Quiz 2 Solutions, Math 111, Section 2 (Vinroot)

Use the **definition** of the derivative to compute f'(x) if $f(x) = \frac{1}{x+1}$. At what values is f not differentiable? Show all steps in an organized way and give appropriate explanation where necessary.

Solution: By the definition of f'(x), we have

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{\frac{1}{x+h+1} - \frac{1}{x+1}}{h}$
= $\lim_{h \to 0} \frac{\frac{(x+1) - (x+h+1)}{h}}{h}$
= $\lim_{h \to 0} \frac{-h}{h(x+h+1)(x+1)}$
= $\lim_{h \to 0} \frac{-1}{(x+h+1)(x+1)}$ (since $h \neq 0$ as $h \to 0$)
= $\frac{-1}{(x+1)^2}$,

since the function $\frac{-1}{(x+h+1)(x+1)}$ is a continuous on its domain, as a function of h. We have f is not differentiable at x = -1, since f is not continuous at x = -1 (it is not defined there). But, $f'(x) = \frac{-1}{(x+1)^2}$ is defined for all $x \neq -1$, so f is not differentiable only for x = -1.