Homework #8 Problem (Optional)

Math 430 - Spring 2013

Let $R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right] = \{a + b\left(\frac{1+\sqrt{-19}}{2}\right) \mid a, b \in \mathbb{Z}\}, \text{ and define } N : R \to \mathbb{Z}$ by

$$N\left(a+b(1+\sqrt{-19})/2\right) = a^2 + ab + 5b^2 = (a+b/2)^2 + (19/4)b^2.$$

In this final set of exercises, you will finish showing that N is a Dedekind-Hasse norm for R, thus proving that R is a PID which is not a Euclidean domain.

You have proven that it is enough to show that, for any nonzero $\alpha, \beta \in R$, that if β does not divide α in R, then there are $s, t \in R$ such that

$$0 < N\left(\frac{\alpha}{\beta}s - t\right) < 1.$$
(1)

Let $\alpha, \beta \in R$ be nonzero, such that β dows not divide α in R, so that $\alpha/\beta \in \mathbb{Q}(\sqrt{-19})$. Then from the last handout, there are $a, b, c \in \mathbb{Z}$, with c > 1, such that $\gcd(a, b, c) = 1$, and such that $\frac{\alpha}{\beta} = \frac{a + b\sqrt{-19}}{c}$. You proved that if $c \ge 5$, then there exist $s, t \in R$ which satisfy (1). The final steps are to take care of the cases c = 2, 3, or 4.

(a): Suppose c = 2. Since gcd(a, b, c) = 1, then a and b are of different parity. Prove that s = 1 and $t = \frac{(a-1) + b\sqrt{-19}}{2}$ are elements of R which satisfy (1).

(b): Suppose c = 3. Prove that $a^2 + 19b^2$ cannot be divisible by 3, by considering that it is $a^2 + b^2$ modulo 3, and the fact that 3 cannot divide all of a, b, and c. Let $a^2 + b^2 = 3q + r$ where $q, r \in \mathbb{Z}$ and r = 1 or 2. Prove that $s = a - b\sqrt{-19}$ and t = q are elements of R which satisfy (1).

(c): Finally, suppose c = 4. Then a, b cannot both be even since gcd(a, b, c) = 1. If one of a, b is even and the other is odd, show that $a^2 + 19b^2$ is odd, so we can write $a^2 + 19b^2 = 4q + r$ for some $q, r \in \mathbb{Z}$ and r = 1 or 3. Show that $s = a - b\sqrt{-19}$ and t = q are elements of R satisfying (1). If both a and b are odd, show that $a^2 + 19b^2 \equiv 4(\mod 8)$, so $a^2 + 19b^2 = 8q + 4$ for some $q \in \mathbb{Z}$. Show that $s = \frac{a - b\sqrt{-19}}{2}$ and t = q are elements of R which satisfy (1).