
Quiz 6 Solutions, Math 112, Section 2 (Vinroot)

(a): Consider the sequence defined by an =
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an, or show that it diverges.

Solution: We apply the limit laws of sequences as follows:
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8 = 2.

(b): Either compute the sum of the following series, or explain why it diverges:

∞∑
n=1

3n+12−2n.

Solution: We attempt to recognize the series as a geometric series, since there are nth powers.

We have:
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That is, we can rewrite the series as
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which is a geometric series with first term a = 9/4 and ratio r = 3/4. Since |r| = 3/4 < 1, then the

series converges, and is equal to a/(1− r). So, the series converges and is equal to
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