(1): The set of integers \mathbb{Z} , with standard addition and multiplication, is a field.

TRUE FALSE

Solution: Elements of \mathbb{Z} other than ± 1 have no multiplicative inverse, but in a field, all nonzero elements have multiplicative inverses.

(2): If F is a field, then F is a vector space over itself (with the vector operations given by the field operations of F).

TRUE FALSE

Solution: Given a field F, if we take V = F, then the properties of the field F translate into V being an F-vector space

(3): The integers modulo 6, \mathbb{Z}_6 , with addition and multiplication modulo 6, form a field.

TRUE FALSE

Solution: Since $2 \cdot 3 = 0$ in \mathbb{Z}_6 , but also $2 \cdot 0 = 0$, then if \mathbb{Z}_6 were a field, we have $2 \cdot 3 = 2 \cdot 0$. Cancellation would give us 3 = 0, a contradiction. The same argument can be adapted to show that whenever n is composite, \mathbb{Z}_n is not a field.

(4): If V is a vector space over F, with $a, b \in F$ and $x \in V$ with $x \neq 0$, then ax = bx implies a = b. **TRUE** FALSE

Solution: From ax = bx, we can add -(bx) = -bx to both sides, and since $bx + (-bx) = \mathbf{0}$, we have $ax + (-bx) = \mathbf{0}$. Then $(a + (-b))x = \mathbf{0}$. If $a \neq b$, then $a + (-b) \neq 0$ since otherwise by adding b to both sides and using properties of fields we would have a = b. So a + (-b) has some multiplicative inverse in F, say c. Multiplying the left side by c gives, using properties of vector spaces and fields, c(a + (-b))x = (c(a + (-b)))x = 1x = x, while the right side becomes $c\mathbf{0} = \mathbf{0}$. We thus have $x = \mathbf{0}$. This is just one proof, but others may work fine as well.

(5): The set $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid x+y \ge 0, x, y \in \mathbb{Q} \right\}$, with standard vector addition and scalar multiplication, is a vector space over \mathbb{Q} . TRUE FALSE Solution: We have, for example, that $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an element of this set. But, the only possible additive inverse of this element is $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$, which is not in the set since -1 + (-1) < 0. Since the set does not contain additive inverses of elements, in cannot be a vector space. (6): The set $P(\mathbb{C})$ of polynomials with complex coefficients, with standard polynomial addition and scalar multiplication, is a \mathbb{C} -vector space.

TRUE FALSE

Solution: If F is any field, then P(F) is an important example of an F-vector space. The vector space properties are exactly how we define arithmetic of polynomials. See Example 4 in Section 1.2.

(7): Give a brief proof of the following (show all necessary steps, but no need to quote axioms used): If V is an F-vector space, with $x, y \in V$, $a \in F$, and $a \neq 0$, then ax = ay implies x = y.

Solution: Since $a \neq 0$, then we know a has a multiplicative inverse $b \in F$, so ba = 1. Multiplying both sides of ax = ay by b, we have, applying properties of vector spaces and fields,

$$b(ax) = b(ay)$$
, so $(ba)x = (ba)y$, so $1x = 1y$,

from which we can conclude x = y.