These are optional problems for Math 215, which may be turned in on Wed., Apr. 26.

1. Let A be an m by k matrix with entries from \mathbb{R} . Let **r** be any vector in the row space of A, R(A), and let **n** be any vector in the null space of A, N(A). Show that $\mathbf{r} \cdot \mathbf{n} = 0$.

2. Let *L* be the following line in \mathbb{R}^2 :

$$L = \operatorname{span}\left\{ \left(\begin{array}{c} 3\\4 \end{array} \right) \right\},\,$$

and let $P_L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which projects vectors in \mathbb{R}^2 onto the line *L*. Find the matrix (in terms of standard coordinates) which corresponds to P_L . That is, find a matrix *B* such that $P_L(\mathbf{v}) = B\mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^2$ given in standard coordinates.

3. Let P_L be as in problem 2 above. Show that

$$\mathbf{v}_1 = \begin{pmatrix} 5\\0 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} -5/3\\5 \end{pmatrix}$

are linearly independent, while $P_L(\mathbf{v}_1)$ and $P_L(\mathbf{v}_2)$ are linearly dependent.

4. Let V and W be vector spaces over \mathbb{R} , and let $T : V \to W$ be a linear transformation which is *injective*. Show that if the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in V are linearly independent, then the vectors $T(\mathbf{v}_1), \ldots, T(\mathbf{v}_k)$ in W are also linearly independent.