Quiz 6 Solutions, Math 111, Section 4 (Vinroot)

(a): Find all critical numbers of $f(x) = xe^{-2x}$, with a brief explanation.

Solution: The critical numbers for a function f(x) are numbers in the domain of f(x) such that f'(x) is either 0 or undefined. From the product rule and chain rule, we have

$$f'(x) = e^{-2x} - 2xe^{-2x}.$$

Factoring out e^{-2x} , we have $f'(x) = e^{-2x}(1-2x)$. Note that f'(x) is defined for all x, so the critical numbers are those values for which f'(x) = 0. Since e^{-2x} is never 0, then f'(x) can only equal 0 if 1 - 2x = 0. That is, the only critical number of f(x) is x = 1/2.

(b): Using your work from (a), find the absolute maximum and minimum values of $f(x) = xe^{-2x}$ on the interval [0, 1], with a brief explanation.

Solution: Our function is continuous for all input, and so it is continuous on the interval [0, 1]. So we may use the closed interval method to find the maximum and minimum values of f(x) on [0, 1], and they must occur at either a critical number or an endpoint. The values at these numbers, x = 1/2, 0, and 1 are:

$$f(1/2) = \frac{1}{2}e^{-1} = \frac{1}{2e}, \quad f(0) = 0, \quad f(1) = e^{-2} = \frac{1}{e^2}$$

The minimum of these values is 0, so the absolute minimum occurs at (0,0). Of the other two values, we know e > 2, so $e^2 > 2e$, and so $\frac{1}{e^2} < \frac{1}{2e}$. So the absolute maximum occurs at $(\frac{1}{2}, \frac{1}{2e})$.