The Commutator Subgroup

Math 430 - Spring 2013

Let G be any group. If a,b € GG, then the commutator of a and b is the
element aba='b~!. Of course, if a and b commute, then aba='b~! = e. Now
define C' to be the set

C ={zzy---x, | n>1, each x; is a commutator in G}.

In other words, C' is the collection of all finite products of commutators in
G. Then we have

Proposition 1. If G is any group, then C < G.

Proof. First, we have e = eece e~ € C, so C is nonempty and contains the

identity. If ¢,d € C', then we have ¢ = z125 - - -z, and d = Y195 - - - Y, Where
each z; and each y; is a commutator in G. Then

cd = 2123 - Tp¥1Y2 - Ym € C,

since this is just another finite product of commutators. We also have

d' = (vywy-my) =2ty et
If z; = aibiajlb;l, then J;;l = biaibjla;l, which is also a commutator. Thus
cleC, and C <QG.
To prove C'is a normal subgroup of G, let g € G, and ¢ = xy25-- - x,, € C.
Then we have

gcg Tt = grazs - wng "t = (grig ) (gT2g™ ") - (gTag ), (1)

where we have just inserted gg~! = e between x; and z;,, for each i < n.

Now, if x; = aibiai_lbi_l, then we have
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9r;g

= ga;bia; 'b; g7t = (gaig™") (gbig ") (ga; g ) (gb; g ).
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Now note that (ga;g~')™' = (¢7")'a;'g~' = ga;'g~!, and we have the
analogous statement if we replace a; by b;. So, we have

grig~" = (9aig™")(gbig™")(gaig™") " (gbig™") ™",
which is a commutator. Now, from (1), we have gcg™! is a product of com-
mutators, and so gcg~t € C. Thus C <1 G. ]

The subgroup C of G is called the commutator subgroup of G, and it
general, it is also denoted by C' = G’ or C' = |G, G], and is also called the
derived subgroup of G. If G is Abelian, then we have C' = {e}, so in one
sense the commutator subgroup may be used as one measure of how far a
group is from being Abelian. Specifically, we have the following result.

Theorem 1. Let G be a group, and let C' be its commutator subgroup. Sup-
pose that N QG. Then G/N is Abelian if and only if C C N. In particular,
G/C is Abelian.

Proof. First assume that G/N is Abelian. Let a,b € G. Since we are as-
suming that G/N is Abelian, then we have (aN)(bN) = (bN)(aN), and so
abN = baN by the definition of coset multiplication in the factor group. Now,
we know abN = baN implies ab(ba)™' € N, where ab(ba)™' = aba='b~!, and
so aba=1b™! € N. Since a and b were arbitrary, any commutator in G is an
element of N, and since N is a subgroup of G, then any finite product of
commutators in GG is an element of N. Thus C C N.

Now suppose that ¢ C N, and let a,b € G. Then aba='b~! € N, and
so ab(ba)™' € N. This implies abN = baN, or that (aN)(bN) = (bN)(aN).
Since a and b were arbitrary, this holds for any elements aN,bN € G/N, and
thus G/N is Abelian. O

Given a group G, and its derived subgroup G’, we may then consider
the derived subgroup of G’, or [G',G'| = (G')’. This is often denoted as
G®@. For any integer i > 0, define the i derived subgroup of G, denoted
G, recursively as follows. Let G = G, and for i > 1, define G =
(GEDY = [GU—1 GE=Y]. By Theorem 1, note that we have G < GG=Y,
and by Theorem 1, G~V /G® is abelian, for all i > 1.

Recall that, from the first Homework, we may define a finite group G
to be solvable if there are subgroups Hy = {e}, Hy, ..., Hy = G, such that
Hy < Hy <--+ <9 Hy, and H;/H; 1 is abelian for each i = 1,... k. As we
see now, the commutator subgroups are the key for understanding whether
a finite group G is solvable.



Theorem 2. Let G be a finite group. Then G is solvable if and only if there

exists some integer k > 0 such that the k™ derived subgroup of G is trivial,
that is, G = {e}.

Proof. Let k > 0 such that G® = {e}. By Proposition 1, we have G <
GV for any i > 1, so

{e} =GP aG* PV g...aGP GV =G"<G0 =aG.

Since GU~Y/G® is abelian for i > 1 by Theorem 1, then the existence of
this subnormal series implies that G is solvable (taking H; = G*~9 in the
definition).

Now assume that G is solvable. Then there are subgroup {e} = Hy <
H, <--- < H, = G such that H;/H; ; is abelian for ¢« = 1,... k. In par-
ticular, Hy/Hy_1 = G/Hj_ is abelian, and so G’ C Hj_; by Theorem 1.
By induction, suppose that G® c H,_; for an i > 1. Since Hy i/Hy i1
is abelian, then H, ., C Hjy_;—; by Theorem 1. By the induction hypothe-
sis, G C Hj_;, and so every commutator in G is a commutator in Hj_;,
which implies (G®W) c H_,. Since (GW) = GU+Y and H,_, C Hy_;_1, we
have GOt C H,_;_;. By induction, we then have G® ¢ Hy = {e}. Thus
G® = {e}. O

Theorem 2 is extremely useful for proving facts about finite solvable
groups. For example, let G be any finite group, and suppose H < G. Then
H' < @ since every commutator of H is a commutator of G, and by induc-
tion H® < GO for every i > 0. If G is solvable, then G*) = {e} for some
k. Since H®) < G® then H® = {e} and thus H is also solvable. This
statement is true for an arbitrary group as well, but the argument is a bit
more subtle.

Proposition 2. Let G be any group, and suppose H < G. If G s solvable,
then H 1is solvable.

Proof. Recall that the definition of an arbitrary group being solvable (finite
or not) in Fraleigh is that it has a decomposition series such that every
decomposition factor group is abelian, and thus cyclic of prime order. So,
suppose that

{6}:K0<]K1<]"'<]Km_1<Km:G,

such that K;/K;_; is cyclic of prime order, for i = 1,...,m. For each i,
consider H N K;. Recall the second isomorphism theorem of groups, which
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states that if L is a group, N <L, and M < N, then NM/N = M/(MNN).
For ¢ = 1,...,m, apply this theorem to the case that L = K;, N = K,_1,
and M = H N K;. Then we have

K (HNK)/K; 1= (HNK;)/(HNK;_4),
since MNN=HNK,NK,_1 =HnNK,;_;. We also have
Ki(HNK;)/ K1 < K;/K;q,

and since K;/K; 1 is cyclic of prime order, then we must have K; {(H N
K;)/K;_1 is either trivial or cyclic of prime order. So the same must be
true of (H N K;)/(H N K;_1). Therefore, we can build a decomposition
series H with decomposition factors being cyclic of prime order, by using
the subgroups H N K; (and not using those that are repeated). Thus H is
solvable. O]



