Math 103 Precalculus (Vinroot)

November 16, 2015

Due: Monday, November 23, 2015

Homework #7 Part A

1. Evaluate each of the following (this is review from HW #6):

- (a): $\sin(5\pi/3)$ (b): $\csc(11\pi/6)$ (c): $\cot(7\pi)$
- (d): $\tan(\pi/3)$ (e): $\cos(21\pi/2)$ (f): $\sec(-7\pi/6)$

In problems 2-4, obtain each of the trigonometric identities:

- 2. tan(x) + cot(x) = sec(x) csc(x)
- 3. $\sin^2(\theta)\csc^2(\theta) \sin^2(\theta) = \cos^2(\theta)$
- 4. $\sin^4(x) + \cos^4(x) = 1 2\cos^2(x) + 2\cos^4(x)$

The angle sum identities for sine and cosine are the following, where α and β are two angles:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$
 and $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$

- 5. Taking $\beta = \alpha$ in the angle sum identities, obtain the double-angle identities below:
- (a): $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- **(b):** $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 2\cos^2(\alpha) 1 = 1 2\sin^2(\alpha)$
- 6. Use the double angle identities for cosine to obtain the half-angle identities:
- (a): From $\cos(2\alpha) = 2\cos^2(\alpha) 1$, solve for $\cos(\alpha)$ and let $\alpha = \theta/2$ to obtain

$$\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}}$$

(b): From $\cos(2\alpha) = 1 - 2\sin^2(\alpha)$, solve for $\sin(\alpha)$ and let $\alpha = \theta/2$ to obtain

$$\sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{2}}$$

- 7. Use the half-angle identities to evaluate the following (simplify as much as possible):
- (a): $\sin(\pi/8)$ (b): $\cos(\pi/12)$

November 18, 2015

Due: Monday, November 23, 2015

Homework #7 Part B

- Evaluate each of the following (more review from HW #6):
- (a): $\csc(7\pi/4)$
- **(b):** $\cos(-2\pi/3)$
- (c): $\cot(3\pi/2)$

- (d): $\tan(4\pi/3)$
- (e): $\sec(\pi/6)$
- (f): $\sin(-5\pi/6)$
- Obtain the following trigonometric identities:
- $\frac{1+\sin(x)}{\cos(x)} = \sec(x) + \tan(x) \qquad \qquad \textbf{(b):} \quad \frac{\cot(x) \tan(x)}{\cot(x) + \tan(x)} = \cos(2x)$
- Find all values of x which satisfy the following equations:
- (a): $3\cos^2(x) \cos(2x) = 1$ (Hint: First substitute $\cos(2x) = 2\cos^2(x) 1$).
- **(b):** $5\cos(3x) + 5\sin(x)\cos(3x) = 0.$
- If θ is an angle such that $\cos(\theta) = \frac{2}{3}$, what are the values of $\sin(\theta), \tan(\theta), \sec(\theta), \csc(\theta)$, 4. and $\cot(\theta)$?
- (a): Draw a picture on the unit circle to show why $\sin\left(x-\frac{\pi}{2}\right)=-\cos(x)$ and $\cos\left(x-\frac{\pi}{2}\right)=$ $\sin(x)$.
- (b): Use (a) to show that $-\tan\left(x-\frac{\pi}{2}\right)=\cot(x)$ and $\sec\left(x-\frac{\pi}{2}\right)=\csc(x)$.
- (c): Use (b) and the graphs of $y = \tan(x)$ and $y = \sec(x)$ to sketch the graphs of $y = \cot(x)$ and $y = \csc(x)$.
- 6. A regular n-gon is inscribed a circle of radius 1. Find that the area of the n-gon is exactly $\frac{n}{2}\sin\left(\frac{2\pi}{n}\right)$.

Hint: Draw n triangles which meet in the center of the n-gon, so that each triangle has an angle of measure $2\pi/n$. Find the area of one of these triangles, and multiply by n.