € Irr(G), then let K(x) denote the smallest field containing
K and all of the values of x. The Schur index of x over K, which we denote by mg(x), is
the smallest positive integer m such that my is afforded by a representation defined over K (x)
(see [26, Corollary 10.2]). In particular, if K = R then mg(x) = 1 when e(x) =1 or e(x) = 0,
and mpr(x) = 2 when e(x) = —1. For the case K = Q, it has been conjectured that if G is a
quasisimple group, then mg(x) < 2 for all x € Irr(G), while it is known that in general mq(x)
might be arbitrarily large for other finite groups, see [48] for example. A relevant result relating
this conjecture to our results in this paper is the Brauer—Speiser Theorem (see [26, p. 171]),
which states that if x € Irr(G) and x is real-valued, then mg(x) < 2.

2.2 Exceptional groups

Here we recall basic facts about finite exceptional groups and finite simple groups of exceptional
type. Let p be a prime, F, a finite field with p elements and F, a fixed algebraic closure. Let G
be a connected reductive group over Ey, and let F' be a Steinberg map of G. We consider the
exceptional groups to be the groups of the form G with G a simple algebraic group, and either
the isogeny type of G is one of Go, Fy, Fg, E7, Eg, or G is either a Steinberg triality group
3D4(q) with ¢ an integer power of p, or a Suzuki group of the form ?Bs(q?) where ¢ = 22m+!
and p = 2. In the former case, G can be one of the groups (see [4, Section 1.19])

G2(9), F1(9), Es(q)ads Bo(0)sc, *E6(q)ads *E6(@)sc: EB7(q)ads B7(q)sc, Es(q),

with ¢ an integer power of p, or a Ree group of the form 2G5(¢?) with ¢ = 3?1 and p = 3, or
2Fy(¢?) with ¢? = 22"+ and p = 2.

We recall that the groups Ga(q) (unless ¢ = 2), Fy(q), and Eg(q) are finite simple groups,
with the associated algebraic group G having trivial (and so connected) center over F,. The
derived subgroup, G2(2)’, of G5(2) is simple, and is isomorphic to PSU(3,3). The groups *D4(q),
2B(q?), and 2Go(q?) are finite simple groups, and 2Fy(¢?) is a finite simple group unless ¢* = 2,
in which case the derived subgroup 2F4(2)’ of index 2, or the Tits group, is a finite simple group.
The simple algebraic groups of adjoint type have trivial (and so connected) center, but the groups
of simply connected type do not in general. If ¢ # 1(mod 3), then Eg(q)aa = E6(q)sc = Eo6(q)
is a finite simple group, and otherwise Fg(q)aq has the finite simple group Fg(g) as an index 3
subgroup, and Fg(q)sc has an order 3 center Z and Fg(q)sc/Z is isomorphic to the finite simple
group Fg(q). If ¢ # —1(mod 3), then 2Eg(q)aq = 2F¢(q)sc = 2E6(q) is a finite simple group, and
otherwise 2Fg(q)aq has the finite simple group 2FEg(q) has an index 3 subgroup, and 2Fg(q)sc
has an order 3 center Z with quotient 2Eg(q)sc/Z isomorphic to the finite simple group 2Eg(q).
Finally, if ¢ is even then F7(q)aq = E7(q)sc = E7(q) is a finite simple group, while if ¢ is odd
then F7(q)aq has as an index 2 subgroup the finite simple group E7(q), and E7(q)sc has an order
2 center Z with quotient E7(q)sc/Z isomorphic to the finite simple group E7(q).



2.3 Jordan decomposition of characters

Let G be a connected reductive group over IF‘p with Steinberg map F. If we take T to be a
maximal F-stable torus of G, with @ an irreducible character of T, then we denote by RS ()
the Deligne-Lusztig generalized character of GI defined by the G¥-conjugacy class of pairs
(T, 0) (see [4, Chapter 7] or [10, Chapter 11]).

The unipotent characters of G are exactly the irreducible characters ¥ of G such that
(1, R&(1)) # 0 for some F-stable maximal torus T of G, where 1 is the trivial character and (-, -)
denotes the standard inner product on class functions of a finite group. If G is a disconnected
group with connected component G°, then the unipotent characters of G are taken to be the
irreducible constituents of Ind(cé;) # (1), where v varies over all unipotent characters of (G°)F.

Now let G* be some fixed dual group of G (with respect to some fixed Lie root data for
G), with corresponding dual Steinberg map F™*. By [10, Proposition 13.13], there is a bijection
between G*/""-conjugacy classes of pairs (T*, s) where T* is an F*-stable maximal torus of G*,
and s € T*I"" is a semisimple element of G*f", and G¥-conjugacy classes of pairs (T, #) where
0 is an irreducible character of TF. Given a semisimple G*f"-conjugacy class (s), the rational
Lusztig series E(GF (s)) of GT' is the collection of irreducible characters x € Irr(G*') such that
(X, R,%:: (0)) # 0 where the GF-class of the pair (T, 6) corresponds to the G*f"~class of the pair
(T*, s) for some F*-stable maximal torus T* of G*/". In particular, the collection of unipotent
characters of G¥' is given by the Lusztig series £(G¥', (1)), since the classes of pairs (T, 1) and
(T*,1) correspond when T and T* are dual tori.

For G a connected reductive group, given a semisimple class (s) of G*f" and some fixed
element s from that class, a Jordan decomposition map is a bijection

Js: (G (5) — S(Cc;*(s)F*, (1)) such that (X,R%(H)) = :l:(Js(X),Rg*G*(S)(l»

for every x € £(GF, (s)), where Cg+(s) is the centralizer, and T* is a maximal F*-stable torus
such that s € T*F". Such a bijection was shown to always exist when Z(G) is connected by
Lusztig [31]. While we do not explicitly need it in this paper, such a map also always exists when
Z(G) is not connected, where if Cg«(s) is disconnected we still let £(Cg+(s)F", (1)) denote its
set of unipotent characters (see [10, Theorem 13.23]). Using the maps Js, we may parameterize
the irreducible characters of G by G*f""-conjugacy classes of pairs (s, ) where v is a unipotent
character of Cq=(s)", where the class of the pair (s, 1)) corresponding to x € Irr(GT) is called its
Jordan decomposition. The most important property of the Jordan decomposition of characters
that we will need is that if y corresponds to the class of pairs (s,), then the degree of the
character y is given by x(1) = [G*!" : Cg+(s)f"],1(1), where the subscript p’ denotes the
prime-to-p part of that centralizer [10, Remark 13.24].

3 Examples and related results

In this section, we consider the Frobenius—Schur indicators of the characters of the groups
3D4(q), 2Ba2(q?), 2G2(¢?), and G2(q). While these results are known, we give these examples as
motivation for the computational method used for other results in this paper, and to place the
results in the context of other interesting questions.

The group 3D4(q). When ¢ is odd, Barry [2, Step 1] makes exactly the computation which
we carry out for other examples. Namely, it is shown that when ¢ is odd, the group has
q'% + ¢'%2 + ¢® + 1 involutions, and that this matches the sum of the character degrees which can



be obtained from [9, Table 4.4]. When ¢ is even, it follows from [47, Section 8] or [1, Section
18] that the number of involutions in ®Dy(q) is ¢'% + ¢*2 — ¢*. It follows from [9, Table 4.4] that
this is also the sum of the character degrees of the group when ¢ is even. Thus e(y) = 1 for all
irreducible characters of 3Dy(q) by the Frobenius—Schur involution count (2.1).

The group 2Bs(q?), ¢*> = 2?1, The classes and characters of this group are computed by
Suzuki [44, 45]. Tt follows from [45, Proposition 7] that the number of involutions in 2B(g?) is
q% — ¢* + ¢%. From [45, Theorem 13], the two characters labeled as W, are not real-valued. The
sum of the degrees of the remaining characters is ¢° — ¢* +¢?, and so () = 1 for all real-valued
irreducible characters of 2By(¢?) again by (2.1).

The group 2Ga(q?), ¢*> = 3*™*L. Tt follows from [39, Theorem 8.5] and [50, Introduction]
that the number of involutions in 2Ga(q?) is ¢® — ¢% + ¢* + 1. The characters which are not
real-valued are given in the table of Ward [50, p. 87|, labeled as &5, &, &7, &3, &9, and &19. Their
degrees are given, as are all of the degrees for the irreducible characters of 2?Ga(g?). Taking the
sum of the degrees of the real-valued irreducible characters yields the number of involutions in
the group, and so () = 1 for all real-valued x € Irr(?G2(¢?)).

The group Go(q). First, when ¢ is odd it follows from [5, Theorem 4.4 and p. 209] and [11,
Table 2] or from [27, p. 282] that the number of involutions in Ga(q) is ¢® +¢% 4 ¢* +1. Tt follows
from [11, Propositions 2.5 and 2.6] that when ¢ is even the number of involutions in Ga(q) is
¢ + ¢% — ¢®. Next, it follows from [18, Table 1] that the cuspidal unipotent characters Ga[f]
and G2[0?] are not real-valued, and from [4, p. 478] we find these characters each have degree
%q(q2 —1)2. We may take the sum of the degrees of all other characters, by using the tables in
[6, 12] for ¢ odd and [14] for ¢ even (or by using [29]), and we find that this matches the number
of involutions. Thus €(x) = 1 for each real-valued irreducible character x of Ga(q).

We mention other relevant results for the groups in the above examples. It is known that
for every G above, every y € Irr(G) satisfies mg(x) = 1. This is proved for G = 2Bs(¢?) or
2G5(¢?) by Gow [24, Theorem 9], for G = 3Dy4(q) by Barry when ¢ is odd [2] and by Ohmori
when ¢ is even [38, Theorem 3|, and for G = G2(¢) when ¢ is odd by Ohmori [36] and when ¢
is even by Enomoto and Ohmori [13]. In fact, these results on the Schur index imply that the
Frobenius—Schur indicator is 1 for each irreducible real-valued character of each of these groups.

Recall that an element g of a finite group G is real if g is conjugate to ¢—! in G, and that the
number of conjugacy classes of real elements in G is equal to the number of real-valued characters
in Irr(G). We may also ask whether every conjugacy class of real elements is necessarily strongly
real for each of the groups G above, where an element (or conjugacy class) g of a group G is
strongly real in G if there exists h € G such that h? = 1 and h='gh = g~'. For G = 3Dy(q), it is
proved by Vdovin and Gal't [49, Theorem 1] that all classes of G are strongly real. Suzuki proved
[45, Section 10] that all real classes of the groups 2Ba(¢?) are strongly real. For G' = 2G5(¢?), we
invoke a result of Gow [23, Corollary 1] which says that if a finite group has an abelian Sylow
2-subgroup, then all of its real elements are strongly real if and only if all real-valued irreducible
characters of the group have Frobenius—Schur indicator 1. The latter holds for these groups
as discussed above, and the Sylow 2-subgroup is abelian by [39, Theorem 8.5], and so all real
classes are strongly real in 2Ga(q?).

Singh and Thakur [42, Corollary A.1.6] proved that if ¢ is not a power of 2 or 3, then all
real elements of G5(q) are strongly real. We now address the remaining cases.

Proposition 3.1. All real classes of Ga2(q) are strongly real.



Proof. As just mentioned, Singh and Thakur prove this statement when ¢ is not a power of 2 or
3. The generic character table for Ga(g) when ¢ is a power of 2 or 3 is in the package CHEVIE
[21]. We may use the character table to prove the statement by using the following result (see
[32, p. 125]). If C4, Co, and C5 are conjugacy classes of the finite group G, then the number
n123 of pairs (g1, g2) such that g1 € C1, g2 € Cs, and the product g; g2 is equal to a fixed element
g3 € Cs is given by

_|C]]Cy| X(C1)x(C2)x(C3)
|G Z x(1)

These are the class multiplication coefficients, and we must show that for every real class C3 of
G2(q), there are classes C1 and Cy of involutions such that nj23 # 0. This is indeed the case for
G2(q) with g a power of 2 or 3, and our results from the computation are given in Table A.1. [

n123

x€lrr(G)

4 The groups Fjy(q) and 2Fy(¢?)

We now consider the finite exceptional group Fy(q). We have the following result, where our
notation for the cuspidal unipotent characters of Fy(q) is that of Lusztig [31].

Theorem 4.1. For every prime power q, the only irreducible characters of Fi(q) which are
not real-valued are the cuspidal unipotent characters Fy[i], Fy[—i|, F4[0], and F4[0%). All other
irreducible characters x of Fy(q) satisfy e(x) = 1. That is, mr(x) = 1 for all x € Irr(Fy(q)).

Proof. When ¢ is odd, the number of involutions in Fy(q) can be computed using [27] or [41],
and is given by

q28+q26+2q24+2q22+2q20_’_2q18+2q16_’_q14_’_q12+q8'

When ¢ is even, the number of involutions in F4(q) may be computed using [40, Corollary 1] or
[1, Section 13], and is given by

A g2 =0 — gl M0 B

The fact that the four listed cuspidal unipotent characters of Fy(q) are not real-valued (inde-
pendently of ¢) follows from Geck [18, Table 1], and the degrees of these characters can be found
in the table of Lusztig [31, p. 372]. Taking the sum of all of the character degrees of Fy(q)
using the data in [29], with the result listed in Table A.2, and subtracting the degrees of the
unipotent characters which are not real-valued, we obtain precisely the numbers of involutions
given above, whether ¢ is even or odd. The result follows. O

As mentioned in Section 2.1, it has been conjectured that if G is a quasisimple group, then
mo(x) < 2 for all x € Irr(G). As an application of Theorem 4.1 and previous work of Geck
[18, 19], we are able to conclude this statement indeed holds for the case that G = Fy(q).

Corollary 4.1. For every prime power q, and every x € Irr(Fy(q)), we have mg(x) < 2.

Proof. Tt is proved by Geck in [18, Table 1 and Section 6] and [19, Corollary 3.2] that if y is
one of the cuspidal unipotent characters Fy[i], Fy[—i], F4[f], or F4[0%], then mg(x) = 1. By
Theorem 4.1, the rest of the irreducible characters of Fy(q) are real-valued, and so the result
now follows from the Brauer—Speiser Theorem. O



In fact, it follows from the work of Geck [18, 19] that mg(x) = 1 for all unipotent characters
x of Fy(q). We expect this stronger result to hold for all irreducible characters of Fy(q). We also
expect that all real classes of Fy(q) are strongly real, which can be checked for the case Fy(2)
using GAP [17] as in the proof of Proposition 3.1.

We now consider the Ree groups 2Fy(q?) with ¢ = 22™*1, In the following, the notation for
the unipotent characters of 2Fy(q?) is taken from the paper of Malle [33], and the notation for
the non-unipotent characters is that used in the paper of Himstedt and Huang [25].

Theorem 4.2. The only irreducible character of 2Fy(q*) with Frobenius-Schur indicator —1 is
the cuspidal unipotent character x21. The only irreducible characters which are not real-valued
are the unipotent characters Xxs, X6, X7, X8, X15, X16, X17, and X1is, and the non-unipotent

characters gxas(k), axaa(k), axar(k), and gxas(k).

Proof. First, the classes of involutions in the group are given in [40, Corollary 2], and the orders
of their centralizers can be obtained from [40, Theorem 2.1]. Taking the sum of the indices of
these centralizers and adding 1 yields that the total number of involutions in ?Fy(¢?) is given by

q28 _ q26 + q24 + q22 _ q20 _|_q16 _ q14 +q10 _ (]8~

The fact that the cuspidal unipotent character yo; satisfies £(x21) = —1 is a result of Geck
[18, Theorem 1.6}, also given by Ohmori [38]. That the listed unipotent characters are not real-
valued follows from the work of Malle, where these unipotent characters take non-real values on
the unipotent classes listed as uz in [33, Tabelle 2]. The non-unipotent characters listed take
non-real values, as computed in the paper of Himstedt and Huang [25, Table B.12], on the class
listed as ¢1 11. The degrees of these non-unipotent characters are listed in [25, Table A.14].

The sum of all character degrees of 2Fy(¢?) may be computed using the data in [29], and
the result is listed in Table A.2. From this, we subtract the degrees of the characters which are
not real-valued, and we subtract twice the degree of the character xo; with Frobenius—Schur
indicator —1. The result is precisely the number of involutions in the group, and so the claim
follows by the Frobenius—Schur involution count. O

We may also consider properties of the conjugacy classes of 2Fy(¢?) by using its generic
character table in CHEVIE. This group has two classes of involutions, which are class type 2 and
class type 8 in CHEVIE. By computing the class multiplication coefficients as in the proof of
Proposition 3.1, we find that each of the conjugacy classes labeled as class types 7, 10, 11, and
15 is real but not strongly real. We thank Frank Himstedt for assistance in this calculation.

For the Tits group 2F4(2)’, it can be checked using GAP [17] that there are 16 real-valued
characters and 6 characters that are not real-valued. All of the real-valued characters have
Frobenius—Schur indicator 1, and each of its real conjugacy classes is strongly real.

5 Automorphisms and unipotent characters

Let G be a connected reductive group over F, and let F be a Steinberg map for G. An
automorphism ¢ of the algebraic group G which commutes with F' is said to be defined over F'.
Then o defines an automorphism of the finite group G¥'. We let Out(G, F') denote the collection
of all outer automorphisms of G which are defined over F'.

Lemma 5.1. Let G be a connected reductive group over Fp such that no two simple factors of
G are isogenous, and such that G has no simple factor which is of type Da,. Further, if p = 2
assume G has no simple factors of type Co or Fy, and if p = 3 assume G has no simple factors



of type Ga. Let F be a Steinberg map for G, and o € Out(G, F). If ¢ is a unipotent character
of GF', then ¢ = 1.

Proof. First consider the case that G is a simple algebraic group with Steinberg map F', and
G is not of type Doy, not of type Cy or Fy if p = 2, and not of type G if p = 3. It follows
from [34, Proposition 3.7], [35, Theorem 2.5], and [46, Lemma 1.64], that ¢ = v for every
unipotent character of GI" and every o € Out(G, F). If G is simple of adjoint type, suppose
now that o is defined over F' but inner, say defined by x € G. Then for every g € G, we
have x(F(g))z~! = F(z)F(g9)F(z)™!, so that 2~ 'F(z) € Z(G). Since G is of adjoint type,
Z(G) = 1, and it follows that 2 € G¥. Thus “¢ = 1) for every unipotent character ¢ of G’
when o is an automorphism of G defined over F' and G is a simple algebraic group of adjoint
type.

Next assume that G is a connected reductive group of adjoint type, so that G is a direct
product of simple algebraic groups of adjoint type, say G = [[, H;, and suppose o is an au-
tomorphism of G which is defined over F'. We also assume that no two simple factors of G
are isogenous, no simple factor H; is of type Da,, none of type Cs or Fy if p = 2, and none of
type Go if p = 3. Since o must map simple factors of G to other simple factors, and since no
pair of simple factors is isogenous, each H; must be o-stable. Similarly, the assumption that
no pair of simple factors of G is isogenous implies that each simple factor H; is F-stable. Now
Gl = IL Hf , and it follows that each Hf is o-stable, and so we may view o restricted to H; as
an automorphism of H; defined over F. Each unipotent character v of G is of the form IL
with 1; a unipotent character of HI (by [30, p. 28], for example), and by the simple algebraic
group case of adjoint type we have “v; = 1);. Since 7% = [, 744, we have ¢ = 1.

Finally we consider the case that G is a connected reductive group with no simple factor of
type Day,, none of type Co or Fy if p = 2, none of type G» if p = 3, no isogenous pair of simple
factors, and o € Out(G, F'). Consider the adjoint quotient map, which is an algebraic surjection
¢ G = G,q with ker(¢) = Z(G). See [22, Section 1.5] for the definition and properties of
the adjoint quotient map. Here G,q is a group of adjoint type, and so is a direct product of
simple algebraic groups of adjoint type, where these simple factors are the adjoint types of the
simple factors of G, and so with corresponding factors isogenous. Thus G,q has no pair of
simple factors which are isogenous, and no simple factor of type Da,, or of type Co or Fy if
p = 2, or of type G» if p = 3, since this holds for G. The adjoint quotient map ¢ also induces a
Steinberg map on G,q, which we also call F', which commutes with ¢. We may then define an
automorphism & of G,q, where 6(gg) = ¢(o(g)), where g € G satisfies ¢(g) = go. Note that this
makes & well-defined since Z(G) = ker(¢), and 0(Z(G)) = Z(G). It follows that F' commutes
with ¢ on G,q, that is, & is defined over F' on G,q. From the previous case, if g is a unipotent
character of Gf , then 1)y = .

Now consider a unipotent character 1 of G¥'. The adjoint quotient map ¢ induces a map
from G to GI| which has image Gy isomorphic to G'/Z(G!). By a result of Lusztig [30,
Proposition 3.15], every unipotent character of G¥ is obtained by restricting a unipotent of
Gfd to G and factoring through the surjection from G¥. That is, given unipotent 1 of G,
and g € G, there exists a unipotent character 1y of Gfd and an element gy of GG; such that
¢(9) = g1 and ¥(g) = Yo(g1). Then 7¢(g) = ¥(0(g)) = vo(d(g1)) = “o(g1) = to(g1), since
T1ho = )o. Since YPy(g1) = ¥(g), we now have 719 = 1 as claimed. O

Our main application of Lemma 5.1 will be in combination with the following result from
[43, Theorem 4.1].



Theorem 5.1. Suppose that G is a connected reductive group with connected center and Frobe-
nius map F, and x € Irr(GT) with Jordan decomposition (s,1). Then X has Jordan decompo-
sition (s~1,4). In particular, x is real-valued if and only if s is conjugate to s~ in G*", and
if h € G*" is such that hsh™' = s71, then ") = ).

We may now make the following observation, which is crucial in the proof of our main results
in the next section.

Lemma 5.2. Suppose G is a connected reductive group with connected center and Frobenius
map F, and x € Irr(GF) with Jordan decomposition (s,1)). Suppose that s is a real semisimple
element of G*I with centralizer Cg+(s) which has no pair of simple factors which are isogenous,
no simple factor of type Do, , none of type Co or Fy if p = 2, and none of type Go if p = 3.
Then x is real-valued if and only if 1 is real-valued.

Proof. We have s € G*f"" is a semisimple element which is real in G*", so let h € G*I"" be such
that hsh™! = s~!. Since we assume that the center of G is connected, Cg«(s) is a connected
reductive group. We may then define an automorphism o on the connected reductive group
Cg+(s) by on(a) = hah™!, and if s is not an involution, then o} is an outer automorphism.
Since h € G*", g}, commutes with F*, that is, 0, € Out(Cg-«(s), F*). In particular, if Cg«(s)
has no two simple factors which are isogenous, no simple factor of type Ds,, none of type Cs or
Fy if p =2, and none of type Gs if p = 3, then Lemma 5.1 applies to the automorphism o}, and
so 1 is invariant under op. In this situation (or if s is an involution) it follows from Theorem
5.1 and Lemma 5.1 that x is real-valued if and only if v is real-valued. O

6 The groups E7(q).q and Ex(q)

In this section we give our main results for the exceptional groups E7(q)aq and Eg(q). We
begin by noticing that since —1 is in the Weyl group of type E7 and type FEg, by a result
of Singh and Thakur [42, Theorem 2.3.1] every semisimple element s in each of the groups
G = F7(q)ad, E7(q)se, or Es(q) is real in GF'. Tt follows from Theorem 5.1 that for every
irreducible character x of G the characters xy and y are in the same Lusztig series £(GF', (s)).
The notation for the relevant unipotent characters of the groups in the results of this section
is slightly adjusted from that of [4, pp. 483-488] for the sake of clarity. For example, instead
of using the notation Eg[0?], ¢ for the unipotent character in the last line of [4, p. 483], we will
write Eg[0?, €]. The structure of centralizers of semisimple elements in these results is given as
a product of the simple factor types along with any central torus factor which occurs, where a
polynomial in ¢ denotes a torus of that order. We now give our results for the group E7(q)aq-

Theorem 6.1. Let g be a prime power. The number of irreducible characters of the group
G = E7(q)aq which are not real-valued is 2q + 4 if q is even, and 2q + 8 if q is odd. These
characters which are not real-valued are:

e The unipotent characters E;[€], E7[—€], Egl0,1], Es0%,1], Egl0, €], and Eg[6?,€);

o When q is odd, the siz unipotent characters above tensored with the linear character of
order 2 of G';

e A conjugate pair of characters in each of %(q —2) (if q is even) or %(q —3) (if q is odd)
Lusztig series E(GY,s), where (s) is a semisimple class in G such that Cg~(s)f" is of
type E(q).(q —1);



e A conjugate pair of characters in each of %q (if q is even) or %(q —1) (if q is odd) Lusztig
series E(GF | 5), where (s) is a semisimple class in G*F" such that Cg«(s)F" is of type
E(q)-(a+1).

Moreover, every real-valued irreducible characters of GY' has Frobenius—Schur indicator 1, that
is, mg(x) = 1 for all x € Irr(GF).

Proof. We first explain why the list of characters are not real-valued. It follows from [18, Table
1] that the cuspidal unipotent characters E7[¢] and Er[—¢] of E7(q)aq (or of E7(q)s.) are not
real-valued for any q. The unipotent characters Fg[0, 1], Eg[0, €], Eg[0?,1], and Fg[0?, €] are not
cuspidal, and are constituents of a Harish-Chandra series corresponding to a Levi component
which is type Eg(q), parabolically induced from the cuspidal unipotent character Eg[f] of Eg(q)
for the first two cases, and from the cuspidal unipotent character Eg[0?] in the last two cases.
The cuspidal unipotent characters Eg[f] and Fg[0?] are not real-valued again by [18, Table 1].
It follows from [18, Proposition 5.6] that the fields of character values of Eg[f, 1] and Eg[6, €]
are the same as that of Eg[f], and the fields of character values of Eg[6?,1] and Fg[6?, €] are the
same as that of Fg[#?], and so these unipotent characters of E7(q)aq are not real-valued. When
q is odd, the derived subgroup of G¥ is the simple group E7(q), and is an index 2 subgroup of
G!. Thus G has a linear character \ of order 2 when ¢ is odd. Tensoring the six unipotent
characters which are not real-valued of G with \ produces six distinct irreducible characters
which are not unipotent by [10, Proposition 13.30(ii)], and does not change the field of values.
Thus these six characters are also not real-valued when ¢ is odd.

Next, it follows from [8, 15] that the group G*F" = E7(q)s has 3(¢ — 2) (if ¢ is even) or
3(q—3) (if ¢ is odd) semisimple classes (s) such that Cg-(s)!" is of type Eg(q).(¢— 1), and has
3¢ (if ¢ is even) or 1(q — 1) (if ¢ is odd) semisimple classes (s) such that Cg«(s)f" is of type
2F6(q).(¢+1). Since the central torus factor of these centralizers (cyclic of order ¢+ 1) has only
the trivial character as a unipotent character, then as described in the proof of Lemma 5.1 above,
the centralizer of type Eg(q).(¢ — 1) has unipotent characters with the same character values as
the cuspidal unipotent characters Eg[f] and Eg[6?] of the Eg(q) factor. These cuspidal unipotent
characters of Es(q) are not real-valued by [18, Table 1], and these are in fact complex conjugates.
Since the semisimple classes (s) are all real, it follows from Lemma 5.2 that the characters of
FE7(q)aq with Jordan decomposition (s, Eg[f]) or (s, Eg[0?]) are not real-valued, and that these
are conjugate pairs of characters of E7(q).q by Theorem 5.1, and there exists one such pair for
each corresponding semisimple class (s) in G*/. By the same argument, the centralizers of
the semisimple classes (s) in G*f" of type 2Fg(q).(¢ + 1) have unipotent characters with the
same character values as the cuspidal unipotent characters 2Eg[0] and 2 Eg[0?] of 2Eg(q), which
are not real-valued by [18, Table 1] and which are conjugate pairs. Again by Lemma 5.2 and
Theorem 5.1, the characters of E7(q).q with Jordan decomposition (s,2FEg[f]) and (s,?Eg[6?])
are not real-valued and are conjugate pairs, as (s) varies over these semisimple classes of G,
This shows that the characters listed are all not real-valued.

We now prove that the remaining irreducible characters of Fr(q)aq are real-valued, and they
all have Frobenius—Schur indicator 1, using the method employed in Sections 3 and 4. The
number of involutions in E7(q),q may be computed in the case that ¢ is even using [1], and
in the case that ¢ is odd using any of [27, 8, 15], and the classification of involutions is also
nicely summarized in [3]. The number of involutions obtained as a polynomial in ¢ is given
in Table A.3. The total character degree sum for E7(q).q may be computed directly using the
data of Liibeck [29], and the result as a polynomial in ¢ is given in Table A.2. The degrees of
the characters of F7(q)aq which are not real-valued may be obtained as follows. The degrees of
the unipotent characters (and their tensors with the linear character of order 2) are given in [4,
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p. 483] or in [31]. As in Section 2.3, the degree of any character with Jordan decomposition (s, )
is [G*" : Cg+(s)F7 ]9 (1). The degrees 1(1) of the relevant unipotent characters of Fg(q) and
2F¢(q) are given in [4, pp. 480-481]. The resulting degrees of the characters of E7(q)aq which are
not real-valued are given in Table A.4. Summing these degrees with the number of involutions,
whether g is even or odd, we obtain the total character degree sum, which implies the result by
the Frobenius—Schur involution count. O

The following is our result for the group FEg(q). The strategy used is that in the proof of
Theorem 6.1, although the list of characters which are not real-valued is significantly longer for
Es(q), and so the description of these characters is given in the proof of Theorem 6.2 and in
Table A.5.

Theorem 6.2. Let q be a prime power. The number of irreducible characters of the group
G = Fg(q) which are not real-valued is 2¢*> + 6q + 20 if q is a power of 2, 2¢> + 6q + 22 if q
is a power of 3, and 2¢> + 6q + 24 otherwise. The description of these characters in terms of
Jordan decomposition is given below and in Table A.5. In particular, every real-valued irreducible
character of G has Frobenius—Schur indicator 1, that is, mg(x) = 1 for all x € Irr(GF).

Proof. First, it follows from [18, Table 1] that the ten cuspidal unipotent characters Eg|f],
Es[—0], Es[6?%], Es[—62], Es[C], Es[¢?], Es[¢?], Es[¢Y], Esli], and Eg[—i] of Eg(q) are not real-
valued for any ¢. The unipotent characters E7[, 1], E7[—¢, 1], E7[, €], E7[—&, €], Esl0, 1),
E6[627¢1,0]7 E6[97 /1,3]7 E6[927 /1,3]7 E6[07 /1/,3]7 E6[027 ,1/,3]7 EGW? ¢1,6]7 E6[927¢1,6]7 E6[07¢2,1]7
Eg[0?%, ¢2.1], E6[0, ¢2.2], and Eg[6?, ¢2 2] are Harish-Chandra induced from the non-real cuspidal
unipotent characters E7[€], Br[—€], Eglf], and Eg[6?] of the Levi components of types E7(q) and
Es(q). As argued in the proof of Theorem 6.1, it follows from [18, Proposition 5.6] that these
are not real-valued.

From [8, 16], we see that G*I" = Fg(q) has semisimple classes (s) such that Cg«(s)" is one
of the following types: Er(q).(¢—1), B7(q)-(¢+1), Es(q)-(4—1)*, Es(q).(¢>~1), Es(q)-(¢*+q+1),
2F6(q).(q+1)%, 2E(q).(¢*> — 1), or 2Eg(q).(¢*> — g+ 1). The number of classes of each centralizer
type depends on the residue class of ¢ modulo 6, and is provided in [8, 16] or in Liibeck’s data on
centralizers of semisimple elements [28], but can be inferred by dividing entries from the last five
columns of Table A.5 by 2. In each of these cases, the central torus factor has only the trivial
character as a unipotent character, and therefore, as in the proof of Lemma 5.1, Cg«(s) " has
unipotent characters that have the same character values as the cuspidal unipotent characters
Fr[€] and E;[—€], Eg[0] and Eg[0?], or 2Eg[f] and 2 Eg[6?] of the Fz7(q), Es(q), or 2Eg(q) factors.
By [18, Table 1], these cuspidal unipotents are not real-valued, and since the semisimple classes
(s) are all real classes, it follows from Lemma 5.2 that the characters of Eg(q) with Jordan
decomposition (s, E7[€]) or (s, E7[—£]), (s, Egl0?]) or (s, Egl6]), and (s,2Eg[f]) or (s,2Eg[6?])
are not real-valued, and are complex conjugate pairs (respectively) as (s) varies over these
semisimple classes of G*F'".

Next, G*!"" has semisimple classes (s) such that Cg=(s)!" is one of the following types:
E7(q).A1(q), Es(q).-A1(q).(g — 1), or 2Eg(q).A1(¢).(¢ + 1). As before, the number of classes of
each centralizer type can be obtained by dividing entries of the last five columns of Table A.5
by 2. The central torus factor has only the trivial character as a unipotent character, and in
addition to the trivial character, the A;(q) factor has a unipotent character v of degree ¢ (see [4,
p. 465]). Therefore, as in the proof of Lemma 5.1, Cq«(s)"" has unipotent characters that have
the same character values as E;[¢], E7[—€], E7[¢] @ v, and E;[—¢] @ v, Egl6], Es[0?], Es[0] @ v,
and Eg[0%] ® v, or 2Eg[0], 2Es[0?], 2Fs[0] ® v, and 2Eg[0?] ® v, none of which is real-valued.
It follows from Lemma 5.2 that the characters of Fg(q) with Jordan decomposition (s, E7[¢]),
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(37 E7[_§])> (Sa E7[‘£} ® V)? or (57 E7[_§] ® V)a (37 Eﬁ[e])v (37 EGWD? (37 EGW] ®V)7 or (Sa Eﬁ[e] ® V)’
or (s,2Es[0]), (s,2Eg[0?%)), (s,2Es[0] ®v), or (s,?Eg[0?] @ v) are not real-valued, and are complex
conjugate pairs as (s) varies over these semisimple classes of G*F™".

Finally, when ¢ = 1,4 mod 6, G*/" has a semisimple class (s) such that Cg«(s)"" is of type
Fe(q).A2(q), and when ¢ = 2,5 mod 6, G*f'" has a semisimple class (s) such that Cg=(s)F"
is of type 2Eg(q).2A2(q). The As(q) factor has unipotent characters of degree 1, q(q + 1),
and ¢, and the 2A5(q) factor has unipotent characters of degree 1, q(q — 1), and ¢> (see [4,
p. 465]). Therefore, Cg+«(s)!"" has unipotent characters that have the same character values as
the cuspidal unipotent characters Fg[f] and Eg[6?], or 2Eg[f] and 2Es[6?], as well as the tensor
product of these characters with the other unipotent characters of As(q) or 2A45(q), each of
which are characters which are not real-valued. As above, the resulting six characters of Eg(q)
(provided ¢ # 3 mod 6) are not real-valued.

To complete the proof, we observe that the sum of the degrees of the aforementioned charac-
ters that are not real-valued, given in the fourth column of Table A.5, together with the number
of involutions provided in Table A.3, is equal to the total sum of the degrees of all irreducible
characters of Eg(q), which is given in Table A.2. From the Frobenius—Schur involution count, it
follows that e(x) = 1 for all real-valued irreducible characters x of Eg(q). The total number of
characters which are not real-valued is obtained by summing the entries in the last five columns
of Table A.5. O

7 Remarks on remaining cases

We expect that a statement similar to Theorem 6.1 holds for the simple group E7(q). If E7(q)sc
is distinct from E7(q)aq (when ¢ is odd), then for G = E;(q)s, the group G has disconnected
center of order 2, and Er(q) is the quotient of E;(q)sc by its center. Then the results in Theorem
5.1 and Lemma 5.2 are not known to hold in this case, which is one obstruction. As mentioned
in the Remark at the end of [43], we also expect that Theorem 5.1 holds more generally than
when Z(G) is connected, namely it should hold for Lusztig series in cases when Cgx(s) is
connected (while Z(G) is not necessarily connected). However, it seems that also E7(q)sc has
characters which are not real-valued in Lusztig series in cases when Cg+(s) is disconnected with
two components, but more information on the action on Jordan decomposition in this case is
needed. It appears from numerical investigation that for E7(q)sc with ¢ odd that a real-valued
character has Frobenius—Schur indicator 1 if and only if its central character is trivial. To prove
this, one needs to show that the sum of the degrees of the real-valued irreducible characters of
E7(q)sc is equal to the number of elements which square to the non-trivial central element. Once
this result is proved, it will follow for the simple group E7(q) that every real-valued irreducible
character of Er(q) will have Frobenius—Schur indicator 1, since E7(q) is a quotient of F7(q)sc by
its center. We note that our results for E7(q)aq are not enough to draw these conclusions for the
index 2 simple group Fr(q), since we do not have enough information to rule out the possibility
that an irreducible character of E7(q),q which is not real-valued could restrict to E7(q) to give
a character with a component with Frobenius—Schur indicator —1.

As in the beginning of the previous section, it is helpful that every semisimple class of the
groups F7(q)sc, F7(q)ad, and FEg(q) is real. This is not true in the groups E6(q)ad, E6(q)sc,
2F6(q)ad, or 2Eg(q)sc. So a first necessary step in understanding these cases is to classify the
semisimple classes in these groups which are real. Additionally, it appears that there are some
real semsimple classes (s) of G*f"" = Eg(q)sc such that the Lusztig series £(G'', s) has characters
which are not real-valued, while Cg-(s) has a factor of type Dy4. In particular, as in [46, Lemma
1.64] there are unipotent characters of groups of type Da, which are not invariant under the
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order 2 graph automorphism. Then our Lemma 5.2 does not apply, and one needs more specific
information on the action of the inverting element of the real semisimple element s in order to
apply Theorem 5.1 and prove specific characters are not real-valued. Also, in the cases that
Es(q)sc has a center of order 3, there are Lusztig series such that Cg+(s) is disconnected with
3 components. It seems plausible that the fact that the number of components is odd will be
enough for the conclusions of Lemma 5.2 to still hold. Finally, it has been proved by Ohmori
[37] that the group 2Egs(q) has at least two characters which have Frobenius-Schur indicator —1.
It may be observed by its character table that the group 2FEg(2) has 3 irreducible characters
with this property, and so we must also understand the total number of such characters in the
general case. We hope to address all of these issues in a subsequent paper, and complete the
problem of determining the Frobenius—Schur indicators of all irreducible characters of the finite
exceptional groups.
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A Tables

In Table A.1, we list some class multiplication coefficients for the group G2(q) where ¢ is even or
a power of 3, proving that every real class is strongly real. When ¢ is even, G2(q) has two classes
of involutions, labeled as class type 2 and class type 8 in CHEVIE, and two non-real classes, class
type 12 and class type 13. When ¢ is a power of 3, G2(q) has one class of involutions, class type
10, and two non-real classes, class type 8 and class type 9. To compute the class multiplication
coefficient nq93 for the group G, where the conjugacy classes C1, Co, C3 are labeled as class type
i, class type j, class type k in CHEVIE, we use the sequence of commands

> GenCharTab(G);
> ClassMult(g,i,j,k);

As all class multiplication coefficients are positive for all relevant ¢ in the second, third, and
fifth columns, every real element is a product of two involutions when ¢ is even or a power of 3.

Table A.1: Class Multiplication Coefficients of Ga(q)

14

Class Triple | ClassMult_G2.01(, 7, k) | ClassMult_G2.02(3, j, k) | Class Triple | ClassMult_G2.10(i, 7, k)
(1,7, k) g even, ¢ = 1 mod 3 q even, ¢ = 2 mod 3 (i,7, k) ¢ =0mod 3
(3,3,1) ¢ —q ¢ —q (10,10,1) ¢ +q +4
(3,3,2) R i i & ¢+ ¢ -4 (10,10,2) ¢ +4q
(2,3,3) C+¢—qg-1 CH+e¢—qg—1 (10, 10, 3) ¢ +q*
(3,3,4) 4¢° — ¢® + 6q 4 — ¢* + 4q (10, 10, 4) q*
(3,3,5) 2¢° — ¢° 2¢° — >+ 2 (10,10, 5) 243
(2,3,6) P2 —q @ +q (10, 10, 6) 2¢°
(2,3,7) 2q 2q (10,10, 7) 3¢°
(3,3,8) 24> 2¢> (10,10, 10) ¢t + ¢
(3,3,9) @ —q @ +q (10,10, 11) @ +q°
(3,3,10) @ —q @+ ¢ (10,10, 12) @+
(3,3,11) 3¢° 3¢° (10,10, 13) 2¢°
(3,3,14) ¢ — ¢ ¢ — ¢ (10,10, 14) 2¢°
(3,3,15) ’—q ¢ —q (10,10, 15) ¢ —q
(3,3,16) C—¢—q+1 - —q+1 (10,10, 16) P —q
(2,3,17) g—1 g—1 (10,10, 17) @ -
(3,3,18) @ —2q+1 ¢ —2q+1 (10,10, 18) @ —q
(3,3,19) @+ @+ ¢ (10,10,19) e+
(3,3,20) @ +q @ +q (10, 10, 20) @ +q
(3,3,21) C+¢—qg-1 Cr+e—qg—1 (10,10, 21) e+
(2,3,22) q+1 g+1 (10, 10, 22) @ +q
(3,3,23) @ +2q+1 @ +2q+1 (10,10, 23) @ —2q+1
(3,3,24) ¢ -1 ¢ -1 (10, 10, 24) -1
(3,3,25) ¢ -1 ¢ -1 (10,10, 25) |
(3,3,26) ?+q+1 g+l (10,10, 26) @ +2q+1
(3,3,27) @ —q+1 @ —q+1 (10, 10, 27) +q+1

(10,10, 28) @ —q+1




In Table A.2, the sums of the character degrees of the relevant exceptional groups are listed
as polynomials in gq. These are all computed directly from the data of Liibeck [29]. While the
lists of character degrees given in [29] for E7(q)aq depend on ¢ mod 12, and for Eg(q) depend
on g mod 60, the character degree sums depend only on the parity of q.

Table A.2: Character Degree Sums

Fi(q),q even qzéerqu)'Jqu4+q22jL .20 gqls %qlb’ 3q14+2 2 2 10Jr §q6+%q4
Fi(q),q odd 28+q26+2q24+2q22+19 20 §q18+gq16+§q14+3q12+1q10+ 38 §q6+%q4+1
i q26+\[q25+q24 V25 + ¢ = fq21+ 1 20+3\/§q19
2F)(g?), ¢ = 22m+1 _9¢'8 _ \/§q17 12416 — 3215 — g1 +3\[(]13 8q12 /21

—3v2¢° +v2¢" —2¢° + V2¢° + {¢" — V24
q70+q66+q64+q62+q60+q58+2 57 4q55+q qul_,’_q 16 49+5q48
E7(q)ad 19 47+8q46 55 45+14q44 21q43+23q42 7() 41 +29q40 101 39+37q38
q even 151 37 +45qdb 134 55 +48q34 151 55 +51q52 52q51 +51q§0 140q29
+47q2§ 133 27+41ng 115 25+35q24 86 23+26q22 24q21+19q20 49q1)

+13q18 28 17+7q16 6q15+4q14 2q13+2q12 11
q70+q66+2q64+3q62+4q60+6q58+ 2 57+7q567 7q55+10qo4+12q52 Sqol
E7(q)ada +15q50 28 49+24q48 38 47+31q46 26q45+41q44 40q43+58q42 50q41
qodd +68q40*70q39+81q38 84q37+95q36 268 35+99q34 3§0q33+103q32 _ %qiﬂ

+103q30 _ Z;ing + 93q28 92q27 4 82(]26 74q25 + 70q24 58q23 4 52(]22 _ 50q21
+38¢20 — 3019 + 26915 — 17 1 14¢16 — 40415 | gLt _ 813 | 12 _ggll _ 49 4 207 4 g

q128+q124+q122+q120+q118+q116+ 2 115 §q113+2 112 g 111+ 110+3q108
236 107 + 10q106 _ 13q105 + 2003 104 24q103 176q102 1;3 101 + 679: 100 21318q99
+108q98 328 97 + 173(]96 225(]95 + 2081q94 297q93 + 3 (1)7 92 1239 91 +495q90

1798q89+ 6653 88 735q87+ 4236 86 953q85+ 5373 84 1219q83+ 6541 82
1408(]81 + 15681 80 1703q79+ 9178 78 ()02)q77+ 1055() 76 2200q75+ 3681 74
ES(q) 7522 73+2626q72 8309 71 4 14169q7() 8660 69+ 15?57(]68 9374 67+ 158: lq()()
’ 65 | 32683 ()4 65 16%13 62 _ 1 006 61 16474 60 _ 857 59 16098 58

q even 3253q + —3236¢>° 4+ =2=q + q =3 ¢+ q
9352q57 + 31 93q56 9184q55 + 14671 54 2851q53 + 13637 52 2575(]51 4 124564 50
%225 49+2247q48 65328q47+ 1.?9691(]46 5416 45+ 8536 44 1601q43+ 7178 42
1308q41 + 11881q40 148q39 + 4986q38 2?32q37 + 3 88q36 1966q35 + 28 lq34

3 5
1457 33 4323 32 1139 31 30 _ 749 29 2117 28 _ 499 27 1401 26 _ 359 25
=97+ 5 q¢ + 303¢q =3¢+ q q° + q Q7+

88(]24 64q23 4 50q22 35q21 + 277 20 70q191(i'_ 56 18 3 7q17 4 79 16 3q15
+2q14 7q13 j_ qul
q128 +q124 +q122 +2q120 +2q118 +3qli3(’ ¥+ 2q11a +3q114 g 113 +6q112 2q111
+6q110 + 11q108 _ qu()'? + 20q106 19q105 4 393 104 109 103 + 526 102 2 qu[)l
; p 3 10,4 3
+l}87q100 403q99+ 189(]98 652 97+298q96 1099 95 + 44(1)1 q94 008q95+ 61337 92
2168 91 n 872(]90 1031(]8) T 11783 88 3931 q87 7626q86 5110 85 + 9705q84
72184q83+ 11956 82 2593q81+ 28941 80 3139q79+ 17063 78 11158 77+ 19796q76

44851 14248 15821 27299 16%37 29%82 68

Es(Q), 38]-2?)(?(12? N 30966%2 19 79 :Si N 22?3%(17624 191357(17613+ 325833q7602 1Q?§OOQG691+ 32%99q 60
q odd '+ q+9q ?q+5q 63q+35q

_6589q59 4 32068 58 6377(]57 + 63313 56 _ 18716 55 + 30191q54 17 loq53 + 28387 52

=N 5
16346 51 + 26119qo0 15100 49 +4747q48 13%121 47 + 42];%11 46 3918q4u + 18%91 44
_3441q43+ 15703 42 8609 41 + M 40 7 02q39 10721 38 5842 37+ 8593 36

5 4
45310 35 4 6%26 34 _ 34?63 qdd + 10083 q32 : 2624 31 + 732(]50 QQQ 5}87(128
1282q27 + 3?11 26 288(]25 + 228(]24 523 23 4 136(]22 3§7 21 4 %QQO _ %qIQ

3
+196 18 27q17+203 16 _ 40 15+8q14 4q13+2q127q117%q9+§q7+1
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In Table A.3, we list the number of involutions in each group as a polynomial in ¢. These
can be computed when ¢ is even using [1], and when ¢ is odd using [27]. These results are also
summarized in [3].

Table A.3: Numbers of Involutions

E7(q)ad, q even q70 1% 1 q64 T2 1 g0 1 q54 pn:>
P 18 g6 M g2 40 4 032y 28
E7(q)ad, ¢ 0dd | ¢ +¢% + 2¢% + 3¢5 + 4¢%° 4 6¢™ + 7¢° 4+ 10¢°* + 10¢°% + 11¢°° + 12¢™®
+11q46 + 11q44 + 10q42 +8q40 “1‘7(]38 +5q36 +3q34 +3q32 +q30 +q28 +1
Es(q), q even G2 g 122 1 120 (118 1 (116 o 12 (106 _ 101
—2g%8 — g9 —2¢92 — 288 — 86 2482 _ 76 1 g4 1 468 4 462 4 458

¢ —|—q124 T g2 1 24120 1 24118 1 34116 +3q114+6q112 T 5gTo
Es(q), q odd +7¢"% + 8¢'%% + 9¢'% + 104" + 124" + 11¢”® + 14¢% 4 13¢”

+14q92 + 14q90 + 14(]88 + 13(]86 + 14q84+ 11(]82 + 126]80 + 10q78

—l—9q76+8q74+7q72—I—5q70+5q68+3q66+3q64+2q62+q60+q58+q56+ 1

In Tables A.4 and A.5, we list the degrees of the non-real characters of the groups E7(q)aq
and Eg(q). We write these degrees in terms of the cyclotomic polynomials ®,,, defined recursively
by ®; =¢—1 and

o, = -1
D,

i|n,1<i<n

As described in Section 6, these non-real characters y have a Jordan decomposition (s, 1), where
¢ is a (non-real) character of C. s+ (s) for some semisimple s € G*/". In the first two columns,
we list these centralizers and the p/-part of their index in G*!"". The structure of the centralizer
in the first column is given in terms of the types of the simple algebraic group factors, along with
any central torus factor, where a polynomial in ¢ represents a torus of that order. In the third
column, we list the degrees (1), and as x(1) = [G*I" : Cg-r+(8)]p(1), we obtain the degrees
x(1) listed in the fourth column. In the remaining columns, we list the number of non-real
characters of each degree, which depends on g¢.

Note that in Table A.5, while the number of non-real characters of each degree depends on
g mod 6, the total number of non-real characters of Fg(q) depends only on whether ¢ is a power
of 2, a power of 3, or a power of some other prime.

Table A.4: Non-real characters of E7(q)aq

Centralizer Cg.r+ (5) CRAE Cg-#+(5)],y | Degree of non-real unipotent in Cq.r+(s) | Degree of non-real in E7(q)aa | g even | g odd

E7((1) 1 %(]114)5<I>gq)12<1>gq)7¢)?1¢)§¢‘z %qll¢5q)g¢)12¢g¢)7fb£©§¢‘z 2 4

Eq(q) 1 3¢ P P1oP5 P14 D7 DIPI DS 3¢ Py P19 P5 P14 D7 DI PIPY 2 4

Ex(q) 1 30" Ps @5 D19 D7 D14 PTRTET 300D D197 Py PIRTDY 2 1
Fe(q)-(¢—1) <I>§}I>6<I>7<I>m<1m<1ns %q7®?@§@3‘1’5‘1’8 %ffq’?4’5@3‘1’5@6@7‘1’8‘1’10‘1’14@18 q—2 | ¢-3
2E6(q).(¢ + 1) DID3D5 D7 De D1y 1721050305010 10 P53 0305 D7 DDy P1oP1y q g—1
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Table A.5: Non-real characters of Eg(q)

Centralizer Cg. r+ (5)

?wi? : Cgur=(8)]y

Degree of non-real unipotent in Cg.r+ (5)

Es(q) 1 2 1T PIDI P2 D7 2Dy DT, D15 P20 Doy
Es(q) 1 30T PIDIRID, 2D DT, D15 P20 oy
Ex(q) 1 3¢ PID5DI P2 P2DT P19 P14 P20 Pos
Exs(q) 1 3P0 DI P2, P2DT P14 P15 P20 P30
Es(q) 1 2205 05PI 027 P2DT P14 P15 P20 P30
Es(q) 1 ; wewqwmememwmeﬂemewoeseiemoeﬁ
Es(q) 1 Hwaaﬂwawememeqemwwoezgae&ewoeﬁ
Mmmﬂv 1 wawmwmw@wewem@M@ﬂ@vmewo@j.@;@&@woeuo
Es(q) 1 T WHN emwAvwewgmeweaﬁ.me@@wme;e&eﬁ
Mmmev 1 WQ AVHQwﬁwem@W@ﬂ@vm.ﬁ.@@woﬂvzﬂv;@aewo
Mmmﬂv 1 WQHmewﬁw@MQW.ﬁ.ﬂ@m@@@WD@E@MO@M%@&Q
Mmmﬂv 1 MQHQAVMW.H.WAVWAVWAVM@«@@Avwoﬂvgeaﬁvwmewo
FE7(q).A1(q) D305 PPP10P12P15P20P24P30 2" PIDTOTP; D P P P19 P14P1s
Er(q)-A1(q) D3D2D5 L3 P10P12P15P20 P24 P30 1q1 5Dy D155 27 PIRFD]
Er(q)-A1(q) D3D2D5 L3 P10P12P15P20 P24 P30 10055 P10 D7 P14 PP PT
FE7(q).A1(q) D302D5PPgP10P12P15P20P24P30 2P PIDTOT D5 D D7 P P19 P14P1s
Er(q)-A1(q) D3D2D5 L3 P10P12P15P20 P21 P30 1qP2 5Dy D155 D7 PIDFD]
Er(q)-A1(q) D3D2D5 L3 P10P12P15P20 P21 P30 17T P35 D1 D7 P14 DI PT
mﬂAQV.AQ — Hv Qwewﬁvmﬁmemgmeaoﬁvgw@a@mo@wuﬁvwo WQ‘N.H.MWewgmemﬁvm@ﬂem@:oe;@#m
mﬂAQV.AQ — Hv Qmewgmﬁmemgmeaﬁvgm@&@mo@mu@wo Wﬂ:ﬁvmﬂvweawﬁvm.@ﬂ@m@wew
Eq(q)-(g—1) Do P3D305 PP P10 P12P15P20P2uPio 10055 PP P14 DI PT
NQAQV.AQ + Hv AH;ewgmem@mgmegog_mﬁﬁlm@mo@w»@wo Wmﬂﬂ.%ﬁvwgmem@m@ﬂ@mgseg%A!m
mﬂAQv.AQ + Hv AH;ewgmememgmegog_mﬁﬁ:memo@w»ewo WQE@&@@@S@%.@Q@M@W@M
mﬂAQv.AQ + Hv ] AH;ewgmememgmego@;mﬁaewo@wuewo WQE@m@m@S@q@E@M@%@m
FEg(q).A2(q) emewememeqemewoea@ze_me&emoeﬁe% wmﬂewewememﬂvm
FEg(q).A2(q) 50755 P7Ps Py P12P14P15P15 P20 P24 P30 3P D] TP Dy
FEg(q).A2(q) ememememeqemewoesezeaeaemoeﬁe% 2000 D] DT D5 Dy
Fs(q). 2 Az2(q) ewewemeweqemewesesezeaemoeﬁe% 3¢ P{PTPIPs D1
Fs(q). 2 A2(q) ewewemeweqeme@esesezeaemoeﬁe% 38 PTPT DI Dyg
Fs(q).*A2(q) HwewGMemeqeme@esesezeaemoeﬁe% wasewemememgs
FEe(q)-A1(q)-(¢ — 1) emewewememeqemewoesezeaeaemoeﬁe% 1" 0P]0TP; Dy
Es(q).A1(q).(q—1) | 30503215 PZP7PsPT(P12P14P15P158Po0P2u P30 38 PD] TP Dy
2F6(q).A1(q).(¢+ 1 DIDIDZD2D P Py PgP1oP1oP14 D15 Doy Poy P L70108320,d
135475 24230 3¢ P1PLoPyP8P10
*Eo(q)-A1(q)-(¢+1) | PIRIOIPIDP7PgPgP10P12P1aP15P20PasP30 10212 Pg Dy
Eo(q)-(g — 1)° PIP3 07055 D7 PP P12P14D15P18P20P24 P30 3¢ P07 D5 D
Eo(q)-(¢> — 1) D13 P3P D5 PP PP P12P14P15P18Po0PsP30 30 PVPIPI P Dy
*Es(q)-(¢* — 1) DD PIPIDED D7 Py Py P19 P12P14P15 P20 P24 P30 1¢" 21 05DT PPy
°Es(q)-(¢* —q+1) PIPIPIDIDZD; Py PyP19P12P14P15Po0 P21 P30 30" PIPTRI PPy
Es(q)-(*+q+1) PIPIPID; PZD7 D5 DT P12P 14 P15 P15 P20 P24 P30 1" 5] 0T P; Dy
*Bo(q)-(¢+1)° PTDLIDID2P D7Dy De D19 P12P14P15PogPas P3o 1 P{PS DI D1g
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Degree of non-real in Fg(q)

q¢=1mod6

q¢=2mod 6

¢ = 3 mod 6

q =4 mod 6

g = 5mod 6

2 1T PIDI 02D, 02D D2, D15 Do Pou

30T DIDI D2 D7 D2 Do D2, D15 Do Pos

W@ﬂ@%@mﬂvmgmeﬂ@m@vwo.ﬁ.Hw@H%@woew%
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NININEINNNN NN NN

1708070302 PZ 07 DEDT P19 P14P15P1sP20 P2s P30

o
o
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