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Let G be any group. If g, x ∈ G, we define the conjugate of g by x to be the element xgx−1.

(Note: some texts define the conjugate of g by x to be x−1gx. By our definition, this would be the

conjugate of g by x−1.) If g, h ∈ G, and there is some x ∈ G such that xgx−1 = h, we say that g

and h are conjugate in G. For the group G, define the relation ∼ by g ∼ h if g and h are conjugate

in G.

Proposition 1. Let G be a group, and define the relation ∼ on G by g ∼ h if g and h are conjugate

in G. Then ∼ is an equivalence relation on G.

Proof. We need to check that ∼ satisfies the three defining properties of an equivalence relation.

First, for any g ∈ G, we have g ∼ g since ege−1 = g, so the reflexive property holds. Now suppose

gh̃. Then there is some x ∈ G such that xgx−1 = h. Then we obtain g = x−1hx. So we may

conjugate h by x−1 to get g, so h ∼ g and the reflexive property holds. Now suppose g, h, k ∈ G,

where g ∼ h and h ∼ k. Then there are y, z ∈ G such that ygy−1 = h and zhz−1 = k. Substituting

the former expression for h into the latter, we obtain zygy−1z−1 = k, or (zy)g(zy)−1 = k. So,

we may conjugate g by zy to get k, so g ∼ k and the transitive property holds. Thus ∼ is an

equivalence relation on G.

Since ∼ is an equivalence relation on G, its equivalence classes partition G. The equivalence

classes under this relation are called the conjugacy classes of G. So, the conjugacy class of g ∈ G is

[g] = {xgx−1 | x ∈ G}.

Exercise 1. Let G be any group, and let x, g1, g2, . . . , gn ∈ G. Show that for any n, the conjugate

of g1g2 · · · gn by x is the product of the conjugates by x of g1, g2, . . . , gn.

Exercise 2. Let G be an Abelian group. Show that for any a ∈ G, the conjugacy class of a is the

singleton set {a}.
When G is non-Abelian, understanding the conjugacy classes of G is an important part of under-

standing the group structure of G. Conjugacy classes play a key role in a subject called represen-

tation theory, which is one of the main applications of group theory to chemistry and physics.



We now determine the conjugacy classes of the symmetric group Sn. We begin by noticing that

any conjugate of a k-cycle is again a k-cycle.

Lemma 2. Let α, τ ∈ Sn, where α is the k-cycle (a1 a2 · · · ak). Then

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)).

Proof. Consider τ(ai) such that 1 ≤ i ≤ k. Then we have τ−1τ(ai) = ai, and α(ai) = ai+1 mod k.

We now have τατ−1(τ(ai)) = τ(ai+1 mod k). Now take any j such that j ∈ {1, 2, 3, . . . , n}, but

j 6= ai for any i. Then α(j) = j since j is not in the k-cycle defining α. So, τατ−1(τ(j)) = τ(j).

We now see that τατ−1 fixes any number which is not of the form τ(ai) for some i, and we have

τατ−1 = (τ(a1) τ(a2) · · · τ(ak)).

For any permutation α ∈ Sn, we know we can write α as a product of disjoint cycles. Suppose

we write α in this way, and α has cycles of length k1, k2, k3, . . ., k`, where k1 ≥ k2 ≥ k3 ≥ . . . ≥ k`,

and where we include 1’s in this list for fixed points. We call the sequence (k1, k2, k3, . . . , k`) the

cycle type of α. Note that
∑`

i=1 ki = n since every element in {1, 2, . . . , n} is either fixed or appears

in some cycle.

Example 1. If σ ∈ S10 and σ = (1 3 4 5)(2 7 8 9), then σ has cycle type (4, 4, 1, 1).

Example 2. If α is a k-cycle in Sn, where k ≤ n, then the cycle type of α is (k, 1, . . . , 1), where

there are n− k 1’s in the sequence.

We may now describe the conjugacy classes of the symmetric groups.

Theorem 3. The conjugacy classes of any Sn are determined by cycle type. That is, if σ has cycle

type (k1, k2, . . . , k`), then any conjugate of σ has cycle type (k1, k2, . . . , k`), and if ρ is any other

element of Sn with cycle type (k1, k2, . . . , k`), then σ is conjugate to ρ.

Proof. Suppose that σ has cycle type (k1, k2, . . . , k`), so that σ can be written as a product of

disjoint cycles as σ = α1α2 · · ·α`, where αi is a ki-cycle. Let τ ∈ Sn, then by Exercise 1 we have

τστ−1 = τα1α2 · · ·α`τ
−1 = (τα1τ

−1)(τα2τ
−1) · · · (τα`τ

−1). (4)

Now, for each i such that 1 ≤ i ≤ `, we have αi is a ki-cycle. From Lemma 2, we know that ταiτ
−1

is also a ki-cycle. For any i, j ∈ {1, 2, . . . , `} such that i 6= j, we know that αi and αj are disjoint,

and so ταiτ
−1 and ταjτ

−1 must be disjoint since τ is a one-to-one function. So, the product in (4)

above is τστ−1 written as a product of disjoint cycles, and ταiτ
−1 is a ki-cycle. Now we see that

any conjugate of σ has cycle type (k1, k2, . . . , k`).
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Now let σ, ρ ∈ Sn both be of cycle type (k1, k2, . . . , k`), and we show that σ and ρ are conjugate

in Sn. Let σ and τ be written as products of disjoint cycles as

σ = α1α2 · · ·α` and ρ = β1β2 · · ·β`,

where αi and βi are ki-cycles. For each i, let us write

αi = (ai1 ai2 · · · aiki
) and βi = (bi1 bi2 · · · biki

).

Now define τ by τ(aij) = bij for every i, j such that 1 ≤ i ≤ ` and 1 ≤ j ≤ ki. From Lemma 2, we

have ταiτ
−1 = βi. So, from Exercise 1, we have

τστ−1 = (τα1τ
−1)(τα2τ

−1) · · · (τα`τ
−1) = β1β2 · · ·β` = ρ.

So, any two elements of Sn with the same cycle type are in the same conjugacy class.

If n is a positive integer, a sequence of positive integers (k1, k2, . . . , k`) such that k1 ≥ k2 ≥
· · · ≥ k` and

∑`
i=1 = n is called a partition of n. From Theorem 3, the partitions of n are in

one-to-one correspondence with the conjugacy classes of Sn. The number of partitions of a positive

number n is often denoted p(n), called the partition function, and we have p(n) is the number of

conjugacy classes of Sn. The partition function and its properties are of great interest in number

theory. There is no known closed formula for p(n) in terms of n, but there are several known

modular arithmetic equivalences for the function. For example, if m is any non-negative integer,

then it is known that p(5m+ 4) = 0 mod 5.
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