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Math 430 - Spring 2013

Understanding the conjugacy classes of a group G is an important part
of understanding the group structure of G in general. Here, we determine
the conjugacy classes of the symmetric group Sn. You may use these notes
as a guide to Problem 8 in Section 37 (but write up a complete solution to
it on your own).

We begin by noticing that any conjugate of a k-cycle is again a k-cycle.

Lemma 1. Let α, τ ∈ Sn, where α is the k-cycle (a1 a2 · · · ak). Then

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)).

Proof. Consider τ(ai) such that 1 ≤ i ≤ k. Then we have τ−1τ(ai) = ai, and
α(ai) = ai+1 mod k. We now have τατ−1(τ(ai)) = τ(ai+1 mod k). Now take any
j such that j ∈ {1, 2, 3, . . . , n}, but j 6= ai for any i. Then α(j) = j since j
is not in the k-cycle defining α. So, τατ−1(τ(j)) = τ(j). We now see that
τατ−1 fixes any number which is not of the form τ(ai) for some i, and we
have

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)).

For any permutation α ∈ Sn, we know we can write α as a product of
disjoint cycles. Suppose we write α in this way, and α has cycles of length
k1, k2, k3, . . ., k`, where k1 ≥ k2 ≥ k3 ≥ . . . ≥ k`, and where we include 1’s
in this list for fixed points. We call the sequence (k1, k2, k3, . . . , k`) the cycle
type of α. Note that

∑`
i=1 ki = n since every element in {1, 2, . . . , n} is either

fixed or appears in some cycle.

Example 1. If σ ∈ S10 and σ = (1 3 4 5)(2 7 8 9), then σ has cycle
type (4, 4, 1, 1).

Example 2. If α is a k-cycle in Sn, where k ≤ n, then the cycle type
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of α is (k, 1, . . . , 1), where there are n− k 1’s in the sequence.

We may now describe the conjugacy classes of the symmetric groups.

Theorem 1. The conjugacy classes of any Sn are determined by cycle type.
That is, if σ has cycle type (k1, k2, . . . , k`), then any conjugate of σ has cy-
cle type (k1, k2, . . . , k`), and if ρ is any other element of Sn with cycle type
(k1, k2, . . . , k`), then σ is conjugate to ρ.

Proof. Suppose that σ has cycle type (k1, k2, . . . , k`), so that σ can be written
as a product of disjoint cycles as σ = α1α2 · · ·α`, where αi is a ki-cycle. Let
τ ∈ Sn, then we have

τστ−1 = τα1α2 · · ·α`τ
−1 = (τα1τ

−1)(τα2τ
−1) · · · (τα`τ

−1). (1)

Now, for each i such that 1 ≤ i ≤ `, we have αi is a ki-cycle. From Lemma 1,
we know that ταiτ

−1 is also a ki-cycle. For any i, j ∈ {1, 2, . . . , `} such that
i 6= j, we know that αi and αj are disjoint, and so ταiτ

−1 and ταjτ
−1 must

be disjoint since τ is a one-to-one function. So, the product in (1) above is
τστ−1 written as a product of disjoint cycles, and ταiτ

−1 is a ki-cycle. Now
we see that any conjugate of σ has cycle type (k1, k2, . . . , k`).

Now let σ, ρ ∈ Sn both be of cycle type (k1, k2, . . . , k`), and we show that
σ and ρ are conjugate in Sn. Let σ and τ be written as products of disjoint
cycles as

σ = α1α2 · · ·α` and ρ = β1β2 · · · β`,
where αi and βi are ki-cycles. For each i, let us write

αi = (ai1 ai2 · · · aiki) and βi = (bi1 bi2 · · · biki).
Now define τ by τ(aij) = bij for every i, j such that 1 ≤ i ≤ ` and 1 ≤ j ≤ ki.
From Lemma 1, we have ταiτ

−1 = βi. So, from Exercise 1, we have

τστ−1 = (τα1τ
−1)(τα2τ

−1) · · · (τα`τ
−1) = β1β2 · · · β` = ρ.

So, any two elements of Sn with the same cycle type are in the same conjugacy
class.

If n is a positive integer, a sequence of positive integers (k1, k2, . . . , k`)
such that k1 ≥ k2 ≥ · · · ≥ k` and

∑`
i=1 ki = n is called a partition of n.

From Theorem 1, the partitions of n are in one-to-one correspondence with
the conjugacy classes of Sn. The number of partitions of a positive number
n is often denoted p(n), called the partition function, and we have p(n) is
the number of conjugacy classes of Sn.
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