Quiz 7 Solutions, Math 112, Section 1 (Vinroot)

Solve each of the following. Show or explain all steps clearly for full credit.
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1. Find the exact value of the series Z =

The series is the difference of two convergent geometric series (with ratios 2/5 and

Solution:
3/5), and we may compute as follows:
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Use the integral test (and check that the conditions hold) to determine if the following series
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converges or diverges: g 2ne”
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#* which is continuous (for all ) and positive

Solution: The function of interest is f(x) = 2ze”
for # > 0. To check if f(z) is decreasing, we compute f'(z) = 2¢™* — 422" = 2% (1 — 2z?).
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Then we see that
Flx) =2 (1-22%) <0 when

which occurs when x > /1/2 (or z < —4/1/2, but we don’t care about that part). In particular,
f'(x) < 0 when x > 1, so f(x) is decreasing when = > 1. So the Integral Test applies here. We

compute the improper integral
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We first compute the needed antiderivative, where we let u = 22, so du = 2z dx in the integral. So
we have f 2re~" dx = f e Udu=—e"+C =—e" +(C. Now we have
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since lim (—e’b2) = 0. Since the integral converges, then by the Integral Test the series Z 2ne”
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also converges.



