These are optional problems for Math 215, which may be turned in on Wed., Apr. 12, with Homework #9.

1. Let $S: \mathbb{R}^3 \to \mathbb{R}^4$ and $T: \mathbb{R}^4 \to \mathbb{R}^2$ be linear transformations given by

$$S\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} x_1 + 2x_2 \\ x_1 + 3x_2 \\ x_2 - x_3 \\ x_1 + x_2 + x_3 \end{pmatrix} \text{ and }$$

$$T\left(\left(\begin{array}{c} x_1\\x_2\\x_3\\x_4 \end{array}\right)\right) = \left(\begin{array}{c} x_1 - 2x_2 + x_3\\2x_1 + x_4 \end{array}\right).$$

Find a matrix A such that $(T \circ S)(\mathbf{v}) = A\mathbf{v}$ for any $\mathbf{v} \in \mathbb{R}^3$.

- **2.** Find bases for $\text{Im}(T \circ S)$ and $\text{Ker}(T \circ S)$, where T and S are as above. Is $T \circ S$ injective? Is $T \circ S$ surjective?
- **3 a.)** Show that

$$\mathcal{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } \mathcal{B}' = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

are both bases of \mathbb{R}^3 . Find the change of basis matrix for the change $\mathcal{B} \to \mathcal{B}'$. That is, find a matrix C such that $C[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{B}'}$ for any $\mathbf{v} \in \mathbb{R}^3$.

b.) Let

$$\mathbf{v} = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}_{\mathbf{p}}.$$

Write \mathbf{v} as a coordinate vector using the basis \mathcal{B}' .

4. Define a linear transformation $F: \mathbb{R}^3 \to \mathbb{R}^3$, in terms of the standard ordered basis of \mathbb{R}^3 , by

$$F\left(\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right)\right) = \left(\begin{array}{c} 3x_1 - 2x_2\\ x_1 + x_3\\ x_1 + x_2 + x_3 \end{array}\right).$$

Find the matrix associated with F in terms of the basis \mathcal{B} in problem 3 above. That is, find a matrix A such that $[F(\mathbf{v})]_{\mathcal{B}} = A[\mathbf{v}]_{\mathcal{B}}$ for any $\mathbf{v} \in \mathbb{R}^3$.