The Multiplicative Group of a Finite Field

Math 430 - Spring 2013

The purpose of these notes is to give a proof that the multiplicative group of a finite field is cyclic, without using the classification of finite abelian groups. We need the following lemma, the proof of which we omitted from class.

Lemma 1. Suppose G is an abelian group, $x, y \in G$, and |x| = r and |y| = s are finite orders. Then there exists an element of G which has order lcm(r, s).

Proof. Suppose first that gcd(r, s) = 1, so that lcm(r, s) = rs. Given $x, y \in G$ such that |x| = r and |y| = s, consider $z = xy \in G$. Since $z^{rs} = x^{rs}y^{rs} = e$, then $|z| \leq rs$. If |z| = m, then $z^m = e$, so $e = e^s = z^{ms} = x^{ms}y^{ms} = x^{ms}$, since $y^s = e$. Since $x^{ms} = e$ and |x| = r, then r|ms, and gcd(r, s) = 1, so r|m. Also $e = e^r = z^{mr} = x^{mr}y^{mr} = y^{mr}$, since $x^r = e$. Then since |y| = s and $y^{mr} = e$, then s|mr, so s|m. Now r|m and s|m implies rs|m since gcd(r, s) = 1. So $|z| = m \geq rs$. Now |z| = rs = lcm(r, s).

We now consider the general case, where lcm(r, s) is not necessarily rs. Given |x| = r and |y| = s in the abelian group G, it is not true in general that xy will have order lcm(r, s) (try to find a counterexample). We decompose the positive integer r as a product $r = r_1 r_2 r_3 r_4$ as follows:

 r_1 = the product of all prime factors of r which are not prime factors of s,

- $r_2 =$ the product of all prime factors which occur with equal powers in r and s,
- r_3 = the product of all prime factors of r which occur in r and s, but in r with higher powers,
- r_4 = the product of all prime factors of r which occur in r and s, but in s with higher powers.

Define $s = s_1 s_2 s_3 s_4$ analogously, with r and s in exchanged roles. Note that this means $s_2 = r_2$, and $\operatorname{lcm}(r, s) = r_1 r_2 r_3 s_1 s_3$. If we define $\tilde{r} = r_1 r_2 r_3$ and

$$\begin{split} \tilde{s} &= s_1 s_3, \text{ then } \gcd(\tilde{r}, \tilde{s}) = 1, \text{ and } \operatorname{lcm}(\tilde{r}, \tilde{s}) = \tilde{r} \tilde{s} = r_1 r_2 r_3 s_1 s_3 = \operatorname{lcm}(r, s). \\ \text{For example, if } r &= 2^7 3^5 5^4 7^4 \text{ and } s = 2^6 3^7 5^4 11^4, \text{ then } r_1 = 7^4, r_2 = s_2 = 5^4, \\ r_3 &= 2^7, r_4 = 3^5, s_1 = 11^4, s_3 = 3^7, s_4 = 2^6, \text{ and so } \tilde{r} = 7^4 5^4 2^7 \text{ and } \tilde{s} = 11^4 3^7. \\ \text{Now } |x^{r_4}| = r/r_4 = r_1 r_2 r_3 = \tilde{r} \text{ and } |y^{s_2 s_4}| = s/s_2 s_4 = s_1 s_3 = \tilde{s}. \\ \text{If we take } \tilde{x} = x^{r_4} \text{ and } \tilde{y} = y^{s_2 s_4}, \text{ then } |\tilde{x}| = \tilde{r} \text{ and } |\tilde{y}| = \tilde{s}, \text{ where } \gcd(\tilde{r}, \tilde{s}) = 1, \text{ so by } \\ \text{the first part of the proof, } |\tilde{x}\tilde{y}| = \tilde{r}\tilde{s}. \\ \text{That is, taking } \tilde{z} = \tilde{x}\tilde{y}, \text{ we have } \tilde{z} \in G \\ \text{with } |\tilde{z}| = \tilde{r}\tilde{s} = \operatorname{lcm}(r, s). \\ \Box \end{split}$$

The above lemma is enough to prove the desired statement.

Theorem 1. Suppose F is a finite field. Then $F^{\times} = F \setminus \{0\}$ is a cyclic group under multiplication.

Proof. Let $|F^{\times}| = m$. Suppose $\alpha \in F^{\times}$ has maximal possible order under multiplication over all elements of F^{\times} , and call this order $|\alpha| = k$. By Lagrange's Theorem, k|m, so in particular $k \leq m$.

Let $\beta \in F^{\times}$ be any element of F^{\times} . If $|\beta| = r$, then by Lemma 1, F^{\times} has some element of order $\operatorname{lcm}(r, k) \geq k$. Since k is the maximal order of all elements in F^{\times} , then we must have $\operatorname{lcm}(r, k) = k$, which implies r|k. Since $|\beta| = r$ and r|k, then we have $\beta^k = 1$. Since β was arbitrary, this means every element of F^{\times} is a zero of the polynomial $x^k - 1 \in F[x]$, that is, $x^k - 1$ has m roots in F. However, we've shown that a polynomial of degree d over some field has at most d roots in that field. That is, we must have $m \leq k$. That is, we have m = k.

Now $|\alpha| = m = |F^{\times}|$. Thus $\langle \alpha \rangle = F^{\times}$ and F^{\times} is a cyclic group under multiplication.