
The Multiplicative Group of a Finite Field

Math 430

The purpose of these notes is to give a proof that the multiplicative group
of a finite field is cyclic, without using the classification of finite abelian
groups. We need the following lemma, the proof of which we omitted from
class.

Lemma 1. Suppose G is an abelian group, x, y ∈ G, and |x| = r and |y| = s
are finite orders. Then there exists an element of G which has order lcm(r, s).

Proof. Suppose first that gcd(r, s) = 1, so that lcm(r, s) = rs. Given x, y ∈ G
such that |x| = r and |y| = s, consider z = xy ∈ G. Since zrs = xrsyrs = e,
then |z| ≤ rs. If |z| = m, then zm = e, so e = es = zms = xmsyms = xms,
since ys = e. Since xms = e and |x| = r, then r|ms, and gcd(r, s) = 1,
so r|m. Also e = er = zmr = xmrymr = ymr, since xr = e. Then since
|y| = s and ymr = e, then s|mr, so s|m. Now r|m and s|m implies rs|m since
gcd(r, s) = 1. So |z| = m ≥ rs. Now |z| = rs = lcm(r, s).

We now consider the general case, where lcm(r, s) is not necessarily rs.
Given |x| = r and |y| = s in the abelian group G, it is not true in general that
xy will have order lcm(r, s) (try to find a counterexample). We decompose
the positive integer r as a product r = r1r2r3r4 as follows:

r1 = the product of all prime factors of r which are not prime factors of s,

r2 = the product of all prime factors which occur with equal powers in

r and s,

r3 = the product of all prime factors of r which occur in r and s, but in r

with higher powers,

r4 = the product of all prime factors of r which occur in r and s, but in s

with higher powers.

Define s = s1s2s3s4 analogously, with r and s in exchanged roles. Note that
this means s2 = r2, and lcm(r, s) = r1r2r3s1s3. If we define r̃ = r1r2r3 and
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s̃ = s1s3, then gcd(r̃, s̃) = 1, and lcm(r̃, s̃) = r̃s̃ = r1r2r3s1s3 = lcm(r, s).
For example, if r = 27355474 and s = 263754114, then r1 = 74, r2 = s2 = 54,
r3 = 27, r4 = 35, s1 = 114, s3 = 37, s4 = 26, and so r̃ = 745427 and s̃ = 11437.

Now |xr4| = r/r4 = r1r2r3 = r̃ and |ys2s4| = s/s2s4 = s1s3 = s̃. If we take
x̃ = xr4 and ỹ = ys2s4 , then |x̃| = r̃ and |ỹ| = s̃, where gcd(r̃, s̃) = 1, so by
the first part of the proof, |x̃ỹ| = r̃s̃. That is, taking z̃ = x̃ỹ, we have z̃ ∈ G
with |z̃| = r̃s̃ = lcm(r, s).

The above lemma is enough to prove the desired statement.

Theorem 1. Suppose F is a finite field. Then F× = F \ {0} is a cyclic
group under multiplication.

Proof. Let |F×| = m. Suppose α ∈ F× has maximal possible order under
multiplication over all elements of F×, and call this order |α| = k. By
Lagrange’s Theorem, k|m, so in particular k ≤ m.

Let β ∈ F× be any element of F×. If |β| = r, then by Lemma ??, F×

has some element of order lcm(r, k) ≥ k. Since k is the maximal order of all
elements in F×, then we must have lcm(r, k) = k, which implies r|k. Since
|β| = r and r|k, then we have βk = 1. Since β was arbitrary, this means
every element of F× is a zero of the polynomial xk− 1 ∈ F [x], that is, xk− 1
has m roots in F . However, we’ve shown that a polynomial of degree d over
some field has at most d roots in that field. That is, we must have m ≤ k.
That is, we have m = k.

Now |α| = m = |F×|. Thus 〈α〉 = F× and F× is a cyclic group under
multiplication.

2


