Quiz 5 Solutions, Math 111, Section 2 (Vinroot)

As always, show all steps clearly in your solution.

A particle is moving along a line, with position at time t seconds given by $s(t) = t^3 + t^2 - 3$, where s(t) is measured in cm, positive direction is forwards, and $t \ge 0$.

(a): Find the equation giving the velocity, v(t), and acceleration, a(t), at time t, and find the velocity and acceleration after 1 second (include units).

Solution: We know v(t) = s'(t), and a(t) = v'(t) = s''(t). Then $v(t) = \frac{d}{dt}(t^3 + t^2 - 3) = 3t^2 + 2t$ and $a(t) = \frac{d}{dt}(3t^2 + 2t) = 6t + 2$, where v(t) is in cm/sec and a(t) is in cm/sec².

After 1 second, t = 1, so $v(1) = 3(1^2) + 2(1) = 5$ cm/sec, and a(1) = 6(1) + 2 = 8 cm/sec².

(b): Explain why the particle is never moving backwards and its velocity is never decreasing (remember we are only considering $t \ge 0$).

Solution: Since "moving backwards" means that position is decreasing, this would occur when $\frac{ds}{dt} = s'(t)$ is negative. But $s'(t) = v(t) = 3t^2 + 2t \ge 0$ when $t \ge 0$.

Similarly, the velocity of the particle would be decreasing at time t if v'(t) < 0. However, $v'(t) = a(t) = 6t + 2 \ge 0$ when $t \ge 0$. So the velocity is never decreasing.