Group Actions

Math 430 - Spring 2019

The notion of a group acting on a set is one which links abstract algebra to nearly every branch of mathematics. Group actions appear in geometry, linear algebra, and differential equations, to name a few. Group actions are a fundamental tool in pure group theory as well, and one of our main applications will be the Sylow Theorems. These notes should be used as a supplement to Section 4.1-4.3 of Dummit and Foote's text. Some of the notation here will differ from the notation in that text, but we point out in class when this is the case.

Let G be a group and let X be a set. Let $\operatorname{Sym}(X)$ denote the group of all permutations of the elements of X (also written as S_X). So, if X is a finite set and |X| = n, then $\operatorname{Sym}(X) \cong S_n$. We will give two equivalent definitions of G acting on X.

Definition 1. We say that G acts on X if there is a homomorphism $\phi: G \to \operatorname{Sym}(X)$.

One way of thinking of G acting on X is that elements of the group G may be "applied to" elements of X to give a new element of X. The next definition takes this point of view.

Definition 2. We say that G acts on X if there is a map

$$*: G \times X \to X$$
,

so that if $g \in G$ and $x \in X$, then $*(g, x) = g * x \in X$, such that:

- (i) For every $g, h \in G$, $x \in X$, we have (gh) * x = g * (h * x),
- (ii) For every $x \in X$, e * x = x, where $e \in G$ is the identity.

If the group G acts on the set X, we will call X a G-set. Note that we will also write g.x for g*x, where $g \in G$ and $x \in X$.

Before giving examples, we need to show that the two above definitions actually define the same notion.

Theorem 1 Definition 1 and Definition 2 are equivalent.

Proof. First assume that G and X satisfy Definition 1, so that we have a homomorphism $\phi: G \to \operatorname{Sym}(X)$. We now show that G and X must also then satisfy Definition 2. We define a map $*: G \times X \to X$ by $g*x = \phi(g)(x)$. First, for every $g, h \in G$, $x \in X$, using the fact that ϕ is a homomorphism, we have

$$(gh) * x = \phi(gh)(x) = (\phi(g) \circ \phi(h))(x) = \phi(g)(\phi(h)(x)) = g * (h * x),$$

so that * satisfies condition (i) of Definition 2. Also, since ϕ is a homomorphism, $\phi(e)$ is the trivial permutation, where $e \in G$ is the identity element. So $e * x = \phi(e)(x) = x$, which is condition (ii) of Definition 2. Thus G and X satisfy Definition 2.

Now suppose G and X satisfy Definition 2, so that we have a map

$$*: G \times X \to X$$

which satisfies (i) and (ii). We define a map $\phi: G \to \operatorname{Sym}(X)$ by $\phi(g)(x) = g * x$. We first show that this is well-defined, that is, $\phi(g)$ is actually a one-to-one and onto map from X to itself. To show that $\phi(g)$ is onto, let $x \in X$, and consider $g^{-1} * x \in X$. Then we have

$$\phi(g)(g^{-1}*x) = g*(g^{-1}*x) = (gg^{-1})*x = e*x = x,$$

so $\phi(g)$ is onto. To show that $\phi(g)$ is one-to-one, suppose that we have $\phi(g)(x) = \phi(g)(y)$ for $x, y \in X$, so that g * x = g * y. Using both conditions (i) and (ii) of Definition 2, we have

$$g^{-1} * (g * x) = g^{-1} * (g * y) \Rightarrow (g^{-1}g) * x = (g^{-1}g) * y \Rightarrow e * x = e * y \Rightarrow x = y.$$

Finally, we show that ϕ is a homomorphism. Let $g, h \in G$, $x \in X$. We have

$$\phi(gh)(x) = (gh) * x = g * (h * x) = \phi(g)(\phi(h)(x)) = (\phi(g) \circ \phi(h))(x).$$

Thus, G and X satisfy Definition 1. \square

Now that we have a few ways of thinking about group actions, let's see some examples.

Example 1. As mentioned before, we may take $X = \{1, 2, ..., n\}$, $G = S_n = \text{Sym}(X)$, and $\phi : S_n \to S_n$ to be the identity map.

Example 2. Let $X = \mathbb{R}^n$ and $G = GL(n, \mathbb{R})$, and for $A \in G$, $v \in X$, define A * v = Av. That is, we let G act on X as linear transformations.

Example 3. Let X be a unit cube sitting in \mathbb{R}^3 , and let G be the group of symmetries of X, which acts on X again as linear transformations on \mathbb{R}^3 .

Example 4. Let X be a group H, and let G also be the same group H, where H acts on itself by left multiplication. That is, for $h \in X = H$ and $g \in G = H$, define g * h = gh. This action was used to show that every group is isomorphic to a group of permutations (Cayley's Theorem, in Section 4.2 of Dummit and Foote).

Before defining more terms, we'll first see a nice application to finite group theory.

Theorem 2 Let G be a finite group, and let H be a subgroup of G such that [G:H]=p, where p is the smallest prime dividing |G|. Then H is a normal subgroup of G.

Proof. We let X be the set of left cosets of H in G. From the proof of Lagrange's Theorem, we have |X| = [G:H] = p, and so $\operatorname{Sym}(X) \cong S_p$. We define an action of G on X by g*aH = gaH, for $g \in G$ and $aH \in X$. That is, we let G act on the left cosets of H in G by left multiplication. This satisfies Definition 2, since for any $g_1, g_2, a \in G$, we have $(g_1g_2)*aH = g_1g_2aH$ and e*aH = aH. From Theorem 1, and since $\operatorname{Sym}(X) \cong S_p$, we have a homomorphism $\phi: G \to S_p$.

For any $g \in G, g \notin H$, we have $g * H = gH \neq H$, and so $\phi(g)$ cannot be the trivial permutation of left cosets of H in G, that is, $g \notin \ker(\phi)$ when $g \notin H$. We must therefore have $\ker(\phi) \leq H$. From the first isomorphism theorem for groups, we have $G/\ker(\phi) \cong \operatorname{im}(\phi)$, where $\operatorname{im}(\phi) = \phi(G)$ is a subgroup of S_p . So we have

$$\frac{|G|}{|\ker(\phi)|} = |G/\ker(\phi)| |S_p| = p!.$$

Note that p is the largest prime dividing p!, and p^2 does not divide p!, while p is the smallest prime dividing |G|. Since $\ker(\phi) \leq H$ and H is a proper subgroup of G, we cannot have $G = \ker(\phi)$, that is, $[G : \ker(\phi)] \neq 1$. The only possibility is that $|G/\ker(\phi)| = [G : \ker(\phi)] = p$, since this is the only divisor of |G| which divides p!. We now have

$$[G : \ker(\phi)] = \frac{|G|}{|\ker(\phi)|} = p = [G : H] = \frac{|G|}{|H|},$$

so that $|H| = |\ker(\phi)|$. Since $\ker(\phi) \subseteq H$, we must have $H = \ker(\phi)$, which is a normal subgroup of G. \square

We now define a few important terms relevant to group actions.

Definition 3. Let G be a group which acts on the set X. For $x \in X$, the stabilizer of x in G, written $\mathrm{stab}_{G}(x)$, is the set of elements $g \in G$ such that g * x = x. In symbols,

$$\operatorname{stab}_{G}(x) = \{ g \in G \mid g * x = x \}.$$

In some texts this is called the *isotropy subgroup of* x, and is written G_x (we show below that this is actually a subgroup of G).

For $x \in X$, the *orbit of* x *under* G, written $\operatorname{orb}_G(x)$, is the set of all elements in X of the form g * x for $g \in G$. In symbols,

$$\operatorname{orb}_{G}(x) = \{g * x \mid g \in G\}.$$

We will also use the notation Gx or G.x for the orbit of x under G.

Example 5. Let $G = \{(1), (1\ 2), (3\ 4\ 6), (3\ 6\ 4), (1\ 2)(3\ 4\ 6), (1\ 2)(3\ 6\ 4)\}$, and let $\phi : G \to S_6$, $\phi(\alpha) = \alpha$, be the natural injection, as G is a subgroup of S_6 . Then G acts on $\{1, 2, 3, 4, 5, 6\}$. First note that since 5 is fixed by every element of G, we have $\operatorname{stab}_G(5) = G$, and $\operatorname{orb}_G(5) = \{5\}$. We also have

$$\operatorname{stab}_{G}(3) = \operatorname{stab}_{G}(4) = \operatorname{stab}_{G}(6) = \langle (1\ 2) \rangle, \ \operatorname{stab}_{G}(1) = \operatorname{stab}_{G}(2) = \langle (3\ 4\ 6) \rangle,$$

$$\operatorname{orb}_{G}(3) = \operatorname{orb}_{G}(4) = \operatorname{orb}_{G}(6) = \{3, 4, 6\}, \quad \operatorname{orb}_{G}(1) = \operatorname{orb}_{G}(2) = \{1, 2\}.$$

Example 6. Let G be any group, and we let G act on itself by conjugation. That is, for $g, a \in G$, we define $g*a = gag^{-1}$. We first check that this satisfies

Definition 2. First, we have $e*a = eae^{-1} = a$. Now let $g, h, a \in G$. Then we have

$$(gh) * a = gha(gh)^{-1} = ghah^{-1}g^{-1} = g * (h * a),$$

so this is indeed a group action. If we fix an $a \in G$, we see that the orbit of a is

$$\operatorname{orb}_{G}(a) = \{ gag^{-1} \mid g \in G \},\$$

which is called the *conjugacy class of a in G*. If we look at the stabilizer of a in G, we have

$$stab_G(a) = \{ g \in G \mid gag^{-1} = a \},\$$

which is the *centralizer of a in G*, also written $C_G(a)$. The next Lemma shows us that stabilizers of group actions are always subgroups, and so in particular, centralizers of elements of groups are subgroups.

Lemma 1 If G acts on X, and $x \in X$, then $\operatorname{stab}_G(x)$ is a subgroup of G.

Proof. Let $x \in X$. Since e * x = x, we know that $e \in \operatorname{stab}_G(x)$, and so the stabilizer of x in G is nonempty. Now suppose $g, h \in \operatorname{stab}_G(x)$. Since g * x = x, we have

$$g^{-1} * (g * x) = g^{-1} * x \Rightarrow (g^{-1}g) * x = g^{-1} * x \Rightarrow e * x = g^{-1} * x \Rightarrow g^{-1} * x = x.$$

So, $g^{-1} \in \operatorname{stab}_G(x)$. We also have

$$(gh) * x = g * (h * x) = g * x = x,$$

so $gh \in \operatorname{stab}_G(x)$. Thus $\operatorname{stab}_G(x) \leq G$. \square

The next result is the most important basic result in the theory of group actions.

Theorem 3 (Orbit-Stabilizer Lemma) Suppose G is a group which acts on X. For any $x \in X$, we have

$$|\operatorname{orb}_G(x)| = [G : \operatorname{stab}_G(x)],$$

which means that the cardinalities are equal even when these are infinite sets. If G is a finite group, then

$$|G| = |\operatorname{stab}_G(x)| |\operatorname{orb}_G(x)|.$$

Proof. Fix $x \in X$. From Lemma 1, $\operatorname{stab}_G(x)$ is a subgroup of G, and we recall $\operatorname{that}[G:H]$ denotes the cardinality of the set of left cosets of H in G. Let K denote the set of left cosets of H in G. Define a function

$$f: \operatorname{orb}_G(x) \to \mathcal{K},$$

by f(g*x) = gH. First, we check that f is well-defined, and at the same time check that f is injective. If $g_1, g_2 \in G$, $g_1*x = g_2*x \in \operatorname{orb}_G(x)$ if and only if $(g_2^{-1}g_1)*x = x$, iff $g_2^{-1}g_1 \in \operatorname{stab}_G(x) = H$, which is equivalent to $g_2H = g_1H$. So $g_1*x = g_2*x$ if and only if $f(g_1*x) = f(g_2*x)$, and f is well-defined and injective. Also f is onto, since for any $gH \in \mathcal{K}$, f(g*x) = gH. Thus, f gives a one-to-one correspondence, and so

$$|\operatorname{orb}_G(x)| = |\mathcal{K}| = [G : \operatorname{stab}_G(x)].$$

When G is finite, it follows from the proof of Lagrange's Theorem that $[G: \operatorname{stab}_G(x)] = |G|/|\operatorname{stab}_G(x)|$ So, in this case, $|G| = |\operatorname{stab}_G(x)|$ $|\operatorname{orb}_G(x)|$.

Next, we connect the concept of a group action with the important notion of an equivalence relation.

Theorem 4 Let G be a group which acts on a set X, and for $x, y \in X$, define $x \sim y$ to mean that there is a $g \in G$ such that g * x = y. Then \sim is an equivalence relation on X, and the equivalence class of $x \in X$ is $\operatorname{orb}_G(x)$.

Proof. We must check that \sim satisfies the reflexive, symmetric, and transitive properties. First, for any $x \in X$, we have e * x = x, where e is the identity in G, and so $x \sim x$ and the reflective property holds. Next, if $x \sim y$, then there is a $g \in G$ such that g * x = y. It follows from Definition 2 that we then have $g^{-1} * y = x$, so that $y \sim x$ and the symmetric property holds. Now assume $x \sim y$ and $y \sim z$, where g * x = y and h * y = z. Then from Definition 2, h * (g * x) = (hg) * x = z, and so $x \sim z$ and transitivity holds. So, \sim is an equivalence relation.

From the definition of an equivalence class, if $x \in X$, then the class of x is the set $\{y \in X \mid x \sim y\} = \{y \in X \mid y = g * x \text{ for some } g \in G\}$. This is exactly the definition of the orbit of x under G. \square

We conclude with one more application to group theory, this time to the

conjugacy classes of a group, as introduced in Example 6 above. Note that if G is a group and $z \in G$ is in the center of G, then the conjugacy class of z is just $\{z\}$.

Theorem 5 (Class Formula) Let G be a finite group, let Z(G) be the center of G, and let A be a collection of distinct representatives of conjugacy classes of G which are not in Z(G). Then we have

$$|G| = |Z(G)| + \sum_{a \in A} [G : C_G(a)].$$

Proof. For any $x \in G$, let cl(x) denote the conjugacy class of x in G. From Example 6 above, we let G act on itself by conjugation, and for any $x \in G$, we have $orb_G(x) = cl(x)$, and $stab_G(x) = C_G(a)$. From Theorem 3, we have, for each $x \in G$,

$$|cl(x)| = |G|/|C_G(x)| = [G:C_G(x)].$$

Since from Theorem 4 the conjugacy classes of G are just equivalence classes, we have that conjugacy classes form a partition of G. So, the union of distinct conjugacy classes of G gives G. Let B be a set of representatives of distinct conjugacy classes of G, and we have

$$|G| = \sum_{b \in B} |\operatorname{cl}(b)| = \sum_{b \in B} [G : C_G(b)].$$
 (1)

We also know that $b \in Z(G)$ exactly when $gbg^{-1} = b$ for every $g \in G$, which happens exactly when $|\operatorname{cl}(b)| = 1$. So, $\sum_{z \in Z(G)} |\operatorname{cl}(z)| = |Z(G)|$. If we choose A to be a set of representatives of conjugacy classes which are not in Z(G), splitting (1) into a sum over Z(G) and a sum over A gives the result. \square