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Let G be any group. If g, x ∈ G, we define the conjugate of g by x to
be the element xgx−1. (Note: some texts define the conjugate of g by x to
be x−1gx. By our definition, this would be the conjugate of g by x−1.) If
g, h ∈ G, and there is some x ∈ G such that xgx−1 = h, we say that g and h
are conjugate in G. For the group G, define the relation ∼ by g ∼ h if g and
h are conjugate in G.

Proposition 1 Let G be a group, and define the relation ∼ on G by g ∼ h
if g and h are conjugate in G. Then ∼ is an equivalence relation on G.

Proof. We need to check that ∼ satisfies the three defining properties of
an equivalence relation. First, for any g ∈ G, we have g ∼ g since ege−1 = g,
so the reflexive property holds. Now suppose gh̃. Then there is some x ∈ G
such that xgx−1 = h. Then we obtain g = x−1hx. So we may conjugate h
by x−1 to get g, so h ∼ g and the reflexive property holds. Now suppose
g, h, k ∈ G, where g ∼ h and h ∼ k. Then there are y, z ∈ G such that
ygy−1 = h and zhz−1 = k. Substituting the former expression for h into the
latter, we obtain zygy−1z−1 = k, or (zy)g(zy)−1 = k. So, we may conjugate
g by zy to get k, so g ∼ k and the transitive property holds. Thus ∼ is an
equivalence relation on G. �

Since ∼ is an equivalence relation on G, its equivalence classes partition G.
The equivalence classes under this relation are called the conjugacy classes
of G. So, the conjugacy class of g ∈ G is

[g] = {xgx−1 | x ∈ G}.

Exercise 1. Let G be any group, and let x, g1, g2, . . . , gn ∈ G. Show that
for any n, the conjugate of g1g2 · · · gn by x is the product of the conjugates
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by x of g1, g2, . . . , gn.

Exercise 2. Let G be an Abelian group. Show that for any a ∈ G, the
conjugacy class of a is the singleton set {a}.

When G is non-Abelian, understanding the conjugacy classes of G is an im-
portant part of understanding the group structure of G. Conjugacy classes
play a key role in a subject called representation theory, which is one of the
main applications of group theory to chemistry and physics.

We now determine the conjugacy classes of the symmetric group Sn. We
begin by noticing that any conjugate of a k-cycle is again a k-cycle.

Lemma 1 Let α, τ ∈ Sn, where α is the k-cycle (a1 a2 · · · ak). Then

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)).

Proof. Consider τ(ai) such that 1 ≤ i ≤ k. Then we have τ−1τ(ai) = ai,
and α(ai) = ai+1 mod k. We now have τατ−1(τ(ai)) = τ(ai+1 mod k). Now take
any j such that j ∈ {1, 2, 3, . . . , n}, but j 6= ai for any i. Then α(j) = j
since j is not in the k-cycle defining α. So, τατ−1(τ(j)) = τ(j). We now see
that τατ−1 fixes any number which is not of the form τ(ai) for some i, and
we have

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)). �

For any permutation α ∈ Sn, we know we can write α as a product of disjoint
cycles. Suppose we write α in this way, and α has cycles of length k1, k2, k3,
. . ., k`, where k1 ≥ k2 ≥ k3 ≥ . . . ≥ k`, and where we include 1’s in this list
for fixed points. We call the sequence (k1, k2, k3, . . . , k`) the cycle type of α.
Note that

∑`
i=1 ki = n since every element in {1, 2, . . . , n} is either fixed or

appears in some cycle.

Example 1. If σ ∈ S10 and σ = (1 3 4 5)(2 7 8 9), then σ has cycle
type (4, 4, 1, 1).

Example 2. If α is a k-cycle in Sn, where k ≤ n, then the cycle type
of α is (k, 1, . . . , 1), where there are n− k 1’s in the sequence.

We may now describe the conjugacy classes of the symmetric groups.
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Theorem 1 The conjugacy classes of any Sn are determined by cycle type.
That is, if σ has cycle type (k1, k2, . . . , k`), then any conjugate of σ has cy-
cle type (k1, k2, . . . , k`), and if ρ is any other element of Sn with cycle type
(k1, k2, . . . , k`), then σ is conjugate to ρ.

Proof. Suppose that σ has cycle type (k1, k2, . . . , k`), so that σ can be
written as a product of disjoint cycles as σ = α1α2 · · ·α`, where αi is a
ki-cycle. Let τ ∈ Sn, then by Exercise 1 we have

τστ−1 = τα1α2 · · ·α`τ
−1 = (τα1τ

−1)(τα2τ
−1) · · · (τα`τ

−1). (1)

Now, for each i such that 1 ≤ i ≤ `, we have αi is a ki-cycle. From Lemma 1,
we know that ταiτ

−1 is also a ki-cycle. For any i, j ∈ {1, 2, . . . , `} such that
i 6= j, we know that αi and αj are disjoint, and so ταiτ

−1 and ταjτ
−1 must

be disjoint since τ is a one-to-one function. So, the product in (1) above is
τστ−1 written as a product of disjoint cycles, and ταiτ

−1 is a ki-cycle. Now
we see that any conjugate of σ has cycle type (k1, k2, . . . , k`).

Now let σ, ρ ∈ Sn both be of cycle type (k1, k2, . . . , k`), and we show that
σ and ρ are conjugate in Sn. Let σ and τ be written as products of disjoint
cycles as

σ = α1α2 · · ·α` and ρ = β1β2 · · · β`,

where αi and βi are ki-cycles. For each i, let us write

αi = (ai1 ai2 · · · aiki
) and βi = (bi1 bi2 · · · biki

).

Now define τ by τ(aij) = bij for every i, j such that 1 ≤ i ≤ ` and 1 ≤ j ≤ ki.
From Lemma 1, we have ταiτ

−1 = βi. So, from Exercise 1, we have

τστ−1 = (τα1τ
−1)(τα2τ

−1) · · · (τα`τ
−1) = β1β2 · · · β` = ρ.

So, any two elements of Sn with the same cycle type are in the same conju-
gacy class. �

If n is a positive integer, a sequence of positive integers (k1, k2, . . . , k`) such
that k1 ≥ k2 ≥ · · · ≥ k` and

∑`
i=1 ki = n is called a partition of n. From

Theorem 1, the partitions of n are in one-to-one correspondence with the
conjugacy classes of Sn. The number of partitions of a positive number n
is often denoted p(n), called the partition function, and we have p(n) is the
number of conjugacy classes of Sn. The partition function and its properties

3



are of great interest in number theory. There is no known closed formula for
p(n) in terms of n, but there are several known modular arithmetic equiva-
lences for the function. For example, if m is any non-negative integer, then
it is known that p(5m+ 4) ≡ 0 mod 5.
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