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Let Fq be a finite field with q elements, where q is the power of an odd prime, and let
GSp(2n, Fq) and GO±(2n, Fq) denote the symplectic and orthogonal groups of simil-
itudes over Fq, respectively. We prove that every real-valued irreducible character of
GSp(2n, Fq) or GO±(2n, Fq) is the character of a real representation, and we find the
sum of the dimensions of the real representations of each of these groups. We also show
that if G is a classical connected group defined over Fq with connected center, with
dimension d and rank r, then the sum of the degrees of the irreducible characters of
G(Fq) is bounded above by (q + 1)(d+r)/2. Finally, we show that if G is any connected
reductive group defined over Fq, for any q, the sum of the degrees of the irreducible
characters of G(Fq) is bounded below by q(d−r)/2(q − 1)r . We conjecture that this sum
can always be bounded above by q(d−r)/2(q + 1)r .
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1. Introduction

Given a finite group G, and an irreducible complex representation (π, V ) of G which
is self-dual (that is, has a real-valued character), one may ask whether (π, V ) is a
real representation. Frobenius and Schur gave a method of answering this question
by introducing an invariant, which we denote ε(π), or ε(χ) when χ is the character
of π (called the Frobenius–Schur indicator), which gives the value 0 when χ is not
real-valued, 1 when π is a real representation, and −1 when χ is real-valued but π
is not a real representation (see [10, Chap. 4]). For example, if Sn is the symmetric
group on n elements, it is known that all of the representations of Sn are real (and,
in fact, rational). It follows from results of Frobenius and Schur that the sum of all
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of the dimensions of the irreducible representations of Sn is equal to the number of
elements in Sn which square to the identity element.

Now consider the group GL(n,Fq) of invertible linear transformations on an
n-dimensional vector space over the field Fq with q elements, where q is the power
of a prime p. Not every irreducible character of GL(n,Fq) is real-valued, however,
every real-valued irreducible character of GL(n,Fq) is the character of a real repre-
sentation. That is, ε(π) = 0 or 1 for every irreducible representation π of GL(n,Fq).
This follows from Ohmori’s result [16] that every irreducible character of GL(n,Fq)
has rational Schur index 1 (also proved by Zelevinsky [28]), and a direct proof is
given by Prasad [18]. This result also follows from a theorem of Gow [6], which
states that when q is the power of an odd prime, the sum of the dimensions of
the irreducible representations of GL(n,Fq) is equal to the number of symmetric
matrices in the group (also obtained by Klyachko [12] and Macdonald [14] for all
q). Gow’s proof actually implies that the twisted Frobenius–Schur indicator (see
Sec. 2) of an irreducible representation of GL(n,Fq), with respect to the transpose-
inverse automorphism, is always 1. Using the result that every real-valued character
of GL(n,Fq) is the character of a real representation, in Sec. 3, we compute the
sum of the dimensions of the real representations of the group. This gives one way
to compare the size of the set of real representations to the size of the set of all
representations of GL(n,Fq).

In Sec. 2 of this paper, we consider the groups of symplectic and orthogonal
similitudes over a finite field, denoted GSp(2n,Fq) and GO±(2n,Fq), respectively,
where q is the power of an odd prime. The main results of Sec. 2, which are Theo-
rems 2.1 and 2.2, state that, as in the case of the group GL(n,Fq), every real-valued
irreducible character of GSp(2n,Fq) or GO±(2n,Fq) is the character of a real rep-
resentation. There is a very direct proof in the case of the groups GO±(2n,Fq),
which comes from the fact that every irreducible representation of the orthogonal
groups O±(2n,Fq), where q is the power of an odd prime, is a real representation,
another result of Gow [7]. Also in [7], Gow proves that a real-valued character
of the symplectic group Sp(2n,Fq), where q is the power of an odd prime, is the
character of real representation if and only if the central element −I acts trivially,
and in particular, has irreducible real-valued characters which are not the char-
acters of real representations. It may seem to be a surprising result, then, that
there are no such characters for the group of symplectic similitudes GSp(2n,Fq) by
Theorem 2.1. However, the situation is similar for the finite special linear group,
SL(n,Fq), where in the case that n is congruent to 2 mod 4 and q is congruent
to 1 mod 4 the group has real-valued characters which are not characters of real
representations (see [5]), while all irreducible real-valued characters of GL(n,Fq)
are characters of real representations. So, in this instance, the relationship between
the characters of GSp(2n,Fq) and Sp(2n,Fq) is similar to the relationship between
the characters of GL(n,Fq) and SL(n,Fq).

In Sec. 3, we apply the results of Sec. 2 to compute expressions for the sum of the
dimensions of the real representations of the groups GSp(2n,Fq) and GO±(2n,Fq),
in Theorems 3.1 and 3.2. By results of Frobenius and Schur and Theorems 2.1 and
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2.2, we need only count the number of elements in each group which square to the
identity element. In the resulting expressions, we obtain a term which is the sum
of all of the dimensions of the representations of Sp(2n,Fq) and O±(2n,Fq). This
sum has been computed for Sp(2n,Fq) by Gow in the case that q is congruent to 1
mod 4 in [7], and by the author in the case that q is congruent to 3 mod 4 in [24].
This sum has not been computed in the case of the orthogonal groups O±(n,Fq),
however, and so we do this in Sec. 4, with the result given in Theorem 4.1. We also
give several corollaries for the special orthogonal groups in Sec. 4.

In the last three sections, we focus on the following result of Kowalski [13,
Proposition 5.5], which he obtains in the context of sieving applications.

Theorem 1.1 (Kowalski). Let G be a split connected reductive group with con-
nected center over F̄q, defined over Fq. Let d be the dimension of G, let r be the
rank of G, let W be the Weyl group of G, and let G = G(Fq). Then, the sum of
the degrees of the irreducible complex characters of G is bounded above as follows:∑

χ∈Irr(G)

χ(1) ≤ (q + 1)(d+r)/2

(
1 +

2r|W |
q − 1

)
.

Kowalski also notes that in the cases of the groups GL(n,Fq) and GSp(2n,Fq)
(q the power of an odd prime), by results of Gow [6] and the author [24], the
factor 1 + 2r|W |

q−1 may be removed from the bound in Theorem 1.1. In Sec. 5, we
prove several inequalities which we apply to improve Theorem 1.1 in the cases of
orthogonal groups. In particular, in Theorem 6.1, which is the main result of Sec. 6,
we prove that the factor 1 + 2r|W |

q−1 may be removed from the bound in Theorem
1.1 for any connected classical group (removing the restriction of being split) with
connected center which is defined over Fq, with q the power of an odd prime. In
the case of the unitary group U(n,Fq2), this follows from a specific formula for the
sum of the degrees of the irreducible characters due to Thiem and the author [22].
The other groups to check are the special orthogonal groups SO(2n+1,Fq) and the
connected orthogonal similitude groups GO±,◦(2n,Fq), which is where our results
from Secs. 4 and 5 are applied.

Finally, in Sec. 7, we turn to the general case of a finite reductive group with
connected center. We use the Gelfand–Graev character to prove, in Proposition 7.1,
that if G is a connected reductive group with connected center defined over Fq (for
any q) with dimension d and rank r, then the sum of the degrees of the irreducible
complex characters of G(Fq) is bounded below by q(d−r)/2(q − 1)r. We notice that
in the cases of the finite general linear, unitary, and symplectic similitude groups
(for q odd), the sum of the degrees of the irreducible characters can actually be
bounded above by q(d−r)/2(q + 1)r, and we conjecture that this is the case for all
finite reductive groups with connected center.

2. Real Representations of Finite Classical Groups

Let G be a finite group and σ an automorphism ofG such that σ2 is the identity. Let
(π,W ) be an irreducible complex representation of G, and suppose that σπ ∼= π̂,
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where π̂ is the contragredient representation of π and σπ is defined by σπ(g) =
π(σ(g)). If χ is the character of π, note that σπ ∼= π̂ if and only if σχ = χ̄.
From the isomorphism σπ ∼= π̂, there must exist a nondegenerate bilinear form
Bσ : W ×W → C, unique up to scalar by Schur’s Lemma, such that

Bσ(σπ(g)u, π(g)v) = Bσ(u, v), for all g ∈ G, u, v ∈W.

Since switching the variables of Bσ gives a bilinear form with the same property,
and the bilinear form is unique up to scalar, then Bσ must be either symmetric or
skew-symmetric. That is, we have

Bσ(u, v) = εσ(π)Bσ(v, u) for all u, v ∈W,

where εσ(π) = ±1. If σπ �∼= π̂, then define εσ(π) = 0. We will also write εσ(π) =
εσ(χ). In the case that σ is the identity automorphism, then εσ(π) = ε(π) is just
the classical Frobenius–Schur indicator of π. In this case, if χ is the character of π,
then ε(χ) = 0 exactly when χ is not real-valued, and when χ = χ̄, then ε(χ) = 1 if χ
is the character of a real representation, and ε(χ) = −1 otherwise. In the case that
σ is an order 2 automorphism, the invariant εσ(π) is called the twisted Frobenius–
Schur indicator of π, which was first considered by Mackey [15], and later studied
in more detail by Kawanaka and Matsuyama [11]. For any finite group G, let Irr(G)
denote the set of complex irreducible characters of G. The twisted Frobenius–Schur
indicators satisfy the following identity (see [11]), which reduces to the classical
Frobenius–Schur involution formula in the case that σ is trivial:∑

χ∈Irr(G)

εσ(χ)χ(1) =
∣∣{g ∈ G | σ(g) = g−1}∣∣.

If G is a finite group with (π,W ) an irreducible complex representation with
character χ, and z is a central element of G, then by Schur’s Lemma π(z) acts
by a scalar on W . We let ωπ(z), or ωχ(z), denote this scalar. If σ is an order 2
automorphism of G and z is a central element of G, we define G(σ, z) to be the
following central extension of G:

G(σ, z) = 〈G, τ | τ2 = z, τ−1gτ = σ(g) for all g ∈ G〉.
Note that G is an index 2 subgroup of G(σ, z). In the case that z = 1, we just have
that G(σ, 1) is the split extension of G by σ. We have the following properties of
the representations of G and G(σ, z), and their Frobenius–Schur indicators, which
were proven in [24, Sec. 2].

Proposition 2.1. Let χ be an irreducible character of G, and χ+ the induced
character IndG(σ,z)

G (χ). Then:

(1) χ+ is irreducible if and only if σχ �= χ. In this case, we have ε(χ+) = ε(χ) +
ωχ(z)εσ(χ).

(2) If σχ = χ, then χ+ = ψ1 + ψ2, where ψ1 and ψ2 are irreducible characters of
G(σ, z). In this case, we have ε(ψ1) + ε(ψ2) = ε(χ) + ωχ(z)εσ(χ). Also, each
ψi is an extension of the character χ, and ε(ψ1) = ε(ψ2).
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In statement 2 in the proposition above, although the last claim is not specifi-
cally proven in [24, Sec. 2], it follows from the definition of the induced character
that each ψi is an extension of χ, and it follows from the same calculation as in
[24, Lemma 2.3] that we have ε(ψi) = 1

2 (ε(χ) + ωχ(z)εσ(χ)) for i = 1, 2, so that
ε(ψ1) = ε(ψ2). The next lemma is used in the proof of the first main result of this
section.

Lemma 2.1. Let G be a finite group, and σ an order 2 automorphism of G. Suppose
that every character of G(σ, z) is real-valued, and that every irreducible character
χ of G satisfies εσ(χ) = ωχ(z). Then, every real-valued character χ of G satisfies
ε(χ) = 1, and every irreducible character ψ of G(σ, z) satisfies ε(ψ) = 1.

Proof. Let χ be an irreducible real-valued character of G, so that ε(χ) = ±1. We
are assuming that εσ(χ) = ωχ(z) = ±1, so that in particular we have σχ = χ̄. Since
χ is real-valued, then σχ = χ, and by Proposition 2.1, χ+ = ψ1 + ψ2, where

ε(ψ1) + ε(ψ2) = ε(χ) + ωχ(z)εσ(χ).

Now, we have ωχ(z)εσ(χ) = 1 by assumption, and ε(χ) = ±1, ε(ψ1) = ε(ψ2) =
±1, by Proposition 2.1 and by assumption. The only possibility is ε(χ) = 1 and
ε(ψi) = 1.

For the second statement, every irreducible character of G(σ, z) is either
extended or induced from an irreducible character of G, since G is an index 2
subgroup. We have just checked that whenever ψ is an irreducible of G(σ, z) which
is extended from G, then ε(ψ) = 1. Now assume that ψ = IndG(σ,z)

G (χ) for some irre-
ducible χ of G. By Proposition 2.1, we must have σχ �= χ, and so χ �= χ̄ since we are
assuming εσ(χ) = ±1. From Proposition 2.1(1), we have ε(ψ) = ε(χ)+ωχ(z)εσ(χ).
Now, ε(χ) = 0 since χ �= χ̄, and ωχ(z)εσ(χ) = 1 by assumption. Thus ε(ψ) = 1.

Let Fq be a finite field with q elements, where q is the power of an odd prime.
Let V = F2n

q , and let 〈·, ·〉 be a nondegenerate skew-symmetric form on V (of
which there is only one equivalence class, by [9, Theorem 2.10]). The group of all
elements g of GL(V ) which leave 〈·, ·〉 invariant up to a scalar multiple is called the
symplectic group of similitudes on F2n

q (or the conformal symplectic group on F2n
q )

which we will denote as GSp(2n,Fq) (this group is also denoted as CSp(2n,Fq)).
That is, GSp(2n,Fq) is the group of elements g of GL(2n,Fq) such that 〈gv, gw〉 =
µ(g)〈v, w〉 for all v, w ∈ V , where µ(g) ∈ F×

q is a scalar depending only on g.
Then µ : GSp(2n,Fq) → F

×
q is a character called the similitude character, and the

symplectic group over Fq, denoted Sp(2n,Fq), is the kernel of µ.
Now consider the case that G = GSp(2n,Fq), where q is the power of an odd

prime, and we let σ be the order 2 automorphism of G defined by σ(g) = µ(g)−1g,
where µ is the similitude character. We have the following results for the group
GSp(2n,Fq) proven previously by the author, the first statement in [24, Theorem
6.2], and the second in [23].
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Proposition 2.2. Let G = GSp(2n,Fq), where q is the power of an odd prime.
Then:

(1) Every irreducible character χ of G satisfies εσ(χ) = ωχ(−I), where σ(g) =
µ(g)−1g.

(2) For any g ∈ G, we may write g = h1h2 such that h2
1 = I, µ(h1) = −1, and

h2
2 = µ(g)I, µ(h2) = −µ(g).

We are now ready to prove the following result.

Theorem 2.1. Let G = GSp(2n,Fq), and q the power of an odd prime. Then:

(i) If χ is an irreducible real-valued character of G, then ε(χ) = 1.
(ii) If σ is the order 2 automorphism of G defined by σ(g) = µ(g)−1g, then every

irreducible character ψ of G(σ,−I) satisfies ε(ψ) = 1.

Proof. Since εσ(χ) = ωχ(−I) for every irreducible character χ of G, then by
Lemma 2.1, it is enough to show that every irreducible character of G(σ,−I) is real-
valued. Equivalently, we must show that every element of G(σ,−I) is conjugate to
its inverse. We prove this by applying the factorization given by Proposition 2.2(2).

First, let g ∈ G ⊂ G(σ,−I). Write g = h1h2 as in Proposition 2.2(2). Then,

g−1 = h−1
2 h−1

1 = µ(g)−1h2h1.

If we conjugate g by h1τ , we obtain

(h1τ)g(h1τ)−1 = h1(τgτ−1)h1 = h1(µ(g)−1h1h2)h1 = µ(g)−1h2h1 = g−1,

and so g is conjugate to g−1. Now let gτ ∈ G(σ,−I) \G, and again write g = h1h2

as in Proposition 2.2(2). In this case,

(gτ)−1 = τ−1µ(g)−1h2h1 = −µ(g)τh2h1 = −µ(g)µ(h2)−1h2h1τ = h2h1τ,

since µ(h2) = −µ(g). Now conjugate gτ by h1, and we have

h1(gτ)h1 = h2τh1 = h2h1τ = (gτ)−1.

So, gτ is conjugate to its inverse, and all characters of G(σ,−I) are real-valued.

Gow [6] proved that the split extension of GL(n,Fq) by the transpose-inverse
automorphism has the property that all of its characters are characters of real rep-
resentations. This is analogous to our result for the central extension of GSp(2n,Fq)
in Theorem 2.1(ii).

Now consider a nondegenerate symmetric form 〈·, ·〉 on a vector space V = Fn
q

over a finite field Fq, where q is odd. Similar to the symplectic case, the orthogonal
group of similitudes on 〈·, ·〉 (or conformal orthogonal group) is the group of elements
g ∈ GL(V ) which leave the form 〈·, ·〉 invariant up to a scalar multiple. When the
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form does not need to be emphasized, we will denote this group by GO(n,Fq) (the
group is sometimes denoted CO(n,Fq)). As in the symplectic case, we let µ denote
the similitude character, where if g ∈ GO(n,Fq), then 〈gu, gv〉 = µ(g)〈u, v〉 for all
u, v ∈ V . In particular, the orthogonal group O(n,Fq) for the form 〈·, ·〉 is the kernel
of the homomorphism µ : GO(n,Fq) → F×

q .
When n = 2m+ 1 is odd, any symmetric form on V gives an isomorphic group

(see [9, Chap. 9]), and in fact the group GO(2m + 1,Fq) is just the direct prod-
uct of its center with the special orthogonal group SO(2m + 1,Fq) [19, Lemma
1.3]. So, we will not consider the odd case. When n = 2m is even, however, there
are two different equivalence classes of symmetric forms, split and nonsplit (see [9,
Chap. 9] or [2, Sec. 15.3]), giving two nonisomorphic groups denoted GO+(2m,Fq)
and GO−(2m,Fq), respectively. When considering both cases, and the type of
form makes a difference in the result, we will write GO±(2m,Fq). Similarly, we
let O+(n,Fq) denote a split orthogonal group, O−(n,Fq) the nonsplit orthogonal
group, and in the case that n is odd, we just write O(n,Fq) for the unique orthogonal
group. When considering the split and nonsplit orthogonal groups at the same time,
we use the notation O±(n,Fq). We also use O(n,Fq) for any of these orthogonal
groups when the general case is considered.

We now study the real-valued characters of the groups GO±(2n,Fq). We could
proceed in a fashion similar to the case of the group GSp(2n,Fq), by defining an
automorphism σ(g) = µ(g)−1g on GO±(2n,Fq). The exact same argument will
work, since in [25] the author proved the appropriate factorization result, and
εσ(χ) = 1 for every irreducible character χ of any orthogonal similitude group.
However, a more direct argument is possible here, coming from the result of Gow
[7, Theorem 1] that for odd q, every irreducible character of any orthogonal group
O(n,Fq) has Frobenius–Schur indicator 1. We give this direct argument in the fol-
lowing, and the proof is very similar to that of [25, Theorem 2].

Theorem 2.2. Let G = GO±(2n,Fq), where q is the power of an odd prime. Then
every irreducible real-valued character χ of G satisfies ε(χ) = 1.

Proof. Let χ be an irreducible real-valued character of G, which is the character
of the representation (π,W ). Then there is a nondegenerate bilinear form B on W ,
unique up to scalar, such that

B(π(g)u, π(g)v) = B(u, v) for all g ∈ G, u, v ∈W,

which must be either symmetric or skew-symmetric, and ε(χ) = 1 is equivalent to
B being a symmetric form.

Now let Z be the center ofG, which consists of all nonzero scalar matrices, where
we have µ(bI) = b2 for any b ∈ F×

q . Let H = Z · O±(2n,Fq), which is an index 2
subgroup of G, since G/H ∼= F×

q /(F
×
q )2. Note that any irreducible representation

of H is an extension of an irreducible of O±(2n,Fq), since Z is central.
SinceH is an index 2 subgroup ofG, then π is either extended or induced from an

irreducible representation ofH . First suppose that π is extended from an irreducible
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ρ of H , with character ψ. Then ψ is the extension of a real-valued irreducible
character θ of O±(2n,Fq), and say θ is the character of the representation (φ,W ).
By the result of Gow [7], we have ε(θ) = 1, which means there is a nondegenerate
bilinear form on W , unique up to scalar, which is invariant under the action of G
under φ, which must be symmetric. But the form B is such a form, since (π,W )
is an extension of (ρ,W ). Therefore, B must be symmetric and ε(χ) = 1 in this
case.

Now suppose that π is induced from an irreducible representation of H , which
means that π restricted to H is isomorphic to the direct sum of two irreducible
representations, (ρ1,W1) and (ρ2,W2) of H , which are extended from irreducible
representations (φ1,W1) and (φ2,W2) of O±(2n,Fq), respectively. If θ1 is the char-
acter of φ1, then again by Gow’s result, ε(θ1) = 1, and there is a nondegenerate
bilinear form on W1, unique up to scalar, which is invariant under the action of
φ1 and is symmetric. We can make the same conclusion as in the previous case
if we can show that the form B is nondegenerate on W1, since then B would be
symmetric on a nonzero subspace, and thus symmetric everywhere. If B is non-
degenerate on W1 ×W2, then for u ∈ W1, v ∈ W2, and g ∈ G, we would have
B(π(g)u, π(g)v) = B(φ1(g)u1, φ2(g)u2), which would imply φ1

∼= φ̂2
∼= φ2. This, in

turn, would imply that ρ1
∼= ρ2, but it is impossible for an irreducible represen-

tation to restrict to the direct sum of two isomorphic representations of an index
2 subgroup [10, Corollary 6.19]. Then B must be degenerate on W1 ×W2, and so
must be nondegenerate on W1×W1, since it is nondegenerate on W . Thus, B must
be symmetric, and ε(χ) = 1.

In summary, when q is odd, all real-valued irreducible characters of the groups
GL(n,Fq) (see the Introduction), GSp(2n,Fq), and GO±(2n,Fq) have Frobenius–
Schur indicator 1, and the same is also true for the special orthogonal groups
SO(2n + 1,Fq) [7, Theorem 2]. These are all examples of groups of Fq-points of
classical groups with connected center (although the algebraic groups GO±(2n)
are disconnected). Another example one might consider is the finite unitary group
U(n,Fq2), but this is known to have irreducible characters with Frobenius–Schur
indicator equal to −1 (see [17], for example).

3. Degree Sums of Real-Valued Characters

As mentioned in the Introduction, every real-valued irreducible character of the
group GL(n,Fq) is the character of a real representation. It follows from the classical
Frobenius–Schur involution formula (see [10, Chap. 4]) that when G = GL(n,Fq),
we have ∑

χ∈Irr(G)
χ R-valued

χ(1) = |{g ∈ G | g2 = I}|.

We may count the number of elements in GL(n,Fq) which square to the identity
by summing the indices of the centralizer of an element in each order 2 conjugacy
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class. We will make such counts for several groups, and the following notation will
be helpful for the expressions obtained. For any q > 1, and any integers m, k ≥ 0
such that m ≥ k, the q-binomial or Gaussian binomial coefficients are defined as(

m

k

)
q

=
(qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

It follows from induction and the identity
(
m
k

)
q

=
(
m−1

k

)
q

+ qm−k
(
m−1
k−1

)
q
, m ≥ 1,

that the Gaussian binomial coefficients are polynomials in q. The Gaussian bino-
mial coefficients have analogous properties to the standard binomial coefficients,
for example, we have

(
m
k

)
q

=
(

m
m−k

)
q
.

We now count the number of elements in GL(n,Fq) which square to the iden-
tity, when q is the power of an odd prime. Each such element in GL(n,Fq) must
have elementary divisors only of the form x± 1, and so is conjugate to a diagonal
element with only 1’s and −1’s on the diagonal. An element in the conjugacy class
of elements with exactly k eigenvalues which are equal to 1, and n − k eigenval-
ues equal to −1, has centralizer isomorphic to GL(k,Fq) × GL(n − k,Fq). Since
|GL(m,Fq)| = qm(m−1)/2

∏m
i=1(q

i − 1), then the size of the conjugacy class con-
taining the elements whose square is I and which have exactly k eigenvalues equal
to 1 is

|GL(n,Fq)|
|GL(k,Fq) × GL(n− k,Fq)| = qk(n−k)

∏n
i=1(q

i − 1)∏k
i=1(qi − 1)

∏n−k
i=1 (qi − 1)

= qk(n−k)

(
n

k

)
q

.

Summing the size of each conjugacy class, for 0 ≤ k ≤ n, gives the result
∑

χ∈Irr(G)
χ R-valued

χ(1) =
n∑

k=0

qk(n−k)

(
n

k

)
q

. (3.1)

Using the fact that as a polynomial in q, the degree of
(
n
k

)
q

is k(n−k), we calculate
that the sum in (3.1), as a polynomial in q, has degree n2/2 when n is even, and
degree (n2 − 1)/2 when n is odd. On the other hand, from a result of Gow [6,
Theorem 4], the sum of the degrees of all of the irreducible characters of GL(n,Fq)
as a polynomial in q has degree (n2 + n)/2. The ratio of the sum of the degrees of
real-valued characters over the sum of all degrees in this case is roughly qn/2 when
n is even and q(n+1)/2 when n is odd. This gives a quick comparison in measure of
the set of real-valued irreducible characters of GL(n,Fq) to the set of all irreducible
characters, relative to degree size.

By Theorem 2.1, when q is odd, every real-valued character of GSp(2n,Fq) is
the character of a real representation, and so the sum of the degrees of the real-
valued characters of GSp(2n,Fq) is equal to the number of elements in GSp(2n,Fq)
which square to I. Similar to the case of GL(n,Fq), we may count these elements
to obtain an expression in q for this character degree sum.

Theorem 3.1. Let q be the power of an odd prime, let G = GSp(2n,Fq), and let
H = Sp(2n,Fq). Then, the sum of the degrees of the real-valued characters of G is
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given by

∑
χ∈Irr(G)

χ R-valued

χ(1) =
n∑

k=0

q2k(n−k)

(
n

k

)
q2

+
∑

χ∈Irr(H)

χ(1)

=
n∑

k=0

q2k(n−k)

(
n

k

)
q2

+
|Sp(2n,Fq)|
|GL(n,Fq)|

=
n∑

k=0

q2k(n−k)

(
n

k

)
q2

+ qn(n+1)/2
n∏

i=1

(qi + 1).

Proof. We must count the number of elements of GSp(2n,Fq) such that g2 = I.
Such an element must satisfy µ(g) = ±1. If µ(g) = 1, then we have g ∈ Sp(2n,Fq),
and we may count such elements using results on the conjugacy classes and their
centralizers in Sp(2n,Fq) due to Wall [26]. An element in Sp(2n,Fq) which squares
to the identity must have elementary divisors only of the form x±1, and thus must
be conjugate in GL(2n,Fq) to a diagonal element with only 1’s and −1’s on the
diagonal. By [26, p. 36, Case B], the only such elements which are in Sp(2n,Fq)
must have an even number 2k of eigenvalues equal to 1, and so 2(n−k) eigenvalues
equal to −1, and there is a unique such conjugacy class. Also by [26, p. 36, Case B],
an element in this conjugacy class has centralizer in Sp(2n,Fq) with size equal to
|Sp(2k,Fq)×Sp(2(n−k),Fq)|. Using the fact that |Sp(2m,Fq)| = qm2 ∏m

i=1(q
2i−1),

we have that the size of the conjugacy class of Sp(2n,Fq) consisting of elements with
2k eigenvalues equal to 1 and 2(n − k) eigenvalues equal to −1 and which square
to the identity is

|Sp(2n,Fq)|
|Sp(2k,Fq) × Sp(2(n− k),Fq)| = q2k(n−k)

∏n
i=1(q

2i − 1)∏k
i=1(q2i − 1)

∏n−k
i=1 (q2i − 1)

= q2k(n−k)

(
n

k

)
q2

.

Thus, the total number of elements in GSp(2n,Fq) such that g2 = I and µ(g) = 1 is

n∑
k=0

q2k(n−k)

(
n

k

)
q2

. (3.2)

Now suppose g ∈ GSp(2n,Fq) such that g2 = I and µ(g) = −1. In other words,
g2 = −µ(g)I. By [23, Proposition 4], there is a unique such conjugacy class in
GSp(2n,Fq), and by [24, Proposition 3.2], the centralizer in GSp(2n,Fq) of any
element in this conjugacy class has size (q − 1)|GL(n,Fq)|. Therefore, the total
number of elements in GSp(2n,Fq) such that g2 = I and µ(g) = −1 is

|GSp(2n,Fq)|
(q − 1)|GL(n,Fq)| =

|Sp(2n,Fq)|
|GL(n,Fq)| = qn(n+1)/2

n∏
i=1

(qi + 1). (3.3)
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From [7, Theorem 3] and [24, Corollary 6.1], the expression (3.3) is also the sum of
the degrees of all irreducible characters of the symplectic group Sp(2n,Fq) when q
is odd. Finally, the total number of elements in GSp(2n,Fq) which square to I is
the sum of (3.2) and (3.3), as desired.

From Theorem 3.1, the sum of the degrees of the real-valued characters of
GSp(2n,Fq) is a polynomial in q of degree n2+n, while from [24, Corollary 6.1], the
sum of the degrees of all of the irreducible characters of GSp(2n,Fq) is a polynomial
in q of degree n2 +n+1. In this case, the ratio of the sum of all degrees to the sum
of the degrees of real-valued characters is roughly q, which is quite different from
the GL(n,Fq) case.

If we let H = Sp(2n,Fq), q odd, then it follows from the Frobenius–Schur
involution formula that the expression (3.2) is exactly

n∑
k=0

q2k(n−k)

(
n

k

)
q2

=
∑

χ∈Irr(H)

ε(χ)χ(1) =
∑

χ∈Irr(H)
ε(χ)=1

χ(1) −
∑

χ∈Irr(H)
ε(χ)=−1

χ(1). (3.4)

In the case that q ≡ 1(mod 4), it follows from a result of Wonenburger [27, Theorem
2] and the fact that −1 is a square in Fq, that ε(χ) = ±1 for every irreducible
character of Sp(2n,Fq). When q ≡ 3(mod 4), however, there are characters of
Sp(2n,Fq) which are not real-valued, by [3, Lemma 5.3]. Combining these facts
with (3.4) and Theorem 3.1, we obtain the following.

Corollary 3.1. Let q be the power of an odd prime, let H = Sp(2n,Fq), and let
G = GSp(2n,Fq). Then,

2
∑

χ∈Irr(H)
ε(χ)=1

χ(1) +
∑

χ∈Irr(H)
ε(χ)=0

χ(1) =
∑

χ∈Irr(G)
χ R-valued

χ(1).

If q ≡ 1(mod 4), then for δ = 1 or −1, we have

∑
χ∈Irr(H)
ε(χ)=δ

χ(1) =
1
2

(
qn(n+1)/2

n∏
i=1

(qi + 1) + δ
n∑

k=0

q2k(n−k)

(
n

k

)
q2

)
.

We now turn to the orthogonal similitude groups, GO±(2n,Fq). By Theorem 2.2,
every real-valued character of GO±(2n,Fq) has Frobenius–Schur indicator 1, and so
again we find the sum of the degrees of the real-valued characters of this group by
counting the number of elements which square to the identity. Just as in the case of
GSp(2n,Fq), such an element must either be orthogonal, or skew-orthogonal (that
is, has similitude −1). We prove that in the group GO+(2n,Fq), the latter elements
form a single conjugacy class, whereas there are no such elements in GO−(2n,Fq).
These facts follow from the classification of conjugacy classes in GO±(2n,Fq) due
to Shinoda [19], although we are also able to give an elementary proof, which is
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essentially the same as the proof of a result of Gow [8, Lemma 1] for symplectic
groups. We also find the centralizer of a skew-orthogonal order 2 element in the
group GO+(2n,Fq). The following result could certainly be obtained for a more
general type of conjugacy class in the group of orthogonal similitudes over an arbi-
trary field (with characteristic not 2), similar to the results for groups of symplectic
similitudes in [23, Proposition 4] and [24, Proposition 3.2], but we do not need such
a result here.

Lemma 3.1. Let G = GO±(2n,Fq), where q is the power of an odd prime. Con-
sider the set K = {g ∈ G | g2 = I, µ(g) = −1}. Then we have the following:

1. If G = GO+(2n,Fq), then the set K forms a single conjugacy class in G. The
centralizer in G of any element of K is isomorphic to F×

q × GL(n,Fq).
2. If G = GO−(2n,Fq), then the set K is empty.

Proof. Let V = F2n
q , let 〈·, ·〉 denote a nondegenerate symmetric form on V , and

let G be the orthogonal group of similitudes on 〈·, ·〉. If g ∈ G such that g2 = I

and µ(g) = −1, then the only eigenvalues of g are 1 and −1. Let V1 and V−1

be the eigenspaces of g for 1 and −1, respectively, and note that the assumption
µ(g) = −1 forces V1 and V−1 to be totally isotropic spaces with respect to 〈·, ·〉.
This implies both V1 and V−1 have dimension n, and through the inner product
〈·, ·〉, V−1 is isomorphic to the dual space of V1. If v1, . . . , vn is any basis of V1,
choose w1, . . . , wn to be a dual basis of V−1, so that 〈vi, wj〉 = δij . With respect to

this basis, the form 〈·, ·〉 can be represented by the matrix
(

0 I
I 0

)
, which means

that it must be a split form on V . That is, assuming that an element g ∈ G with
the above properties exists, we cannot have that G is a group corresponding to a
nonsplit form, which proves statement 2. We may now assume G = GO+(2n,Fq).

With respect to the basis we have chosen, g must be the element
(

I 0
0 −I

)
, thus

determining the conjugacy class of g uniquely.
Now, without loss of generality, we may assume the form 〈·, ·〉 is given by the

matrix
(

0 I
I 0

)
, and the element g =

(
I 0

0 −I

)
. It is a direct computation that the

centralizer of g in G consists of the following set of elements:{(
A 0
0 λ(TA

−1)

) ∣∣∣∣∣A ∈ GL(n,Fq), λ ∈ F
×
q

}
.

By mapping the element
(

A 0
0 λ(T A−1)

)
to (λ,A), we see that this group is isomor-

phic to F
×
q × GL(n,Fq), completing the proof of statement 1.

We now use the above result to give expressions for the sums of the degrees
of real-valued characters of the groups GO±(2n,Fq). The key result due to Gow
[7, Theorem 1] we use here, which we also used in the previous section, is that any



August 31, 2010 15:48 WSPC/S0219-4988 171-JAA
S0219498810004166

Character Degree Sums and Real Representations of Finite Classical Groups 645

irreducible character χ of any finite orthogonal group O(n,Fq) (where q is odd)
satisfies ε(χ) = 1.

Theorem 3.2. The sum of the degrees of the irreducible real-valued characters of
the groups GO±(2n,Fq), where q is the power of an odd prime, are given as follows:

1. If G = GO+(2n,Fq) and H = O+(2n,Fq), then

∑
χ∈Irr(G)

χ R-valued

χ(1) =
∑

χ∈Irr(H)

χ(1)+
|O+(2n,Fq)|
|GL(n,Fq)| =

∑
χ∈Irr(H)

χ(1)+2qn(n−1)/2
n−1∏
i=1

(qi+1).

2. If G = GO−(2n,Fq), and H = O−(2n,Fq), then∑
χ∈Irr(G)

χ R-valued

χ(1) =
∑

χ∈Irr(H)

χ(1).

Proof. From Theorem 2.2, the sum of the degrees of the real-valued characters of
GO±(2n,Fq) is equal to the number of elements g in the group such that g2 = I.
In the case G = GO+(2n,Fq), we add the number of such elements in the group
O+(2n,Fq) to the number of these elements such that µ(g) = −1. The number
of elements in O+(2n,Fq) which square to the identity is equal to the sum of the
degrees of all of the irreducible characters of O+(2n,Fq), by the Frobenius–Schur
formula and [7, Theorem 1]. By Lemma 3.1(1), the number of order 2 elements in
GO+(2n,Fq) such that µ(g) = −1 is equal to the index of the centralizer of the
unique conjugacy class of such elements in the group, which is given by

|GO+(2n,Fq)|
|F×

q × GL(n,Fq)|
=

|O+(2n,Fq)|
|GL(n,Fq)| =

2qn(n−1)(qn − 1)
∏n−1

i=1 (q2i − 1)
qn(n−1)/2

∏n
i=1(qi − 1)

= 2qn(n−1)/2
n−1∏
i=1

(qi + 1).

Adding this quantity to the sum of the degrees of the irreducible characters of
O+(2n,Fq) gives the result for this case.

In the case G = GO−(2n,Fq), by Lemma 3.1(2), the only elements in G which
square to the identity are in the group H = O−(2n,Fq). So, the sum of the degrees
of the real-valued irreducible characters of G is equal to the number of elements in
H which square to the identity, which, as in the previous case, is equal to the sum
of the degrees of the irreducible characters of H .

In Theorem 4.1, we find expressions in q for the sums of the degrees of the
orthogonal groups O(n,Fq), which, combined with Theorem 3.2, give us expressions
for the sums of the degrees of the real-valued irreducible characters of GO±(2n,Fq)
as polynomials in q.

There are several similarities between Theorems 3.1 and 3.2(1). Both sums have
a part corresponding to the sum of the degrees of the irreducible characters of
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the symplectic or orthogonal subgroups, respectively. Also, both sums have a part
which is the index of a general linear group as a subgroup of the symplectic or
orthogonal subgroups, which corresponds to the size of a unique conjugacy class.
This part of the sum is conveniently factorizable as a polynomial in q. The main
difference is that this part of the sum corresponds to the sum of the degrees of
the irreducible characters of the symplectic group in Theorem 3.1, but it does not
correspond to the sum of the degrees for the orthogonal group in Theorem 3.2(1).
This transposed difference of the role of this part of the sum is essentially due to
the difference between the defining bilinear forms, one being skew-symmetric, and
the other symmetric, which switches the roles of the two different types of order
2 elements which must be counted in each case. As a result, we will see in the
next section that the sum of the degrees of the irreducible characters of a finite
orthogonal group is not, in general, a conveniently factorizable polynomial in q, but
rather another sum involving Gaussian binomial coefficients.

4. Character Degree Sums for Orthogonal Groups

In this section, we compute an expression for the sum of the degrees of the irre-
ducible characters of the orthogonal groups over finite fields of odd characteristic.
By the main theorem of [7], every irreducible character of such a group is the char-
acter of a real representation, and so by the classical Frobenius–Schur involution
formula, the sum of the degrees of the irreducible characters is equal to the number
of elements which square to the identity in the group.

So, in order to find the character degree sum for these finite orthogonal groups,
we must count the number of involutions, which we do using the results on conjugacy
classes in these groups due to Wall [26].

If g ∈ O(n,Fq) and g2 = I, then any elementary divisor of g must be either x+1
or x−1, so over GL(n,Fq) is conjugate to a diagonal matrix with only 1’s and −1’s
on the diagonal. By the results of Wall [26, p. 36, Case B] (see also [4, Sec. 2.2]),
if there are j eigenvalues of g equal to 1, and n− j eigenvalues equal to −1, where
0 < j < n, then there are exactly two conjugacy classes in O(n,Fq) of such elements
which square to the identity. Let us label these conjugacy classes by the notation
(j, n − j)±, where j is the number of eigenvalues equal to 1, n − j the number
of eigenvalues equal to −1, and the sign ± distinguishes the two corresponding
conjugacy classes. The following summarizes the results we use from [26] for these
conjugacy classes and the order of the centralizers of elements in these conjugacy
classes.

Proposition 4.1 (Wall). Let G be an orthogonal group over Fq with q the power
of an odd prime.

(1) If G = O(n,Fq) with n odd, and j is even, then an element in the conjugacy
class (j, n− j)± has centralizer size |O±(k,Fq) × O(n− j,Fq)|. If j is odd, an
element in the conjugacy class (j, n−j)± has centralizer size |O(j,Fq)×O±(n−
j,Fq)|.
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(2) If G = O+(n,Fq) with n even, and j is even, then an element in the conjugacy
class (j, n − j)± has centralizer size |O±(j,Fq) × O±(n − j,Fq)|. If j is odd,
an element in either of the conjugacy classes (j, n − j)± has centralizer size
|O(j,Fq) × O(n− j,Fq)|.

(3) If G = O−(n,Fq) with n even, and j is even, then an element in the conjugacy
class (j, n − j)± has centralizer size |O±(j,Fq) × O∓(n − j,Fq)|. If j is odd,
an element in either of the conjugacy classes (j, n − j)± has centralizer size
|O(j,Fq) × O(n− j,Fq)|.

Using Proposition 4.1, and that the orders of the orthogonal groups are given by

|O(2m+ 1,Fq)| = 2qm2
m∏

i=1

(q2i − 1), and

|O±(2m,Fq)| = 2qm(m−1)(qm ∓ 1)
m−1∏
i=1

(q2i − 1),

when q is the power of an odd prime, we may obtain the following.

Theorem 4.1. The sums of the character degrees of the orthogonal groups over
Fq, where q is the power of an odd prime, are given as follows:

(1) If G = O(n,Fq), where n = 2m+ 1 is odd, then

∑
χ∈Irr(G)

χ(1) = 2
m∑

k=0

q2k(m−k+1)

(
m

k

)
q2

.

(2) If G = O±(n,Fq), where n = 2m is even, then

∑
χ∈Irr(G)

χ(1) =
m∑

k=0

q2k(m−k)

(
m

k

)
q2

+ qm−1(qm ∓1)
m−1∑
k=0

q2k(m−k−1)

(
m− 1
k

)
q2

.

Proof. In each case, we must sum the indices of the centralizers of the conjugacy
classes of elements which square to the identity, using Proposition 4.1. In case 1,
when G = O(2m+ 1,Fq), first consider the two conjugacy classes of type (j, 2m+
1 − j)±, when j = 2k is even, 0 < k ≤ m. Then, the sizes of the two centralizers
C± of these classes are

|C±| = |O±(2k,Fq) × O(2(m− k) + 1,Fq)|

= 4qk(k−1)+(m−k)2 (qk ∓ 1)
k−1∏
i=1

(q2i − 1)
m−k∏
i=1

(q2i − 1).

Computing the sum of the indices of these centralizers, we obtain

|G|
|C+| +

|G|
|C−| = q2k(m−k+1)

∏m
i=1(q

2i − 1)∏k
i=1(q2i − 1)

∏m−k
i=1 (q2i − 1)

= q2k(m−k+1)

(
m

k

)
q2

.

Consider now the two conjugacy classes of type (j, 2m+1− j)±, when j = 2k+1 is
odd, so 2m+ 1 − j = 2(m− k), and 0 ≤ k < m. The orders of the two centralizers
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C± in this case are

|C±| = |O(2k + 1,Fq) × O±(2(m− k),Fq)|,
which are the same as in the previous case, except that k is replaced by m − k.
Thus, the sum of the indices of these centralizers is

|G|
|C+| +

|G|
|C−| = q2(m−k)(k+1)

(
m

m− k

)
q2

.

Taking the sum of these terms, and replacing k by m− k in the sum, we obtain
m−1∑
k=0

q2(m−k)(k+1)

(
m

m− k

)
q2

=
m∑

k=1

q2k(m−k+1)

(
m

k

)
q2

elements from these conjugacy classes which square to the identity. Adding in the
two central elements ±I, we obtain that the total number of elements in O(2m +
1,Fq) which square to the identity, and so the sum of the degrees of the irreducible
characters is

2
m∑

k=1

q2k(m−k+1)

(
m

k

)
q2

+ 2 = 2
m∑

k=0

q2k(m−k+1)

(
m

k

)
q2

.

Now consider case 2, when G = O±(2m,Fq). If G = O+(2m,Fq), then the two
conjugacy classes of type (j, 2m − j)±, where j = 2k is even, 0 < k < m, have
centralizers C± with orders |O±(2k,Fq) × O±(2(m− k),Fq)|, so

|C±| = 4qk(k−1)+(m−k)(m−k−1)(qk ∓ 1)(qm−k ∓ 1)
k−1∏
i=1

(q2i − 1)
m−k−1∏

i=1

(q2i − 1).

If G = O−(2m,Fq), the two corresponding conjugacy classes have centralizers C±

with orders |O±(2k,Fq) × O∓(2(m − k),Fq)|, which is the same as above, except
that qm−k ∓ 1 is replaced by qm−k ± 1. In both cases, the sum of the indices of
these centralizers is computed to be

|G|
|C+| +

|G|
|C−| = q2k(m−k)

(
m

k

)
q2

.

Adding in the two central elements, these conjugacy classes contribute exactly
m−1∑
k=1

q2k(m−k)

(
m

k

)
q2

+ 2 =
m∑

k=0

q2k(m−k)

(
m

k

)
q2

. (4.1)

When G = O±(2m,Fq), the two conjugacy classes of type (2k+1, 2m− (2k+1))±,
0 ≤ k ≤ m− 1, have centralizers of the same order |O(2k + 1,Fq) × O(2(m − k −
1) + 1,Fq)|. The union of these two conjugacy classes thus has cardinality

2|O±(2m,Fq)|
|O(2k + 1,Fq) × O(2(m− k − 1) + 1,Fq)| = q2k(m−k−1)+m−1(qm ∓ 1)

(
m− 1
k

)
q2

.

Taking the sum of these contributions from k = 0 to k = m − 1, and adding to
(4.1), the result is obtained.
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In the case that n = 2m + 1 is odd, the orthogonal group O(n,Fq) is just the
direct product {±I} × SO(2m + 1,Fq) of the center with the special orthogonal
group. The sum of the degrees of the characters of SO(2m+ 1,Fq) is thus exactly
half the sum for O(2m+ 1,Fq) obtained in case 1 of Theorem 4.1. That is, we have
the following.

Corollary 4.1. Let q be the power of an odd prime, and let G = SO(2m+ 1,Fq).
Then ∑

χ∈Irr(G)

χ(1) =
m∑

k=0

q2k(m−k+1)

(
m

k

)
q2

.

When n = 2m is even, Gow [7, Theorem 2] proved that every real-valued charac-
ter of SO±(2m,Fq) is the character of a real representation, and in the case n = 4l
is divisible by 4, every character of SO±(4l,Fq) is real-valued. To find the sum of
the degrees of the real-valued characters of SO±(2m,Fq) in these cases, then, we
have to count the number of elements of the group which square to the identity.
This is exactly the number of elements in O±(2m,Fq) which square to the identity
and which have determinant 1, and so have an even number of eigenvalues equal to
−1 (and an even number equal to 1). This is just the first part of the sum obtained
in case 2 of Theorem 4.1. Curiously, this is exactly what is obtained as the sum
of the degrees of the real-valued characters of GL(m,Fq2) in (3.1). We summarize
these observations below.

Corollary 4.2. Let q be the power of an odd prime, let H = SO±(2m,Fq), and let
G = GL(m,Fq2). Then,

∑
χ∈Irr(H)

χ R-valued

χ(1) =
m∑

k=0

q2k(m−k)

(
m

k

)
q2

=
∑

χ∈Irr(G)
χ R-valued

χ(1).

In the case that m = 2l is also even, this is the sum of the degrees of all of the
characters of the group SO±(4l,Fq).

5. Inequality Lemmas

In this section, we prove several inequalities in preparation for the results in Sec. 6.
We begin with an elementary bound for the Gaussian binomial coefficients.

Lemma 5.1. For any integers m ≥ 1, 1 ≤ k ≤ m, we have(
m

k

)
q

≤ qk(m−k)−m+1(q + 1)m−1.

Proof. The inequality reduces to 1 ≤ 1 when m = 1. If k = 1, then for any m ≥ 1,
we have

(
m
1

)
q

= qm−1 + · · · + q + 1 ≤ (q + 1)m−1. So, we may assume k ≥ 2.
Assume the inequality holds for m = n − 1, for any k ≥ 1. We use the identity(
n
k

)
q

=
(
n−1

k

)
q
+qn−k

(
n−1
k−1

)
q
, k ≥ 1, which was mentioned in Sec. 3. By this identity
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and the induction hypothesis, and with k ≥ 2, we have(
n

k

)
q

≤ (qk(n−1−k)−n+2 + qk(n−k)−n+2)(q + 1)n−2

= qk(n−1−k)−n+2(qk + 1)(q + 1)n−2

≤ qk(n−1−k)−n+2qk−1(q + 1)(q + 1)n−2

= qk(n−k)−n+1(q + 1)n−1,

as desired.

The next two Lemmas will be used to bound the expressions obtained in Sec. 4.

Lemma 5.2. For any integer m ≥ 1, and any q > 1,
m∑

k=0

q2k(m−k)

(
m

k

)
q2

≤
{

2(q + 1)m2−1 if m is odd
(q + 1)m2

if m is even.

Proof. From the symmetry in k and m− k in the sum, we have

m∑
k=0

q2k(m−k)

(
m

k

)
q2

=




2
(m−1)/2∑

k=0

q2k(m−k)

(
m

k

)
q2

if m is odd

qm2/2

(
m

m/2

)
q2

+ 2
(m/2)−1∑

k=0

q2k(m−k)

(
m

k

)
q2

if m is even.

(5.1)

From Lemma 5.1, we have, for any k ≥ 1,(
m

k

)
q2

≤ q2k(m−k)−2m+2(q2 + 1)m−1 ≤ q2k(m−k)−m+1(q + 1)m−1,

since q2 + 1 ≤ q(q + 1). Now, for s = (m− 1)/2 if m is odd, or s = (m/2)− 1 if m
is even, we have

s∑
k=0

q2k(m−k)

(
m

k

)
q2

≤ (q + 1)m−1

(
1 +

s∑
k=1

q4k(m−k)−m+1

)

≤ (q + 1)m−1(q + 1)4s(m−s)−m+1 = (q + 1)4s(m−s), (5.2)

since the exponent of q in the sum is maximum when k = s. When m is odd, then
substituting s = (m− 1)/2 and applying (5.1) gives the desired result. When m is
even, then applying (5.2) with s = (m/2) − 1, and Lemma 5.1, we have

qm2/4

(
m

m/2

)
q2

+ 2
(m/2)−1∑

k=0

q2k(m−k)

(
m

k

)
q2

≤ qm2−m+1(q + 1)m−1 + 2(q + 1)m2−4

≤ (q + 1)m2−4(q4 + 2) ≤ (q + 1)m2
,

as claimed for m even.
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Lemma 5.3. For any integer m ≥ 0, and any q > 1,

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

≤ (q + 1)m2+m.

Proof. We may assume m ≥ 1. Note that by switching the roles of k and m− k,
we obtain

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

=
m∑

k=0

q2kq2k(m−k)

(
m

k

)
q2

=
m∑

k=0

q2(m−k)q2k(m−k)

(
m

k

)
q2

.

It follows that we have

2
m∑

k=0

q2k(m−k+1)

(
m

k

)
q2

=
m∑

k=0

(q2k + q2(m−k))q2k(m−k)

(
m

k

)
q2

.

From the symmetry in k and m − k in the right-hand side of the above equation,
we have

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

=




(m−1)/2∑
k=0

(q2k + q2(m−k))q2k(m−k)

(
m

k

)
q2

if m is odd

qm2/2+m

(
m

m/2

)
q2

+
(m/2)−1∑

k=0

(q2k + q2(m−k))q2k(m−k)

(
m

k

)
q2

if m is even.

(5.3)

Let s = (m − 1)/2 if m is odd, and s = (m/2) − 1 if m is even. In the sums (5.3),
the term q2k + q2(m−k) takes its maximum value when k = s. Applying this, and
the inequality (5.2), we have

s∑
k=0

(q2k + q2(m−k))q2k(m−k)

(
m

k

)
q2

≤ (q2s + q2(m−s))
s∑

k=0

q2k(m−k)

(
m

k

)
q2

≤ (q2s + q2(m−s))(q + 1)4s(m−s). (5.4)

When m is odd and s = (m− 1)/2, then by (5.4) and (5.3),

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

≤ (qm−1 + qm+1)(q + 1)(m
2−1)/2 = qm−1(q + 1)m2+1

≤ (q + 1)m2+m,
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as claimed. When m is even, with s = (m/2) − 1, apply (5.4), together with (5.3)
and Lemma 5.1 to obtain

m∑
k=0

q2k(m−k+1)

(
m

k

)
q2

≤ qm2+1(q + 1)m−1 + (qm−2 + qm+2)(q + 1)m2−4

≤ qm2+1(q + 1)m−1 + qm−2(q4 + 1)(q + 1)m2−4

≤ q2(q + 1)m2+m−2 + (q + 1)m2+m−2 ≤ (q + 1)m2+m,

as desired.

6. An Upper Bound for Character Degree Sums

Let G be a connected algebraic group with connected center over F̄q, defined over
Fq by some Frobenius map. By the dimension of G, we mean the dimension of G

as an algebraic variety over F̄q. The rank of G is the dimension of a maximal torus
of G. That is, if the rank of G is r, then a maximal torus of G is isomorphic
to (F̄×

q )r.
In this section, we will consider the case when G is a connected classical group

with connected center, when q is the power of an odd prime. For us, these are the
groups GL(n, F̄q), SO(2n+ 1, F̄q), GSp(2n, F̄q), and a certain index 2 subgroup of
GO(2n, F̄q), denoted GO◦(2n, F̄q), which we describe now.

Let V be a 2n-dimensional vector space over F̄q, with q odd, and consider a
nondegenerate symmetric form on V . Since F̄q is algebraically closed, there is only
one equivalence class of forms (by [9, Theorem 4.4], for example), which we may
assume corresponds to the matrix J =

(
0 I
I 0

)
. Consider the orthogonal group

of similitudes GO(2n, F̄q) of this form. For any g ∈ GO(2n, F̄q), then, we have
T g = Jµ(g)g−1J . Since g is conjugate to its transpose in GL(V ), it follows that
g is conjugate to µ(g)g−1 in GL(V ), and so they have the same determinant. In
particular, we have det(g)2 = µ(g)2n. The subgroup consisting of elements with
the property that det(g) = µ(g)n is a connected algebraic group (by an argument
similar to that given in [2, Sec. 15.2]). So, we define

GO◦(2n, F̄q) = {g ∈ GO(2n, F̄q) | det(g) = µ(g)n}, (6.1)

the connected component of the identity in the orthogonal group of similitudes.
Note that SO(2n, F̄q) is contained in GO◦(2n, F̄q), and its center consists of all
scalar matrices.

If we define the Fq-structure of GO◦(2n, F̄q) by the standard Frobenius map
F , which raises entries to the power of q, we get that the group of Fq-points is
the index 2 subgroup of the split orthogonal group of similitudes over Fq satisfying
the condition in (6.1), which we denote GO+,◦(2n,Fq). If we compose the standard
Frobenius map with conjugation by an orthogonal reflection defined over Fq (see
[2, Sec. 15.3]), we get that the group of Fq-points of GO◦(2n, F̄q) is the index 2
subgroup of the nonsplit orthogonal group of similitudes over Fq which satisfies
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(6.1), which we denote GO−,◦(2n,Fq). We may relate the character degree sums
for the groups GO±,◦(2n,Fq) to those for the orthogonal groups O±(2n,Fq) in the
following way.

Lemma 6.1. Let q be the power of an odd prime, let G = GO±,◦(2m,Fq), and let
H = O±(2m,Fq). Then ∑

χ∈Irr(G)

χ(1) ≤ (q − 1)
∑

χ∈Irr(H)

χ(1).

Proof. Let S = SO±(2m,Fq) be the special orthogonal group. Then S is a normal
subgroup of G of index q − 1, with G/S ∼= F

×
q cyclic. From Clifford theory (see

[10, Chap. 6 and Theorem 11.7]), the restriction of any irreducible character of
G to S has a multiplicity-free decomposition, and each irreducible character of S
appears in the restriction to S of at most q − 1 characters of G. It follows that we
have ∑

χ∈Irr(G)

χ(1) ≤ (q − 1)
∑

χ∈Irr(S)

χ(1). (6.2)

Since S is an index 2 subgroup of H , every irreducible character of H is extended or
induced from an irreducible character of S. A character ofH which is extended from
a character of S has the same degree as that character of H , while that character
of S may be extended to give a second distinct irreducible of H . A character of H
which is induced from a character of S has degree twice that of the character of S,
but can also be induced by exactly one other distinct character of S. It follows that
we have ∑

χ∈Irr(S)

χ(1) ≤
∑

χ∈Irr(H)

χ(1). (6.3)

The result follows from (6.2) and (6.3).

We may now prove the main result of this section, in which we improve Kowal-
ski’s Theorem 1.1 in the case of any connected classical group with connected center,
as follows.

Theorem 6.1. Let q be the power of an odd prime, and let G be a connected
classical group with connected center defined over Fq, where the rank of G is r, and
the dimension of G is d. Then the sum of the degrees of the irreducible characters
of the finite group G(Fq) may be bounded as follows:∑

χ∈Irr(G(Fq))

χ(1) ≤ (q + 1)(d+r)/2.

Proof. The dimensions and ranks of finite classical groups may be computed
directly from their definitions (see [2, Chap. 15], for example). If G = GL(n, F̄q),
then d = n2 and r = n. In this case, G may have Fq-structure given by the stan-
dard Frobenius map, in which case G(Fq) = GL(n,Fq), or the standard Frobenius
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map composed with the transpose-inverse automorphism, in which case G(Fq) =
U(n,Fq2), the finite unitary group defined over Fq. The case G(Fq) = GL(n,Fq)
was considered by Kowalski [13, p. 80], and he showed that the sum of the degrees of
the characters is indeed bounded above by (q+1)(d+r)/2. When G(Fq) = U(n,Fq2),
the sum of the degrees of the irreducible characters of G(Fq) was computed by
Thiem and the author [22, Theorem 5.2] to be∑

χ∈Irr(G(Fq))

χ(1) = (q + 1)q2(q3 + 1)q4 · · · (qn + (1 − (−1)n)/2)

≤
n∏

i=1

(q + 1)i = (q + 1)(n
2+n)/2 = (q + 1)(d+r)/2.

If G = GSp(2n, F̄q), then d = 2n2 + n + 1 and r = n + 1, and we
may assume G has Fq-structure given by the standard Frobenius map, so that
G(Fq) = GSp(2n,Fq). This case was also considered by Kowalski, and he noticed
that by the formula given in [24, Corollary 6.1], the sum of the degrees of
GSp(2n,Fq) is bounded above by (q + 1)(d+r)/2. We note that the results in [24]
are proven only when q is odd, and so we can only obtain this bound in the case q
is odd.

If G = SO(2n + 1, F̄q), then d = 2n2 + n and r = n, and again we may
assume G has Fq-structure given by the standard Frobenius map, and so G(Fq) =
SO(2n+ 1,Fq). By Corollary 4.1 and Lemma 5.3, we have

∑
χ∈Irr(G(Fq))

χ(1) =
n∑

k=0

q2k(n−k+1)

(
n

k

)
q2

≤ (q + 1)n2+n = (q + 1)(d+r)/2.

If G = GO◦(2n, F̄q), then d = 2n2 − n + 1 and r = n + 1. In this case, as
explained above, G can have Fq-structure given by the standard Frobenius map,
so that G(Fq) = GO+,◦(2n,Fq), or by the standard Frobenius map composed with
conjugation by an orthogonal reflection defined over Fq, in which case G(Fq) =
GO−,◦(2n,Fq). We consider both cases at once, so let G(Fq) = GO±,◦(2n,Fq). By
Theorem 4.1(2) and Lemma 6.1, we have

∑
χ∈Irr(G(Fq))

χ(1) ≤ (q − 1)

(
n∑

k=0

q2k(n−k)

(
n

k

)
q2

+ qn−1(qn + 1)
n−1∑
k=0

q2k(n−k−1)

(
n− 1
k

)
q2

)
.

If n is even, then by (6.4) and Lemma 5.2, we have∑
χ∈Irr(G(Fq))

χ(1) ≤ (q − 1)
(
(q + 1)n2

+ qn−1(qn + 1)2(q + 1)(n−1)2−1
)

≤ (q − 1)
(
(q + 1)n2

+ 2(q + 1)n2−1
)

= (q + 1)n2−1(q − 1)(q + 3)

= (q + 1)n2−1(q2 + 2q − 3) ≤ (q + 1)n2+1 = (q + 1)(d+r)/2,
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as required. Similarly, when n is odd, then by (6.4) and Lemma 5.2, we have∑
χ∈Irr(G(Fq))

χ(1) ≤ (q − 1)
(
2(q + 1)n2−1 + qn−1(qn + 1)(q + 1)(n−1)2

)

≤ (q − 1)
(
2(q + 1)n2−1 + (q + 1)n2

)
= (q + 1)n2−1(q − 1)(q + 3)

= (q + 1)n2−1(q2 + 2q − 3) ≤ (q + 1)n2+1 = (q + 1)(d+r)/2,

which was the last case to consider.

7. A Lower Bound and a Conjecture

We now consider the case that G is any connected reductive group over F̄q with
connected center, defined over Fq, where q is the power of some prime p (we allow
p = 2 here). If G = G(Fq), and N is a maximal unipotent subgroup of G, then N

is a Sylow p-subgroup of G [2, Proposition 3.19(i)]. The Gelfand–Graev character
of G is constructed by inducing a nondegenerate linear character from N to G. For
a detailed discussion on Gelfand–Graev characters and nondegenerate characters,
see [1, Sec. 8.1] or [2, Chap. 14]. The main result on the Gelfand–Graev character
which we need is that its decomposition into a sum of irreducible characters of G
is multiplicity-free, a result which is due to Steinberg [21] in the general case. By
applying this fact, we obtain the following lower bound for the sum of the degrees
of the irreducible characters of G = G(Fq).

Proposition 7.1. Let G be a connected reductive group over F̄q with connected
center, defined over Fq, of dimension d and rank r. Then the sum of the dimensions
of the irreducible representations of the group G = G(Fq) is bounded below as
follows: ∑

χ∈Irr(G)

χ(1) ≥ q(d−r)/2(q − 1)r.

Proof. Since the Gelfand–Graev character of G = G(Fq) is multiplicity-free, then
the degree of the Gelfand–Graev character gives a lower bound for the sum of the
degrees of all of the irreducible characters of G. We give a lower bound for the
degree of the Gelfand–Graev character to prove our claim.

The semisimple rank of G, which we denote by l, is defined as the rank of
G/R(G), where R(G) is the radical of G, which is the maximal closed, connected,
normal, solvable subgroup of G (see [20, 6.4.14]). The degree of the Gelfand–Graev
character is the p′-part of the order of G, since it is induced from a linear character
of a Sylow p-subgroup of G. By [1, Sec. 2.9], the p′-part of the order of G is given by

|Z(Fq)|
l∏

i=1

(qdi − ωi),

where Z is the center of G, the di are the degrees of the generators of the ring
of polynomial invariants of the Weyl group W of G, and the ωi are roots of unity
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which are eigenvalues of a linear map on the algebra of polynomial invariants of W .
Now, we have |qdi − ωi| ≥ qdi − 1 ≥ qdi−1(q − 1). From [1, Proposition 2.4.1(iv)],
we have

∑l
i=1(di − 1) is equal to the number of positive roots of the root system

corresponding to the Weyl group W , and by [20, Corollary 8.1.3(ii)], this is equal
to (d− r)/2. These observations give

l∏
i=1

(qdi − ωi) ≥ q
Pl

i=1(di−1)(q − 1)l = q(d−r)/2(q − 1)l. (7.1)

By [20, Proposition 7.3.1(i)], since G is assumed to be a connected reductive
group with connected center Z, we have R(G) = Z, where Z is itself a torus. In
particular, we have r = l + dim(Z), by the definition of semisimple rank. By [1,
Proposition 3.3.7] and the formula for the order of the Fq-points of a maximal torus
[1, Proposition 3.3.5], like in [13, p. 75], this implies we have |Z(Fq)| ≥ (q − 1)r−l.
Combining this with (7.1) gives us the desired bound.

Let us return to the question of a general upper bound for the sum of the degrees
of the irreducible characters of G(Fq). When G(Fq) = GL(n,Fq), then the sum of
the character degrees of G(Fq) is given by (see [6, 12, 14])

(q − 1)q2(q3 − 1) · · · (qn − (1 − (−1)n)/2),

which is, of course, bounded above by q(n
2+n)/2 < q(n

2−n)/2(q+1)n. When G(Fq) =
U(n,Fq2), then by the sum of the character degrees given in the proof of Theorem
6.1, this can be seen to be bounded above by q(n

2−n)/2(q + 1)n as well. Note that
in these two cases, we have (n2 − n)/2 = (d− r)/2 and n = r.

When G(Fq) = GSp(2n,Fq), with q odd, the sum of the degrees of the irre-
ducible characters of G(Fq), by [24, Corollary 6.1], is

1
2
q(n

2+n)/2(q − 1)

(
n∏

i=1

(qi + 1) +
n∏

i=1

(qi + (−1)i)

)
≤ qn2

(q + 1)n+1,

where n+ 1 = r and n2 = (d− r)/2.
If G(Fq) is SO(2n + 1,Fq) or GO±,◦(2n,Fq), with q odd, then we may check

directly for small values of n that the sum of the character degrees of these groups
are bounded by q(d−r)/2(q + 1)r as well. We could perhaps prove this for all n
for these groups, although we would have to tighten the bounds found in Sec. 5.
It would be much more satisfying to have a general proof using Deligne–Lusztig
theory, along the same lines as Kowalski’s proof of Theorem 1.1 in [13].

Based on these examples, we conclude by making the following conjecture for
an upper bound for the sum of the degrees of the irreducible characters of a finite
reductive group. We include the lower bound obtained in Proposition 7.1 in the
statement to stress the symmetry in these bounds.

Conjecture 7.1. Let G be a connected reductive group over F̄q with connected
center, defined over Fq, of dimension d and rank r. Then the sum of the degrees of



August 31, 2010 15:48 WSPC/S0219-4988 171-JAA
S0219498810004166

Character Degree Sums and Real Representations of Finite Classical Groups 657

the irreducible complex characters of G = G(Fq) may be bounded as follows:

q(d−r)/2(q − 1)r ≤
∑

χ∈Irr(G)

χ(1) ≤ q(d−r)/2(q + 1)r.
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