The Multiplicative Group of a Finite Field

Math 430

The purpose of these notes is to give a proof that the multiplicative group of a finite field is cyclic, without using the classification of finite abelian groups. We need the following lemma, the proof of which we omitted from class.

Lemma 1. Suppose G is an abelian group, $x, y \in G$, and |x| = r and |y| = s are finite orders. Then there exists an element of G which has order lcm(r, s).

Proof. Suppose first that $\gcd(r,s)=1$, so that $\operatorname{lcm}(r,s)=rs$. Given $x,y\in G$ such that |x|=r and |y|=s, consider $z=xy\in G$. Since $z^{rs}=x^{rs}y^{rs}=e$, then $|z|\leq rs$. If |z|=m, then $z^m=e$, so $e=e^s=z^{ms}=x^{ms}y^{ms}=x^{ms}$, since $y^s=e$. Since $x^{ms}=e$ and |x|=r, then r|ms, and $\gcd(r,s)=1$, so r|m. Also $e=e^r=z^{mr}=x^{mr}y^{mr}=y^{mr}$, since $x^r=e$. Then since |y|=s and $y^{mr}=e$, then s|mr, so s|m. Now r|m and s|m implies rs|m since $\gcd(r,s)=1$. So $|z|=m\geq rs$. Now $|z|=rs=\operatorname{lcm}(r,s)$.

We now consider the general case, where lcm(r, s) is not necessarily rs. Given |x| = r and |y| = s in the abelian group G, it is not true in general that xy will have order lcm(r, s) (try to find a counterexample). We decompose the positive integer r as a product $r = r_1 r_2 r_3 r_4$ as follows:

- r_1 = the product of all prime factors of r which are not prime factors of s, r_2 = the product of all prime factors which occur with equal powers in r and s,
- r_3 = the product of all prime factors of r which occur in r and s, but in r with higher powers,
- r_4 = the product of all prime factors of r which occur in r and s, but in s with higher powers.

Define $s = s_1 s_2 s_3 s_4$ analogously, with r and s in exchanged roles. Note that this means $s_2 = r_2$, and $lcm(r, s) = r_1 r_2 r_3 s_1 s_3$. If we define $\tilde{r} = r_1 r_2 r_3$ and

 $\tilde{s}=s_1s_3$, then $\gcd(\tilde{r},\tilde{s})=1$, and $\gcd(\tilde{r},\tilde{s})=\tilde{r}\tilde{s}=r_1r_2r_3s_1s_3= \gcd(r,s)$. For example, if $r=2^73^55^47^4$ and $s=2^63^75^411^4$, then $r_1=7^4$, $r_2=s_2=5^4$, $r_3=2^7$, $r_4=3^5$, $s_1=11^4$, $s_3=3^7$, $s_4=2^6$, and so $\tilde{r}=7^45^42^7$ and $\tilde{s}=11^43^7$. Now $|x^{r_4}|=r/r_4=r_1r_2r_3=\tilde{r}$ and $|y^{s_2s_4}|=s/s_2s_4=s_1s_3=\tilde{s}$. If we take $\tilde{x}=x^{r_4}$ and $\tilde{y}=y^{s_2s_4}$, then $|\tilde{x}|=\tilde{r}$ and $|\tilde{y}|=\tilde{s}$, where $\gcd(\tilde{r},\tilde{s})=1$, so by the first part of the proof, $|\tilde{x}\tilde{y}|=\tilde{r}\tilde{s}$. That is, taking $\tilde{z}=\tilde{x}\tilde{y}$, we have $\tilde{z}\in G$ with $|\tilde{z}|=\tilde{r}\tilde{s}= \gcd(r,s)$.

The above lemma is enough to prove the desired statement.

Theorem 1. Suppose F is a finite field. Then $F^{\times} = F \setminus \{0\}$ is a cyclic group under multiplication.

Proof. Let $|F^{\times}| = m$. Suppose $\alpha \in F^{\times}$ has maximal possible order under multiplication over all elements of F^{\times} , and call this order $|\alpha| = k$. By Lagrange's Theorem, k|m, so in particular k < m.

Let $\beta \in F^{\times}$ be any element of F^{\times} . If $|\beta| = r$, then by Lemma ??, F^{\times} has some element of order $\operatorname{lcm}(r,k) \geq k$. Since k is the maximal order of all elements in F^{\times} , then we must have $\operatorname{lcm}(r,k) = k$, which implies r|k. Since $|\beta| = r$ and r|k, then we have $\beta^k = 1$. Since β was arbitrary, this means every element of F^{\times} is a zero of the polynomial $x^k - 1 \in F[x]$, that is, $x^k - 1$ has m roots in F. However, we've shown that a polynomial of degree d over some field has at most d roots in that field. That is, we must have $m \leq k$. That is, we have m = k.

Now $|\alpha|=m=|F^{\times}|$. Thus $\langle \alpha \rangle=F^{\times}$ and F^{\times} is a cyclic group under multiplication.