
Properties of Powers in Groups
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In this handout, we prove the properties of powers in groups, as stated
in the text in Chapter 2, page 49.

Theorem 1. Let G be a group, let g ∈ G, and let m,n ∈ Z. Then

gm+n = gmgn and (gm)n = gmn.

Proof. Because of the various possibilities of signs that can occur as powers,
we prove these statements in parts based on these cases.

Since we define g0 = e, where e ∈ G is the identity element, then we
have, for any m ∈ Z, gm+0 = gm = gme = gmg0, as claimed. Now, if we take
m > 0, then by definition, gm+1 = gmg = gmg1. Also by definition, still with
m > 0, g−m = (g−1)m, and so

g−mg1 = (g−1)mg1 = (g−1)m−1g−1g1 = (g−1)m−1 = g−m+1.

That is, we have for all m ∈ Z, gm+1 = gmg. We now prove by induction
that if m ∈ Z, then for any integer n ≥ 1 that gm+n = gmgn. We have
just proved the base case n = 1. Suppose that for some k ≥ 1 we have
gm+k = gmgk. Then gm+k+1 = gm+kg1 by the base case. By the induction
hypothesis, gm+k = gmgk, so

gm+k+1 = gm+kg1 = gmgkg1 = gmgk+1,

where the last equality is also by the base case. Thus, by induction (and the
case n = 0), for any m ∈ Z, we have gm+n = gmgn for any integer n ≥ 0.

Let n ≥ 1 be an integer, and we now prove (gn)−1 = g−n. Note that by
definition, g−n = (g−1)n. If n = 1, then (gn)−1 = g−1 = (g−1)1, as desired.
Applying induction, suppose for some integer k ≥ 1 that (gk)−1 = g−k.
Then we have, by applying the induction hypothesis, the base case, and the
additive property of exponents shown above,

g−(k+1) = (g−1)k+1 = (g−1)k(g−1)1 = (gk)−1g−1 = (ggk)−1 = (gk+1)−1,
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where we have also applied the socks-shoes property of inverses. By induc-
tion, we now have (gn)−1 = g−n for any n ≥ 1.

Now, for any integer n ≥ 1, we show gm−n = gmg−n. From the above, we
have

gm = gm−n+n = gm−ngn,

and since we’ve shown that (gn)−1 = g−n we may multiply both sides of
gm = gm−ngn on the right by g−n and obtain gm−n = gmg−n. We have now
shown that for any integers m,n, that gm+n = gmgn.

Let m ∈ Z. We have (gm)1 = gm = gm·1. Assume that for some k ≥ 1
that (gm)k = gmk. Then

(gm)k+1 = (gm)k(gm)1 = gmkgm = gmk+m = gm(k+1).

Thus, by induction (on n), for any m ∈ Z, and any integer n ≥ 1, (gm)n =
gmn. Note also that if n = 0 or m = 0, then gmn = e = (gm)n.

Next, if we assume m,n ≥ 0 are integers, we have (gm)−n = ((gm)n)−1 =
(gmn)−1 = g−mn, from results proved above. We now have that if at least
one of m or n is non-negative, then (gm)n = gmn.

Finally, we must consider when both exponents are negative. First, con-
sider (g−1)−1. On homework, you proved that (g−1)−1 = g, and one possible
proof of this goes as follows. If h = (g−1)−1, then by definition of inverses, h
is an element of G which satisfies hg−1 = g−1h = e. We proved that inverses
of elements in groups are unique, and we know gg−1 = g−1g = e, by definition
of inverse. Thus, by uniqueness, we must have h = g, so (g−1)−1 = g.

Let m,n ≥ 1 be integers, so both −m and −n are negative. Then, we
have, using the fact (as)−1 = a−s = (a−1)s for any a ∈ G and any integer
s ≥ 1,

(g−m)−n = ((g−1)m)−n = (((g−1)m)−1)n = (((g−1)−1)m)n = (gm)n = gmn.

We have now completed the proof that for any group G, any g ∈ G, and any
m,n ∈ Z, we have gm+n = gmgn and (gm)n = gmn.

When we write the operation of a group additively, say in the group G,
then we write the inverse of g as −g, we write g+g as 2g (as opposed to g ·g as
g2), and in general if n ≥ 1 is an integer, ng is the sum g+· · ·+g with n terms,
and we define (−n)g = −(ng). If we write the additive indentity as 0 (as well
as the integer), then we define ng = 0 for n = 0. With this additive notation,
our properties of powers translate into the statements (m + n)g = mg + ng
and (mn)g = m(ng) for any m,n ∈ Z.
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