
706    NOTICES OF THE AMS VOLUME 57, NUMBER 6

The Mathematical Side 
of M. C. Escher 
Doris Schattschneider 

W
hile the mathematical side of Dutch 
graphic artist M. C. Escher (1898–
1972) is often acknowledged, few 
of his admirers are aware of the 
mathematical depth of his work. 

Probably not since the Renaissance has an artist 
engaged in mathematics to the extent that Escher 
did, with the sole purpose of understanding math-
ematical ideas in order to employ them in his art. 
Escher consulted mathematical publications and 
interacted with mathematicians. He used math-
ematics (especially geometry) in creating many 
of his drawings and prints. Several of his prints 
celebrate mathematical forms. Many prints provide 
visual metaphors for abstract mathematical con-
cepts; in particular, Escher was obsessed with the 
depiction of infinity. His work has sparked investi-
gations by scientists and mathematicians. But most 
surprising of all, for several years Escher carried 
out his own mathematical research, some of which 
anticipated later discoveries by mathematicians.

And yet with all this, Escher steadfastly denied 
any ability to understand or do mathematics. His 
son George explains: 

Father had difficulty comprehending 
that the working of his mind was akin 
to that of a mathematician. He greatly 
enjoyed the interest in his work by 
mathematicians and scientists, who 
readily understood him as he spoke, 
in his pictures, a common language. 
Unfortunately, the specialized language 
of mathematics hid from him the fact 
that mathematicians were struggling 
with the same concepts as he was. 

Scientists, mathematicians and M. C. 
Escher approach some of their work 
in similar fashion. They select by in-
tuition and experience a likely-looking 
set of rules which defines permis-
sible events inside an abstract world. 
Then they proceed to explore in detail 
the consequences of applying these 
rules. If well chosen, the rules lead to 
exciting discoveries, theoretical devel-
opments and much rewarding work. 
 [18, p. 4] 

In Escher’s mind, mathematics was what he 
encountered in schoolwork—symbols, formulas, 
and textbook problems to solve using prescribed 
techniques. It didn’t occur to him that formulating 
his own questions and trying to answer them in 
his own way was doing mathematics. 

Until 1937 
M. C. Escher grew up in Arnhem, Holland, the 

youngest in a family of five boys. His father was 
a civil engineer and his four older brothers all be-
came scientists. The home atmosphere may have 
instilled in him some habits of scientific inquiry, 
including the patient, methodical approach that 
would characterize his later work. Also, the young 
boys were given regular lessons in woodworking 
techniques that would later become very useful to 
Escher in making woodcuts.

His school life may have been less useful than 
his home life. Recalling his school years, Escher 
once confessed “I was an extremely poor pupil in 
arithmetic and algebra, and I still have great dif-
ficulty with the abstractions of figures and letters. I 
was slightly better at solid geometry because it ap-
pealed to my imagination, but even in that subject 
I never excelled at school” [1, p. 15]. He did well in 
drawing, however, and his high school art teacher 
encouraged him to make linocuts.
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In 1919 Escher entered the Haarlem School 
for Architecture and Decorative Arts intending 
to study architecture, but with the advice of his 
drawing and graphic arts teacher, Samuel Jessurun 
de Mesquita, and the consent of his parents, soon 
switched to a program in graphic arts. Among his 
prints executed while in Haarlem are three that 
show plane-filling; two of these are based on fill-
ing rhombuses, and one has a rectangle filled with 
eight different elegant heads, four upside down, 
each repeated four times [53, pp. 7–8]. Plane-filling 
would soon become an obsession.

Upon finishing his studies at the Haarlem 
School in 1922, he traveled for most of a year 
throughout Italy and Spain, filling a portfolio with 
sketches of landscapes and details of buildings, 
as well as meticulous drawings of plants and tiny 
creatures in nature. During this odyssey, he visited 
the Alhambra in Granada, Spain, and there mar-
veled at the wealth of decoration in majolica tiles, 
sketching a section that especially attracted him 
“for its great complexity and geometric artistry” 
[1, pp. 24, 41]. This first encounter with the til-
ings in the Alhambra likely increased his interest 
in making his own tilings. In any case, during the 
mid-1920s, he produced a few periodic “mosaics” 
with a single shape, some of them hand-printed 
on silk [53, p. 11]. Unlike the Moorish tiles that 
always had geometric shapes, Escher’s tile shapes 
(which he called “motifs”) had to be recogniz-
able (in outline) as creatures, even if only of the 
imagination. These early attempts show that he 
understood (intuitively, at least) how to utilize 
basic congruence-preserving transformations— 
translations, half-turns (180° rotations), reflections 
and glide-reflections—to produce his tilings. 

Escher married in 1924, and the couple settled 
in Rome, where two sons were born. Until 1935 he 
continued to make frequent sketching trips, most 
in southern Italy, returning to his Rome studio 
to compose his sketches for woodcuts and litho-
graphs. In 1935, with the growing rise of Fascism 
in Italy and his sons in ill health, Escher felt it best 
to move his family from Italy to Switzerland. In 
1936 he undertook a long sea journey, and dur-
ing the trip he spent three days at the Alhambra, 
joined by his wife Jetta. There they made careful 
color sketches of many of the majolica tilings. 
This second Alhambra visit, coupled with his 
move from the scenery of Italy, marked an enor-
mous change in his work: landscapes would be 
replaced by “mindscapes”.1 No longer would his 
sketches and prints be inspired by what he found 
in mountainous villages, nature, and architecture. 
Now the ideas would be found only in the recesses 
of his mind. 

Escher later wrote that after this Alhambra visit, 
“I spent a large part of my time puzzling with 
animal shapes” [1, p. 55]. By carefully studying 
the Alhambra sketches and noting the geometric 
relationships of the tiles to one another, he was 
able to make a dozen new symmetry drawings of 
interlocked motifs.2 One of these showed inter-
locked Chinese boys. In spring 1937 he produced 
his first print that used a portion of a plane-filling 
to produce a metamorphosis of figures. In Meta-
morphosis I ,3 the buildings of the coastal town of 
Atrani morph into cubes which in turn evolve into 
the Chinese boys [53, pp. 19, 286]. The print was 
a fantasy, linking his new interest in plane-fillings 
with his love of the Amalfi coast, but Escher never 
liked it because it didn’t tell a story—how do you 
link Chinese boys to an Italian town? 

In July 1937 the Escher family moved to a 
suburb of Brussels, where a third son was born. 
That October Escher showed his meager portfolio 
of symmetry drawings to his older half-brother 
Beer, a professor of geology, who immediately 
recognized that these periodic patterns would be 
of interest to crystallographers, since crystals were 
defined by their periodic molecular structure. He 
offered to send Escher a list of technical papers 
that might be helpful. There were ten articles in 
Beer’s list, all from Zeitschrift für Kristallographie, 
published between 1911 and 1933, by F. Haag,
G. Pólya, P. Niggli, F. Laves, and H. Heesch [53, pp. 
24, 337]. Escher found only the articles by Haag 
and Pólya useful. 

Haag’s article [28] provided a clear definition for 
Escher of “regular” plane-fillings and also provided 
some illustrations. In one of his copybooks, Escher 
carefully wrote Haag’s definition of “regular divi-
sion of the plane” (here translated): 

Regular divisions of the plane consist 
of congruent convex polygons joined 
together; the arrangement by which the 
polygons adjoin each other is the same 
throughout. 

In the same copybook, Escher also sketched several 
of Haag’s polygon tilings. After studying them, he 
quickly discovered that the word “convex” in Haag’s 
definition was superfluous, for by manipulating the 
tile’s shape, he was able to sketch several examples 
of nonconvex polygonal tilings. It was probably at 
this point that he inserted parentheses around the 
word “convex” in Haag’s definition. Of course he 
also readily discovered that the word “polygon” was 
far too restrictive for his purposes; it could easily 

1The title of a 1995 exhibit of Escher’s work at the National 
Gallery of Canada in Ottawa was titled “M. C. Escher: 
Landscapes to Mindscapes”.

2Escher’s colored plane-fillings have been called tessella-
tions, periodic drawings, tilings, and symmetry drawings. 
I prefer to use the last term. 
3All of Escher’s prints that are named in this essay can 
be found in the catalogs [1] and [37], and many of them 
can also be found in [20], [59], and on the official website 
www.mcescher.com. 

http://www.mcescher.com
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be replaced by “tile” or 
“shape”. Haag’s defi-
nition (with Escher’s 
amendments )  was
adopted by Escher and 
would guide all of his 
symmetry investiga-
tions. He later carefully 
recorded the defini-
tion on the back of his 
symmetry drawing 25 
(1939) of lizards (the 
drawing is depicted 
in Escher’s lithograph 
Reptiles). 

Pólya’s article [43] 
would have a great 
influence on Escher. 
Escher carefully cop-
ied (by hand, in ink) the 
full text that outlined 
the four isometries 
of the plane and an-

nounced Pólya’s classification of periodic planar 
tilings by their symmetry groups. Pólya was evi-
dently unaware that this classification had been 
carried out by Fedorov more than thirty years 
earlier. Escher was already intuitively aware of 
the congruence-preserving transformations Pólya 
spoke of but probably didn’t understand any of the 
discussion about symmetry groups. What struck 
him was Pólya’s full-page chart that displayed 
an illustrative tiling for each of the seventeen 
plane symmetry groups (Figure 1). Escher care-
fully sketched each of these seventeen tilings in a 
copybook and studied them, map-coloring some 
of them [47]. Among these, there were tilings that 
displayed symmetries he had not recorded in the 
Alhambra; for example, tilings whose only symme-
tries other than translations were glide-reflections 
or fourfold (90°) and twofold (180°) rotations. Within 
one month of studying these, Escher had completed 
his first symmetry drawings displaying fourfold rota-
tion symmetry: squirming lizards interlocked four at 
a time, pinwheeling where four feet met [53, p. 127]. 
He featured a portion of one of these drawings at the 
center of his woodcut Development I, completed in 
the same month.

Escher was so grateful for the help that Pólya’s 
paper provided that he wrote to the mathematician 
to thank him. He sent Pólya the print Development I 
and asked the mathematician whether or not he had 
written a book on symmetry for “laymen” as his article 
indicated he had hoped to do. Although a writer once 
characterized Pólya’s reply as polite but formal, 
indicating he hadn’t written the hoped-for book 
[53, p. 22], Pólya wrote to me in 1977 that he and 
Escher had corresponded more than once and 
that he regretted losing the correspondence in 
his haste to come to America in 1940. A recent 

discovery of a forgotten suitcase full of Pólya’s 
notes and other collected letters and papers, now 
in the Pólya archives at Stanford University, shows 
that Pólya even sent Escher his own attempt at an 
Escher-like tiling. Among these papers is Pólya’s 
drawing of a tiling by snakes, inscribed “sent to 
MCE”, at the address where Escher resided from 
1937 to 1940. Also, there is an outline of Pólya’s 
never-completed book The Symmetry of Ornament 
and many sketches of tilings, both for the planned 
book and for the 1924 article that so influenced 
Escher [53, pp. 335–36].

Escher as a Mathematical Researcher 
From 1937 to 1941 Escher plunged into a methodi-
cal investigation that can only be termed math-
ematical research. Haag’s article had given him a 
definition of “regular division of the plane”, and 
Pólya’s article showed him that there were many 
tile shapes that could produce these. He wanted to 
find more and characterize them. The questions he 
pursued, using his own techniques, were: 

(1) What are the possible shapes for a tile that 
can produce a regular division of the plane, that 
is, a tile that can fill the plane with its congruent 
images such that every tile is surrounded in the 
same manner?

(2) Moreover, in what ways are the edges of such 
a tile related to each other by isometries? 
The only isometries that Escher allowed in order 
to map a tile to an adjacent tile were translations, 
rotations, and glide-reflections—a reflection would 
require a tile’s edge to be a straight segment, 
not a natural condition for his creature tiles. In 
1941–1942 he recorded his many findings in a 
definitive Notebook that was to be his private en-
cyclopedia about regular divisions of the plane and 
how to produce and color them [46], [48], [53]. The 
Notebook had two parts: its cover inscribed (here 
translated) “Regular divisions of the plane into 
asymmetric congruent polygons; I Quadrilateral 
systems MCE 1-1941 Ukkel; II Triangle systems 
X-1942, Baarn”.

Escher’s study of “quadrilateral systems” was 
extensive. He represented these tilings symboli-
cally with a grid of congruent parallelograms in 
which each parallelogram represented a single tile. 
He shaded the grids checkerboard style, so that 
each parallelogram shared edges only with paral-
lelograms of the opposite color. He was interested 
in asymmetric tiles (after all, his creature tiles 
were to be primarily asymmetric), and in order to 
indicate the asymmetry, placed a hook inside each 
parallelogram. The hook provided orientation, 
while small circles and squares on the tile’s bound-
ary indicated twofold and fourfold centers about 
which the tile could rotate into an adjacent tile. 
Escher was aware that certain symmetries required 
special parallelogram grids and so considered 
five different categories: arbitrary parallelogram, 

Figure 1. A copy of the display in [43], 
signed by Pólya.
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rhombus, rectangle, square, and isosceles right 
triangle (a grid of squares in which the diagonals 
have been drawn). He labeled these A–E, respec-
tively. As he sought to answer his two questions, 
he filled the pages of several school copybooks 
with his sketches of marked grids representing 
tilings, scratching out those that didn’t work out 
or that duplicated an earlier discovery. Each time 
he discovered a marked grid that represented a 
regular division of the plane, he recorded it and 
made an example of a tiling with a “shaped tile”, 
its vertices marked by letters. 

To quickly record how each edge of a tile was 
related to another edge of the same tile or an 
adjacent tile, Escher devised his own notation: = 
meant “related by a translation” and || “related by 
a glide-reflection”. An S on its side meant “related 
by a 180° rotation” and L meant “related by a 90° 
rotation”. Figure 2 shows one copybook page with 
five different “rhombus systems” on the left and 
shaped tilings for two of these systems on the 
right. Note Escher’s “voorbeeld maken!” at the bot-
tom of the page—“make an example!” His results 
were recorded entirely visually, with no need for 
words. Ultimately he found ten different classes 
of these tilings and numbered the classes I – X. His 
Notebook charts giving both visual and descriptive 
versions of the classes are in [53, pp. 58–61].

To discover still other regular divisions, those 
for which three colors would be required for map-
coloring, Escher employed a technique that he 
called “transition”. Figure 3 recreates one of his 

examples. He would begin with a two-color regular 
division from one of his ten categories (Figure 3 
begins with type IIA). Each of these categories had 
four tiles meeting at every vertex and required 
only two colors. He would then choose a tile and 
a segment of the boundary that connected one 
of its vertices (say B) to another carefully chosen 
boundary point (say A) that was not a vertex of the 
tiling (Figure 3a). Using A as a pivot point, he would 
then pivot the boundary segment connecting A 
and B (stretching it if necessary) so that vertex B 
slid along the boundary of the tile, stopping at a 
new position (say C). Repeating this on the corre-
sponding segments of the boundaries of all tiles 
produced a new tiling with vertices at which three 
tiles met, requiring three colors for map-coloring 
(Figure 3b). The process could be continued with 
the new segment AC, sliding C along the boundary 
until it reached a vertex D of the original tiling. 
This produced a new tiling that again required only 
two colors (Figure 3c). At the intermediate (3-color) 
stage, the network of tile edges was certainly not 
homeomorphic to the original, but surprisingly, 
at the end (2-color) stage, the new network of tile 
edges might also not be homeomorphic to that of 
the original tiling. Escher thought of the intermedi-
ate (3-color) tiling as having components of both 
the beginning and ending 2-color tilings, and so 
labeled it with both types. In Figure 3, his type 
IIA system is transformed to IIA–IIIA, and that is 
transformed to system IIIA. In this instance, the 
tiles in the final tiling have three, not four, edges 

Figure 2. A copybook page showing Escher’s method of investigation of regular divisions of the 
plane. His symbolic notation is explained in our text. 
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As the eye moves downward from the center row 
of tiles, the opposite transformation takes place. 
Now the fish gain three-dimensional form and the 
black birds dissolve to become water in which the 
fish swim. In mathematics, the essence of dual 
objects is that each completely defines the other, 
such as a set and its complement, a statement and 
its negation. In addition to the figure/ground dual-
ity, there are other kinds of duality represented in 
this single print: black and white, sky and water. 
And opposites: bird and fish often denote op-
posites (think “neither fish nor fowl”), and in the 
print, each bird is placed exactly opposite a fish, 
with the invisible surface of the water acting as a 
compositional mirror. 

Part II of Escher’s Notebook is brief, devoted to 
what he called “triangle systems”—regular divisions 
having 120° rotation centers (system A) or 60°, 120°, 
and 180° rotation centers (system B). After explain-
ing the necessary placement of rotation centers, he 
records only twenty different tilings, several with 
two motifs, and all carefully map-colored to respect 
symmetry. Most require three colors. Unlike in his 
quadrilateral systems, some of his tiles have rota-
tion symmetry, and from these he derives other tiles 
with one or two motifs [53, pp. 79–81]. 

In 1941, as he was nearing the end of these 
investigations, Escher and his family moved to 
Baarn, Holland, where he would spend all but the 
last two years of his life. In the years following, he 
produced more than 100 regular divisions of the 
plane, each final version numbered and carefully 
drawn on graph paper, its creature tiles outlined 
in ink, map-colored using watercolors, respecting 
the symmetries of the tiling. As his portfolio of 
symmetry drawings grew, he referred to it as his 
“storehouse”. Fragments of these drawings would 
be featured in many prints, notecards, exhibit an-
nouncements, painted and tiled public works, and 
even carved on the surface of a ball. In all, there 
are 134 numbered symmetry drawings and many 
unnumbered sketches.

Escher carried out several other minor math-
ematical investigations in order to achieve certain 
effects in his art. Some of these results were 
recorded in a notebook entitled Regular Division 
of the Plane: Abstract Motifs, Geometric Problems, 
and others were gathered in small folios. He stud-
ied several Moorish-like tilings and investigated 
linked rings (seen in his last print, Snakes). He 
enumerated several tilings by congruent triangles 
while designing bank notes. He also recorded 
two theorems he evidently discovered but did 
not prove. One was about concurrent lines in a 
triangle, and the other about concurrent diago-
nals in a special tiling hexagon [53, pp. 82–93]. 
At my request, the first theorem was verified by 
A. Liu and M. Klamkin [35] and the second by
J. F. Rigby [44].

and meet six at a vertex; 
Escher noted that this was 
an exceptional case [53, 
p. 62]. 

Escher did not record 
these discoveries with 
words, but in his Note-
book he displayed sixteen 
pages of carefully drawn 
illustrations of transi-
tions that cover all of his 
ten categories [53, pp. 
62–69]. In many cases, 
he discovered more than 
one distinct transition of 
the same tiling. Using to-
day’s terminology, he dis-
covered how to produce 
tilings of different isohe-
dral types beginning with 
a single isohedral tiling. 
And he also recorded in 
a chart (a digraph!) which 
of his ten categories led to 
others. This chart makes 
clear that his process of 
transition can change the 
topological and combi-
natorial properties of a 
tiling but not change its 
symmetry group [48], [53, 
p. 60]. 

The last section of 
Escher’s “quadrilateral 
systems” study summa-
rizes in ten pages his in-
vestigations of what he 
called “2-motif” tilings 
[53, pp. 70–76]. He would 
begin with a regular divi-

sion, map-colored with two or three colors, then 
split each tile (in the same manner) into two dis-
tinct shapes, so that the resulting tiling could be 
colored with two colors. This investigation was 
spurred by his fascination with what he called 
“duality”— many of his prints play with the idea of 
interchanging the role of figure and ground, or jux-
taposition of opposites. Sky and Water I and Circle 
Limit IV (Angels and Devils) are famous examples.

For example, in Sky and Water I (Figure 4) a 
horizontal row of interlocked flat tiles at the center 
alternates white fish and black birds, dividing the 
print into upper and lower halves (sky and water). 
The fish in this center row can serve as figure and 
the birds as ground, or vice versa. But as the eye 
moves upward from this row of tiles, the creatures 
separate and take on distinct roles. The black birds 
become three-dimensional as they rise, while the 
white fish melt to become sky. The fish become 
the background against which figures of birds fly. 

Figure 3. Escher’s transition 
process takes (a) a 2-colored tiling 

with 180° rotation centers at tile 
vertices and midpoints of edges, 

to (b) a 3-colored tiling, to (c) a 
2-colored tiling with 180° rotation 
centers at midpoints of tile edges. 
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An investigation in 1942 that was an amuse-
ment, shared with his children and grandchildren 
[18, pp. 9–11], [50], was combinatorial—to deter-
mine how many different patterns could be gener-
ated by following this algorithm: 

Decorate a square with an asymmet-
ric motif and use four copies of the 
decorated square (independently chosen 
from any of four rotated aspects) to fill 
out a 2×2 larger square, then translate 
the larger square in the direction of its 
edges to fill the plane. 

With a methodical search of the 44 possible 2×2 
filled squares, eliminating obvious duplications, 
and by sketching examples with a simple motif for 
the rest, he ultimately found twenty-three distinct 
patterns. That is, no two of these twenty-three pat-
terns were identical, allowing rotations. He also 
asked the combinatorial question in two special 
cases in which reflected aspects of the decorated 
square were also allowed. In these cases, the 
choices of the four copies of the decorated square 
were restricted as follows: 

Case (1)—two choices must be the same 
rotated aspect and independently, the 
other two choices the same reflected 
aspect. Case (2)—two choices must be 
different rotated aspects and indepen-
dently, the other two choices different 
reflected aspects. 

Escher’s results were sketched in copybooks and 
later printed with inked carved wooden stamps 
using a motif that produced patterns resembling 
knitted or crocheted pieces. He also made a “rib-
bon” design, outlining crossing bands in a square, 
and carved four wooden stamps—one of the origi-
nal design, one of its reflection, and two others that 
reversed the crossings in the first two stamps. He 
did not attempt to find the number of patterns 
produced by the 416 possible 2×2 squares filled 
with aspects of these, but he did produce several 
patterns with them and colored them with a mini-
mum number of colors so that continuous ribbon 
strands had the same color and no two bands of 
the same color ever crossed [53, pp. 44–52], [17, 
p. 41].

Escher’s Interactions with Mathematicians 
Until 1954 few mathematicians outside of Holland 
knew of Escher’s work. That year the International 
Congress of Mathematicians (ICM) was held in 
Amsterdam, and N. G. de Bruijn arranged for an 
exhibit of Escher’s prints, symmetry drawings, 
and carved balls at the Stedelijk Museum [11]. He 
wrote in the catalog, “Probably mathematicians will 
not only be interested in the geometrical motifs; 
the same playfulness which constantly appears 
in mathematics in general and which, to a great 

many mathematicians is the 
peculiar charm of their sub-
ject, will be a more important 
element” [2]. 

When Roger Penrose visited 
the exhibit, he was amazed 
and intrigued. Escher’s print 
Relativity especially caught 
his eye. It shows three promi-
nent staircases in a triangu-
lar arrangement (and some 
smaller staircases), as seen 
from many different view-
points, with several persons 
simultaneously climbing or 
descending them in an impos-
sible manner, defying the law of gravity. Penrose 
was inspired to find a structure whose parts were 
individually consistent but, when joined, became 
“impossible”. After returning to England he came 
up with the idea of the now-famous Penrose tribar 
in which three mutually perpendicular bars appear 
to join to form a triangle (Figure 5). Following that, 
his father devised an “endless staircase”, another 
object that can be drawn on paper but is impos-
sible to construct as it appears [41, pp. 149–50]. 
Penrose then closed the loop of discovery by 
sending the sketches of these impossible objects 
to Escher, who in turn used them in crafting the 
perpetual motion in his print Waterfall and the 
never-ending march of the monks in Ascending 
and Descending.

Penrose also visited Escher’s home in 1962 and 
brought a gift of identical wooden puzzle pieces 

Figure 4. M. C. Escher’s Sky and Water I, 1938. Woodcut,
435 cm x 439 cm.

Figure 5. Penrose’s tribar. 
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size and repeating (theoretically) infinitely within 
the confines of a circle, was exactly what Escher 
had been looking for in order to capture infinity 
in a finite space.

Escher worked over the figure with compass 
and straightedge and circled important points
(Figure 6). From this, he managed to discern 
enough of the geometry to produce his print Circle 
Limit I. But he wanted to know more, and sent a 
large diagram to Coxeter showing what he had 
figured out, namely, the location of centers of six 
of the circles (Figure 7). In his letter, he politely 
asked Coxeter for “a simple explanation how to 
construct the [remaining] circles whose centres 
approach [the bounding circle] from the outside 
till they reach the limit.” He also asked, “Are there 
other systems besides this one to reach a circle 
limit?” [5, p. 19], [54, p. 263]. Coxeter replied with 
a minimal answer to Escher’s first request: 

The point that I have marked on your 
drawing (with a red o on the back of 
the page) lies on three of your circles 
with centres 1, 4, 5. These centres 
therefore lie on a straight line (which 
I have drawn faintly in red) and the 
fourth circle through the red point 
must have its centre on this same red 
line. [54, p. 264] 

From this, Escher was supposed to construct 
the complete scheme. By contrast, Coxeter an-
swered the second question at length, beginning, 
“Yes, infinitely many! This particular pattern is 
denoted by [4, 6]” and then explained for which 
p and q patterns [p, q] exist, referring to the text 

derived from a 60° rhombus. 
Escher soon sent Penrose the 
puzzle’s solution, enclosing 
a sketch of the unique way 
in which the pieces fitted to-
gether. Here, congruent tiles 
were surrounded in two dis-
tinct ways. In 1971 Escher 
produced his only tiling with 
one tile that was not a regular 
division (today it would be 
called 2-isohedral). It was the 
last of his numbered sym-
metry drawings, with a little 
ghost that filled the plane 
according to the rules of Pen-
rose’s puzzle [41, pp. 144–45; 
53, p. 229]. 

H. S. M. Coxeter also saw 
Escher’s work for the first 
time during that ICM in 1954, 
and upon returning to Can-

ada, he wrote Escher a letter to express his appre-
ciation of the artist’s work. Three years later, he 
wrote again to ask if he might use two of Escher’s 
symmetry drawings to illustrate an article based 
on his presidential address to the Royal Society 
of Canada. The article discussed symmetry in the 
Euclidean plane and also in the Poincaré disk model 
of the hyperbolic plane and on a sphere surface [3]. 
Escher readily agreed, and when he later received a 
reprint of the article, he wrote to Coxeter, “some of 
the text-illustrations and especially figure 7, page 
11, gave me quite a shock” [5, p. 19]. The figure’s 
hyperbolic tiling, with triangular tiles diminishing in 

Figure 7. Escher’s diagram sent to Coxeter, exhibiting what the artist had figured out. The original 
drawing is faint, drawn in pencil on tracing paper. This is a reconstruction by the author, and 

shows Coxeter’s red markings.

Figure 6. Coxeter’s 
Figure 7, with Escher’s 

markings (here computer-
enhanced for visibility).
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Generators and Relations, and enclosing a “spare 
copy of 

{
3
7

}
” [54, p. 264]. 

Escher was disappointed with this reply, yet it 
only increased his determination to figure things 
out. He wrote to his son George:

[Coxeter] encloses an example of using 
the values three and seven, of all things! 
However this odd seven is of no use to 
me at all; I long for two and four (or 
four and eight)… My great enthusiasm 
for this sort of picture and my tenacity 
in pursuing the study will perhaps lead 
to a satisfactory solution in the end. … 
it seems to be very difficult for Coxeter 
to write intelligibly to a layman. Finally, 
no matter how difficult it is, I feel all 
the more satisfaction from solving a 
problem like this in my own bumbling 
fashion. [1, p. 92], [54, pp. 264–5] 

Escher did successfully carry out his “Coxeter-
ing”, as he called his work with hyperbolic tilings, 
and in 1959–1960 he produced three other Circle 
Limit prints. Upon earlier receiving Circle Limit I, 
Coxeter had praised Escher for his understanding 
of the conformal pattern, and in 1960, when he 
received the complex Circle Limit III, Coxeter wrote 
Escher a three-page letter sprinkled with symbols 
explaining the print’s mathematical content, with 
references to several technical texts, and the impli-
cations for coloring seen in the “compound {3, 8} 
[6{8, 8}] {8, 3} of six {8, 8}’s inscribed in a {3, 8}” [54, 
p. 265]. And Escher despaired to George, “Three 
pages of explanation of what I actually did… It is a 
pity that I understand nothing, absolutely nothing 
of it…” [1, pp. 100–01], [54, p. 265].

In 1960 Coxeter arranged for Escher to give two 
lectures at the University of Toronto about his 
work, and the Coxeters hosted the artist at their 
home. The Coxeter-Escher correspondence con-
tinued for several years, with two letters of note. 
In March 1964 Coxeter wrote “After looking again 
and again at your Circle Limit III on my study wall, 
I finally realized that my remark about its ‘impos-
sibility’ was based on my own misunderstanding, 
as you will see in the enclosed,” which was his 
review of Escher’s book [20] for Mathematical Re-
views. He added, “The more I look at your work, 
the more I admire it” [9]. That review [4] was the 
first time Coxeter revealed that the white arcs 
forming the backbones of fish in Escher’s Circle 
Limit III were not, as he and others had assumed, 
badly rendered hyperbolic lines but rather were 
branches of equidistant curves. In 1979 and again 
in 1995 he published articles [5], [6] devoted to 
those white arcs, explaining, “they ‘ought’ to cut 
the circumference at the same angle, namely 80° 
(which they do, with remarkable accuracy). Thus 
Escher’s work, based on his intuition, without any 
computation, is perfect…” [5, pp. 19–20]. 

In other articles Coxeter gave mathematical 
analyses of Escher’s work and indicated that the 
artist had anticipated some of his own discover-
ies [54]. In May 1964 Escher sent Coxeter his print 
Square Limit and explained with a diagram its 
underlying geometric grid of self-similar triangles 
(see reconstruction in Figure 8). Escher’s explana-
tory sketch was on graph paper, in red and blue 
colored pencil. It showed the first three rings 
surrounding the center square to indicate how 
the division process can continue forever. He had 
devised this fractal structure himself, and while a 
Euclidean construction with straight segments, it 
possessed the desired property of his Circle Lim-
its—figures diminished as they approached the 
bounding square [17, pp. 104–05], [53, p. 315], [59, 
pp. 182–183]. A 90° rotation about the center of 
the diagram is a color symmetry, sending red tiles 
to blue, blue to red, and white to white. In Escher’s 
print, the triangles are replaced by fish.

Escher had only brief interactions with other 
mathematicians; none would influence his work as 
did Pólya, Penrose, and Coxeter. Edith Müller, who 
had been A. Speiser’s Ph.D. student, wrote to me 
that Escher had learned of her dissertation (a sym-
metry analysis of the Alhambra tilings) and visited 
her in 1948 in Zurich to discuss her (and his) work. 
She told him about how Speiser had learned to 
make lace in order to better understand symmetry.

Heinrich Heesch, another student of Speiser, 
carried out extensive research on tilings in the 
mid-1930s but did not publish until the 1960s. He, 
too, defined “regular” tilings as plane-fillings with 
congruent tiles in which every tile was surrounded 
in the same manner. Also, like Escher, he was inter-
ested in characterizing the conditions on edges of 

Figure 8. Escher’s geometric grid for the print 
Square Limit.
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asymmetric tiles that could tile in this manner and 
for which the tiling had no reflection symmetries. 
He proved there were exactly twenty-eight types of 
these tiles and displayed a visual chart of them in 
his 1963 book with Otto Kienzle [29]. He assigned 
each edge of a tile a letter—T, G, or Cn—according 
to how it related to another edge by translation, 
glide-reflection, or 360°/n rotation. He sent the 
book to Escher, who at that time was very ill; for 
Escher, this information came more than twenty 
years after his own discoveries of all but one of 
those twenty-eight types [53, pp. 324–26].

In the last two years of Escher’s life, mathemat-
ics teacher Hans de Rijk (a.k.a. Bruno Ernst) col-
laborated with Escher to write a book that would 
interpret the body of the artist’s work, with special 
attention to the mathematical underpinnings of 
many prints. Every Sunday without fail they would 
spend time together as the manuscript took shape. 
This book [17] and a definitive catalog of Escher’s 
graphic work [37] were both published in 1976, 
four years after the artist’s death, and were the 
first to show many of Escher’s painstaking pre-
liminary drawings for his prints, some of them 
geometric marvels. A shorter version of de Rijk’s 
analysis of Escher’s work is in [1], pp. 135–54.

Escher’s Work Used to Teach Mathematical 
Ideas
Escher enjoyed the role of teacher, giving lectures 
to diverse audiences—scientific gatherings, school 
students, museum audiences, even Rotary clubs. 
His lecture poster (Figure 9) shows in five different 
illustrative tilings how he explained the actions of 
translations (verschuiving), rotations (assen), and 
glide-reflections (glijspiegeling) that would carry 
a tile into an adjacent tile. Numbers identify the

various aspects of a tile, circles and squares 
identify twofold and fourfold rotation centers, 
respectively, and adjacent dashed lines act as rails 
along which a tile glides and then reflects (in a 
line equidistant from the rails). Escher used large 
brightly-colored cardboard cutouts in the shapes 
of these tiles, mounted on straightened wire hang-
ers, to demonstrate the motions of the isometries.

When Escher’s book [20] was published in 
Holland in 1960, it included a short essay in the 
introduction by crystallographer P. Terpstra, to 
teach about symmetry and the seventeen plane 
symmetry groups. When the British translation 
was published, the essay appeared as a separate 
pamphlet; it never appeared with the American edi-
tion. Evidently the publisher, like Escher, thought 
it too technical.

Caroline MacGillavry, a crystallographer at the 
University of Amsterdam, was the first scientist to 
see the possibility of using Escher’s art as a teach-
ing tool in a text. When she first visited his studio 
in the late 1950s, she marveled: “The notebook 
in which he wrote his ‘layman’s theory’ has been 
a revelation to me. It contains practically all the 
2-, 3-, and 6-colour rotational two-dimensional 
groups, with and without glide-reflection sym-
metry” [39, p. x]. That visit gave birth to her idea 
of collaborating with Escher to use his symmetry 
drawings in a text for beginning geology students, 
to teach the classification of colored periodic til-
ings according to their symmetries. The Interna-
tional Union of Crystallography agreed to sponsor 
the publication. In the book’s introduction, she 
notes,

Escher’s periodic drawings…make ex-
cellent material for teaching the prin-
ciples of symmetry. These patterns are 
complicated enough to illustrate clearly 
the basic concepts of translation and 
other symmetry, which are so often ob-
scured in the clumsy arrays of little cir-
cles, pretending to be atoms, drawn on 
blackboards by teachers of crystallog-
raphy classes. On the other hand, most 
of the designs do not present too great 
difficulties for the beginner in the field.
 [39, p. ix] 

In reviewing Escher’s store of periodic drawings 
(by then, more than 100), she noted that one of 
the simplest symmetry groups, type p2 with no 
color symmetries, was not represented. At her 
request, Escher produced a new symmetry draw-
ing to fill the gap [39, plate 2], [53, p. 210]. He also 
produced another requested type [39, plate 34], 
[53, p. 211] and refreshed or redrew some others 
for the publication. 

Coxeter may have been the first mathemati-
cian (outside of Holland) to use Escher’s work to 
illustrate a mathematics text. His Introduction to 

Figure 9. Escher’s lecture slide about regular divisions of the 
plane, showing five “quadrilateral systems”.
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Geometry was unusual when it was published in 
1961, with many nonstandard topics, including 
symmetry and planar tessellations, which he illus-
trated with Escher’s symmetry drawings used ear-
lier in [3]. Martin Gardner devoted a Mathematical 
Games column in Scientific American to a review 
of the book and republished the drawings, bring-
ing Escher’s symmetry work to the attention of the 
wider scientific world [21]. It was not long before 
scores of math texts (at all levels) and articles on 
teaching displayed Escher’s periodic drawings and 
prints. While the elementary concepts of planar 
isometries, similarities, and symmetry are obvi-
ous ones for which Escher’s symmetry drawings 
and prints provide wonderful illustrations, the 
drawings can also be used in teaching higher-level 
concepts of abstract algebra and group theory. In 
her article [57], Marjorie Senechal discusses how, 
by studying the color symmetry groups of Escher’s 
periodic drawings, students can better understand 
the definition of a group, commutativity and non-
commutativity, group action, orbits, generators, 
subgroups, cosets, conjugates, normal subgroups, 
stabilizers, permutations and permutation repre-
sentations, and group extensions.

Teachers (and texts) of mathematics and science 
also use Escher’s prints for artful depictions of 
mathematical objects (knots, Möbius bands, spi-
rals, loxodromes, fractals, polyhedra, divisions of 
space) and to provide intriguing visual metaphors 
for abstract mathematical concepts (infinity, dual-
ity, reflection, relativity, self-reference, recursion, 
topological change) [49]. In his Pulitzer-Prize-
winning book Gödel, Escher, Bach: An Eternal 
Golden Braid, Douglas Hofstadter uses Escher’s 
work in essential ways to convey ideas of recur-
sion and self-reference, and several authors have 
used Escher’s prints to illustrate complex ideas of 
perception and illusion.

Often those who view art impose on it their 
reading of the artist’s intention, and mathemati-
cians’ use of Escher’s work to illustrate the idea of 
infinity and other mathematical concepts might be 
questioned. But it should be noted that Escher was 
intrigued by these concepts and set out to embody 
their essence in many of his prints. His fascination 
with infinity and how to capture it was a theme he 
returned to again and again. He spoke eloquently 
of this quest in his essay “Approaches to Infinity”:

Man is incapable of imagining that 
time could ever stop. For us, even if 
the earth should cease turning on its 
axis and revolving around the sun, 
even if there were no longer days and 
nights, summers and winters, time 
would continue to flow on eternally.
…
Anyone who plunges into infinity, in 
both time and space, further and fur-
ther without stopping, needs fixed 

points, mileposts, for otherwise his 
movement is indistinguishable from 
standing still. There must be stars past 
which he shoots, beacons from which 
he can measure the distance he has 
traversed. He must divide his universe 
into distances of a given length, into 
compartments recurring in an end-
less sequence. Each time he passes 
a borderline between one compart-
ment and the next, his clock ticks. …
 [37, pp. 37–40]

For Escher, mathematical concepts, especially 
infinity and duality, were a constant source of 
artistic inspiration.

Mathematical Research Related to or 
Inspired by Escher’s Work 
Several aspects of Escher’s work anticipated by 
decades theoretical investigations by members of 
the scientific community. And some of his work 
has directly inspired mathematical investigations. 
We note here (necessarily briefly) many of these 
investigations. 

Classification of “regular” tilings using edge 
relationships of tiles was Escher’s method and also 
that of H. Heesch, but it was limited to asymmetric 
tiles and tilings with symmetry groups having no 
reflections. In the 1970s Branko Grünbaum and 
Geoffrey Shephard undertook a systematic classifi-
cation of several kinds of tilings having transitivity 
properties with respect to the symmetry group 
of the tiling—isohedral (tile-transitive), isogonal 
(vertex-transitive), isotoxal (edge-transitive). Their 
method relied on using adjacency symbols and 
incidence symbols that recorded how (in the case 
of isohedral tilings) each tile was surrounded; 
the transitivity condition implied that every tile 
was surrounded in the same way. Their book [25] 
remains the fundamental reference on all aspects 
of tilings. 

Two-color and 2-motif tilings were Escher’s 
way of expressing duality. It is interesting to note 
that the first classification of two-color symmetry 
groups was carried out in 1936 (at almost the 
same time Escher was making his independent 
investigations) by H. J. Woods, who was interested 
in these black-white mosaics for textile designs 
[10], [62]. When a monohedral (one tile) tiling was 
colored in two colors, and a symmetry of the til-
ing interchanged the tiles and interchanged their 
colors, he called it “counterchange symmetry”. 
(For example, in a checkerboard-colored tiling 
of the plane by squares, a reflection of the tiling 
in an edge of one column of squares would be a
counterchange symmetry.) The scientific com-
munity and Escher were unaware of Woods’s 
work. Later this kind of symmetry, so prevalent 
in Escher’s work, was called “antisymmetry” by 
Russian crystallographers; that terminology is 
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not used today. Escher 
noted that some crystal-
lographers had trouble 
accepting the idea of an-
tisymmetry; he said that 
he couldn’t work without 
it [1, p. 94].

Escher’s method of 
splitting tiles to produce 
2-motif tilings has been 
shown to be a power-
ful one. Today, the term 
2-isohedral is used to 
describe tilings in which 
the symmetry group of 
the tiling produces two 
orbits of tiles—there are 
two distinct congruence 
classes of tiles with re-

spect to the symmetry group of the tiling. It has 
been proved that every 2-isohedral tiling can be 
derived beginning with an isohedral tiling and ap-
plying the processes of splitting and gluing [13] 
and that this same process extends to produce 
k-isohedral tilings [32]. Andreas Dress [14] and I 
[55] have studied other aspects of these tilings. 

Color symmetry was not a serious concern of 
crystallographers until the 1950s; even then, it was 
not easily embraced, and it took many years before 
color symmetry groups were studied systemati-
cally. When crystallographers and mathematicians 
did begin to investigate color symmetry groups, 
they (like Caroline MacGillavry) turned to Escher’s 
work for illustrations and discoveries. Even today, 
there are competing notations for color symmetry 
groups [7], [25], [60], [61].

Metamorphosis, or topological change, was one 
of Escher’s key devices in his prints. His inter-
locked creatures often began as parallelograms, 
squares, triangles, or hexagons, then seamlessly 
morphed into recognizable shapes, preserving an 
underlying lattice, as in his visual demonstration 
in Plate I in [19]. At other times the metamorphosis 
of creatures changed that lattice, as occurs in his 
Metamorphosis III. William Huff’s design studio 
produced some intriguing examples of “parquet 
deformations” that preserve lattice structure [30], 
and, more recently, Craig Kaplan has investigated 
the varieties of deformation employed by Escher 
[34]. 

Covering surfaces with symmetric patterns was 
Escher’s passion—the Euclidean plane, the hyper-
bolic plane, sphere surfaces, and cylinders—and 
always these coverings represented nontrivial sym-
metry groups of the patterned surface. Douglas 
Dunham has explored many families of Escher-like 
tilings of the hyperbolic plane and how to render 
them by computer [15], [52, pp. 286–296]. Others 
have studied how to cover different surfaces with 
periodic designs and sometimes asked, “What 

symmetry groups do these coverings represent?” 
See [7], [45], [56].

Escher’s algorithm to produce patterns with 
decorated squares has inspired mathematicians 
and computer scientists to use combinatorial
techniques (Burnside counting) and computer 
techniques to check his work and to answer more 
questions. Escher’s results of twenty-three pat-
terns for his simplest case and ten for his case 
(1) are exactly right. The correct answer for his 
case (2) is thirty-nine; for this case, Escher missed 
three patterns and counted one pattern twice [50]. 
Other questions have been asked and answered: 
How many patterns are there with two stamps (the 
original and its reflection) if Escher’s restrictions 
on choice are removed [12]? How many with two 
stamps and translation only in one direction [42]? 
How many with the four “ribbon pattern” stamps 
and the additional action of under-over inter-
change added to the group of symmetries [22]? 
Can Escher’s algorithm be computer-automated 
[38], [40]? Can allowable coloring of the ribbon 
patterns be automated [23]?

Creating tile shapes was almost an obsession 
with Escher. He would begin with a simple tile 
(often a polygon) that he knew would produce 
a regular division, then painstakingly coax the 
boundary into a recognizable shape. Who but 
Escher could conjure the polygon in Figure 10 
into a helmeted horseman? [53, pp. 110–11] He 
explained,

The border line between two adja-
cent shapes having a double func-
tion, the act of tracing such a line is a 
complicated business. On either side 
of it, simultaneously, a recognizabil-
ity takes shape. But the human eye 
and mind cannot be busy with two 
things at the same moment and so 
there must be a quick and continual 
jumping from one side to the other.
 [39, p. vii] 

Kevin Lee was the first to implement Escher’s pro-
cess with a computer program [36]. Craig Kaplan 
and David Salesin devised a computer program 
to address a complementary question—beginning 
with any shape, can it be gently deformed (still 
being recognizable) into a tile that will produce an 
isohedral tiling [33]?

Local vs. global definition of “regularity” was 
not Escher’s concern; he followed the local rule 
that every tile be surrounded in the same way. 
But every one of Escher’s “regular divisions” is an 
isohedral tiling; it satisfies the global regularity 
condition that the symmetry group is transitive on 
the tiles. An isohedral tiling necessarily has local 
regularity, but are the two definitions equivalent? 
In the Euclidean plane, yes, at least for asymmetric 
tiles and edge-to-edge tilings by polygons, but not 

Figure 10. The beginning of 
Horseman.
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so in the hyperbolic plane or in higher dimensions 
[51]. P. Engel also addresses this question in [16]. 

Symmetry of a tile inducing symmetry of its til-
ing was encountered and noted by Escher. When 
he used a tile with reflection symmetry (such as a 
dragonfly), it always induced reflections as symme-
tries of the tiling. He would note the tile was sym-
metric, and add an asterisk * to his classification 
symbol. But in a couple of instances, he created a 
tiling in which the tile was almost symmetric (and 
with slight modification can be made symmetric), 
yet the reflection line for the tile is not a reflection 
line for any of its tilings. In [24], Branko Grünbaum 
calls such tiles “hypersymmetric” and asks if they 
can be characterized. This is an open question. 

Orderliness not induced by symmetry groups 
occurs at least twice in Escher’s work: in his 
fractal construction of squares of diminishing 
size (Figure 8) and in his combinatorially perfect 
but not color-symmetry perfect coloring of one 
of his most complex designs with butterflies [1,
p. 76]. Branko Grünbaum and others have asked 
for serious studies of other kinds of “orderliness” 
in tilings and patterns, not only that defined by 
symmetry groups [26], [27]. 

“Completing” Escher’s lithograph “Print Gallery” 
recently posed a mathematical challenge to H. Len-
stra and B. de Smit—how they came to understand 
the underlying geometric grid, “unroll” it, complete 
missing bits of the unrolled print, and roll it up 
again is described in [58].

In 1960 Escher wrote, “Although I am absolutely 
innocent of training or knowledge in the exact sci-
ences, I often seem to have more in common with 
mathematicians than with my fellow artists” [20, 
Introduction]. Although he struggled with math-
ematics as a school student, when he became a 
graphic artist he was driven to pursue mathemati-
cal research, learn new geometric ideas, depict 
mathematical concepts, and pose mathematical 
questions. He could not have imagined the scope 
of influence his work would have for the scientific 
community.
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