Math 103 Precalculus (Vinroot) October 5, 2015 **Due:** Wednesday, October 14, 2015

Homework #3 Part A

1. Multiply the following to obtain a simplified polynomial: (a): $(x^2+2)(x^2+x+1)$ (b): $(x^2+2x-1)(x^3+3)$ (c): $(a-b)(a^2+ab+b^2)$ (d): $(a+b)(a^2-ab+b^2)$ (Parts (c) and (d) can be very handy in factoring cubics.)

2. Find the following quotients of polynomials by polynomial long division:
(a): 2x⁹ + 4x⁸ - 5x⁵ - 10x⁴ + 2x² + x - 6 divided by x + 2.
(b): x⁶ + 2x⁴ - 3x³ - 8x - 4 divided by x³ + 2x + 1.
(c): x⁷ - 7x³ - x² + 6x - 3 divided by x² + 3.

3. Confirm that x = 5 is a solution to $x^3 - 3x^2 - 13x + 15 = 0$ using synthetic division, and then find all solutions by completely factoring the polynomial.

4. Find all solutions to $x^3 - 3x + 2 = 0$.

5. Find the quotient of $x^4 + 3x^3 + 10x^2 + 9x + 7$ divided by $x^2 + x + 1$. From this, factor $x^4 + 3x^3 + 10x^2 + 9x + 7$ as a product of two quadratics. Use what you know about quadratics to explain why $x^4 + 3x^3 + 10x^2 + 9x + 7 = 0$ has no solutions.

6. Find all values of x which force the expression

$$\frac{x^8 - x^2 + 2x - 5}{x^3 - x^2 - 9x + 9}$$

to be undefined.

Note: This expression is undefined exactly when the denominator is 0, since division by 0 is what would cause problems. So the numerator is irrelevant here.

Review problem from last week:

7. Find all values of x such that $x^2 - 10x + 16 = 0$, then all values such that $x^2 - 10x + 16 > 0$, then all x such that $x^2 - 10x + 16 < 0$. Use this information to draw a rough sketch of $y = x^2 - 10x + 16$ in the coordinate plane.

Write the rational expressions in Problems 1 through 4 as a polynomial (or constant) plus a simplified rational expression:

1.
$$\frac{3x^{2} + 2x + 1}{x^{2} - 3x + 2}$$

2.
$$\frac{2x^{4} - x^{2} + 2x - 3}{x + 2}$$

3.
$$\frac{x^{5} + 1}{x^{3} - 1}$$

4.
$$\frac{x^{5} + 2x + 1}{x^{3} + x + 1}$$

5. Find all values of x which make the following expressions 0 (That is, find where the numerator is 0, then make sure for those values of x the decomminator is not 0):

(a):
$$\frac{x^2 - 12x + 27}{x^3 + 5x + 2}$$

(b):
$$\frac{x^3 + 2x^2 + x - 4}{x^4 + x + 1}$$

(c):
$$\frac{x^2 - x - 2}{x^3 + x^2 + x + 1}$$

6. Find all values of x such that $2 + \frac{4}{x^2 + 2x - 1} = 0$, and all values of x which make $2 + \frac{4}{x^2 + 2x - 1}$ undefined.

7. Find all values of x such that $\frac{x-2}{x-1} > 0$.