
The Commutator Subgroup

Math 430 - Spring 2013

Let G be any group. If a, b ∈ G, then the commutator of a and b is the
element aba−1b−1. Of course, if a and b commute, then aba−1b−1 = e. Now
define C to be the set

C = {x1x2 · · · xn | n ≥ 1, each xi is a commutator in G}.

In other words, C is the collection of all finite products of commutators in
G. Then we have

Proposition 1. If G is any group, then C CG.

Proof. First, we have e = eee−1e−1 ∈ C, so C is nonempty and contains the
identity. If c, d ∈ C, then we have c = x1x2 · · · xn and d = y1y2 · · · ym, where
each xi and each yj is a commutator in G. Then

cd = x1x2 · · ·xny1y2 · · · ym ∈ C,

since this is just another finite product of commutators. We also have

d−1 = (x1x2 · · ·xn)−1 = x−1n · · ·x−12 x−11 .

If xi = aibia
−1
i b−1i , then x−1i = biaib

−1
i a−1i , which is also a commutator. Thus

c−1 ∈ C, and C ≤ G.
To prove C is a normal subgroup of G, let g ∈ G, and c = x1x2 · · ·xn ∈ C.

Then we have

gcg−1 = gx1x2 · · ·xng
−1 = (gx1g

−1)(gx2g
−1) · · · (gxng

−1), (1)

where we have just inserted gg−1 = e between xi and xi+1 for each i < n.
Now, if xi = aibia

−1
i b−1i , then we have

gxig
−1 = gaibia

−1
i b−1i g−1 = (gaig

−1)(gbig
−1)(ga−1i g−1)(gb−1i g−1).
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Now note that (gaig
−1)−1 = (g−1)−1a−1i g−1 = ga−1i g−1, and we have the

analogous statement if we replace ai by bi. So, we have

gxig
−1 = (gaig

−1)(gbig
−1)(gaig

−1)−1(gbig
−1)−1,

which is a commutator. Now, from (1), we have gcg−1 is a product of com-
mutators, and so gcg−1 ∈ C. Thus C CG.

The subgroup C of G is called the commutator subgroup of G, and it
general, it is also denoted by C = G′ or C = [G,G], and is also called the
derived subgroup of G. If G is Abelian, then we have C = {e}, so in one
sense the commutator subgroup may be used as one measure of how far a
group is from being Abelian. Specifically, we have the following result.

Theorem 1. Let G be a group, and let C be its commutator subgroup. Sup-
pose that N CG. Then G/N is Abelian if and only if C ⊆ N . In particular,
G/C is Abelian.

Proof. First assume that G/N is Abelian. Let a, b ∈ G. Since we are as-
suming that G/N is Abelian, then we have (aN)(bN) = (bN)(aN), and so
abN = baN by the definition of coset multiplication in the factor group. Now,
we know abN = baN implies ab(ba)−1 ∈ N , where ab(ba)−1 = aba−1b−1, and
so aba−1b−1 ∈ N . Since a and b were arbitrary, any commutator in G is an
element of N , and since N is a subgroup of G, then any finite product of
commutators in G is an element of N . Thus C ⊆ N .

Now suppose that C ⊆ N , and let a, b ∈ G. Then aba−1b−1 ∈ N , and
so ab(ba)−1 ∈ N . This implies abN = baN , or that (aN)(bN) = (bN)(aN).
Since a and b were arbitrary, this holds for any elements aN, bN ∈ G/N , and
thus G/N is Abelian.

Given a group G, and its derived subgroup G′, we may then consider
the derived subgroup of G′, or [G′, G′] = (G′)′. This is often denoted as
G(2). For any integer i ≥ 0, define the ith derived subgroup of G, denoted
G(i), recursively as follows. Let G(0) = G, and for i ≥ 1, define G(i) =
(G(i−1))′ = [G(i−1), G(i−1)]. By Theorem 1, note that we have G(i) C G(i−1),
and by Theorem 1, G(i−1)/G(i) is abelian, for all i ≥ 1.

Recall that, from the first Homework, we may define a finite group G
to be solvable if there are subgroups H0 = {e}, H1, . . . , Hk = G, such that
H0 C H1 C · · · C Hk, and Hi/Hi−1 is abelian for each i = 1, . . . , k. As we
see now, the commutator subgroups are the key for understanding whether
a finite group G is solvable.
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Theorem 2. Let G be a finite group. Then G is solvable if and only if there
exists some integer k ≥ 0 such that the kth derived subgroup of G is trivial,
that is, G(k) = {e}.

Proof. Let k ≥ 0 such that G(k) = {e}. By Proposition 1, we have G(i) C
G(i−1) for any i ≥ 1, so

{e} = G(k) CG(k−1) C · · ·CG(2) CG(1) = G′ CG(0) = G.

Since G(i−1)/G(i) is abelian for i ≥ 1 by Theorem 1, then the existence of
this subnormal series implies that G is solvable (taking Hi = G(k−i) in the
definition).

Now assume that G is solvable. Then there are subgroup {e} = H0 C
H1 C · · · C Hk = G such that Hi/Hi−1 is abelian for i = 1, . . . , k. In par-
ticular, Hk/Hk−1 = G/Hk−1 is abelian, and so G′ ⊂ Hk−1 by Theorem 1.
By induction, suppose that G(i) ⊂ Hk−i for an i ≥ 1. Since Hk−i/Hk−i−1
is abelian, then H ′k−i ⊂ Hk−i−1 by Theorem 1. By the induction hypothe-
sis, G(i) ⊂ Hk−i, and so every commutator in G(i) is a commutator in Hk−i,
which implies (G(i))′ ⊂ H ′k−i. Since (G(i))′ = G(i+1) and H ′k−i ⊂ Hk−i−1, we
have G(i+1) ⊂ Hk−i−1. By induction, we then have G(k) ⊂ H0 = {e}. Thus
G(k) = {e}.

Theorem 2 is extremely useful for proving facts about finite solvable
groups. For example, let G be any finite group, and suppose H ≤ G. Then
H ′ ≤ G′ since every commutator of H is a commutator of G, and by induc-
tion H(i) ≤ G(i) for every i ≥ 0. If G is solvable, then G(k) = {e} for some
k. Since H(k) ≤ G(k), then H(k) = {e} and thus H is also solvable. This
statement is true for an arbitrary group as well, but the argument is a bit
more subtle.

Proposition 2. Let G be any group, and suppose H ≤ G. If G is solvable,
then H is solvable.

Proof. Recall that the definition of an arbitrary group being solvable (finite
or not) in Fraleigh is that it has a decomposition series such that every
decomposition factor group is abelian, and thus cyclic of prime order. So,
suppose that

{e} = K0 CK1 C · · ·CKm−1 CKm = G,

such that Ki/Ki−1 is cyclic of prime order, for i = 1, . . . ,m. For each i,
consider H ∩Ki. Recall the second isomorphism theorem of groups, which
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states that if L is a group, N CL, and M ≤ N , then NM/N ∼= M/(M ∩N).
For i = 1, . . . ,m, apply this theorem to the case that L = Ki, N = Ki−1,
and M = H ∩Ki. Then we have

Ki−1(H ∩Ki)/Ki−1 ∼= (H ∩Ki)/(H ∩Ki−1),

since M ∩N = H ∩Ki ∩Ki−1 = H ∩Ki−1. We also have

Ki−1(H ∩Ki)/Ki−1 ≤ Ki/Ki−1,

and since Ki/Ki−1 is cyclic of prime order, then we must have Ki−1(H ∩
Ki)/Ki−1 is either trivial or cyclic of prime order. So the same must be
true of (H ∩ Ki)/(H ∩ Ki−1). Therefore, we can build a decomposition
series H with decomposition factors being cyclic of prime order, by using
the subgroups H ∩ Ki (and not using those that are repeated). Thus H is
solvable.
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