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When a Turing bifurcation occurs close to a Hopf bifurcation in the parameter space of a reaction-
diffusion system, the Turing and Hopf modes may interact nonlinearly to form, a priori, a variety of com-
plex spatiotemporal patterns. We have studied this type of interaction for three models of chemically ac-
tive media: the Lengyel-Epstein model of the ClO,” -1 —malonic acid system, a model that describes
the ferroin-catalyzed Belousov-Zhabotinsky reaction, and the Brusselator. One and two spatial dimen-
sions are considered. The Poincaré-Birkhoff method was implemented for the reduction of the models to
the Turing-Hopf normal forms. The normal-form analyses show that the stability regions of stationary
periodic patterns and of homogeneous oscillations usually overlap over a wide region in parameter
space, forming a domain of bistability. Mixed-mode (spatiotemporal) patterns do not occur in the mod-
els considered except for a very small region in the parameter space for two-dimensional hexagonal pat-

terns.

PACS number(s): 05.70.—a, 47.20.Ky, 82.20.—w

I. INTRODUCTION

In his celebrated paper [1] Turing showed that the in-
terplay of chemical reaction and diffusion may cause the
homogeneous state of the system to become unstable and
to lead to the spontaneous formation of spatially periodic
stationary structures. He proposed this kind of instabili-
ty as a possible mechanism for morphogenesis in biologi-
cal systems and, more generally, for self-organization in
nonlinear systems. The recent experimental discovery of
Turing patterns in a real chemical system [2-4] has fur-
ther stimulated the interest in self-organization phenome-
na and more detailed studies may be expected in the fu-
ture.

Previous theoretical work [5,6] has shown that the
closer the system is to the Hopf bifurcation point, the
more the Turing instability is generally favored. The
value of the diffusion coefficient ratio 6=D,/D, for
which Turing instability becomes possible moves closer
to one (the realistic value for homogeneous systems), as
the Hopf boundary is approached. The proximity of
these kinds of instability may lead to their interaction
such that the resulting spatiotemporal pattern may
significantly differ from the patterns that would appear in
the case of either “pure” bifurcation. This fact should be
important for the recognition, analysis, and classification
of experimentally observed patterns.

The Turing bifurcation is associated with the passage
of a real eigenvalue through zero (steady-state bifurca-
tion), and the Hopf bifurcation with the crossing of the
imaginary axis by a complex-conjugate pair of eigenval-
ues. Interactions of the Hopf and steady-state bifurca-
tions may bring about a variety of complex kinds of be-
havior [7,8].

Here we study this type of interaction for models of
three different chemical systems, the Lengyel-Epstein
(LE) model [9] of the system for which Turing patterns
have been found [2-4], the model that describes the
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ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction
[13], and the Brusselator [15].

The work proceeds along the following lines. On the
parametric plane, we find the degenerate point where
both the Turing and Hopf bifurcations occur simultane-
ously. At this point, we reduce the model to the normal
form implementing Birkhoff-Poincaré’s method. Unfold-
ing the normal form allows one to study the system in the
vicinity of the degenerate bifurcation. The reduction to
the normal form depends on the spatial geometry and
dimensionality of the problem as well as on the boundary
conditions. Here we consider only the cases of one and
two spatial dimensions with no-flux (Neumann) boundary
conditions. In two spatial dimensions, rather than gen-
erally analyzing the full range of possible patterns—a
rather formidable task—we have restricted ourselves to
considering several representative patterns. It is found
that due to a bistability region, Turing patterns can exist
over a much wider range of parameters than they would
in the case of a pure Turing bifurcation. The conclusions
reached for the LE model are found to hold equally for
the BZ reaction and Brusselator models.

Section II presents the models, the normal forms, and
the results of the calculations. Section III describes the
derivation of the normal forms from the reaction-
diffusion equations. A discussion of the results concludes
the paper.

II. MODELS AND RESULTS

In this section we present the results of our calcula-
tions. General explanations of the approach and of the
method used are given in the next section. We begin with
the Lengyel-Epstein [9] model of the chlor-
ite—iodide—malonic acid reaction since this model de-
scribes the medium in which Turing structures were ob-
served experimentally [2-4].
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The LE model is reduced to the following dimension-
less form:

O o g—x—4— 1D Ax, (1a)
ot 1+x2
dy xy
= +D,Ay , 1b
o1 l 1+x? ' (o)
where
1. 1 _
x=—[1"], y=—[ClO,”], 7=k,t,
u v
2k,[ClO,~
#:1077’ _H 2l 2 o ’
kS[IZ]O
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ky[CIO, ™ Jou” ky[CIO, ™ Jou

The quantities in brackets represent concentrations, and
A denotes malonic acid. The rate constants are
ki =7.5X107°M "2 sec” !, k,=6X10°M ! sec™!, and
ky=2.65X10"?sec”!. The part of the model which de-
scribes the local kinetics has only two parameters a and
B. Its parametric portrait is given in Fig. 1(a). The
boundary separating the domains of homogeneous steady
states and homogeneous oscillations is the locus of Hopf
bifurcation labeled H.

In a full reaction-diffusion system (1), where the species
are allowed to assume different values of the diffusivity,
the homogeneous steady state may become unstable
through the Turing bifurcation and give rise to a station-
ary spatially periodic pattern. The locus of Turing bifur-
cations is shown in Fig. 1(b), superimposed on the Hopf
curve. The position of the Turing line is determined by
the ratio §=D, /D, of diffusion coefficients. Generally,
the closer the value of § is to 1, the narrower is the pa-
rameter domain where the homogeneous steady state can
be destabilized only by inhomogeneous perturbations [the
narrow region below the Turing and above the Hopf
boundaries in Fig. 1(c)]. Since diffusion coefficients of
small molecules are usually close to each other, the major
part of parameter space where the Turing structures may
occur overlaps the region of Hopf instability region. The
Turing structures observed in the chlorite—iodide—
malonic acid system [2-4] seem to be aided by immobili-
zation of iodine species through starch that is present to
act as an indicator. Even if the parameters lie in the nar-
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FIG. 1. The parameter plane of the Lengyel-Epstein model
(1): H is the locus of Hopf bifurcation in the model without
diffusion terms, 7T are the lines of Turing bifurcation for
different values of & [panels (b) and (c)].
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row region of the pure Turing instability, the proximity
of the Hopf bifurcation may significantly affect the
emerging spatial and/or temporal pattern. Therefore the
understanding of these kinds of instability is important
and relevant to the observed structures. As usual, the
point of highest degeneracy constitutes the organizing
center for interactions of this kind [10,11], whose unfold-
ing leads to the complete description of the possible dy-
namics in its neighborhood. In our case, the point of
double degeneracy lies at the intersection of the Turing
and Hopf lines.

The dynamics of a system in the vicinity of a bifurca-
tion point is governed by its normal form. Our task is
therefore to derive and analyze the normal form for the
degenerate Turing-Hopf bifurcation. This is done sepa-
rately for spatial dimensions 1 and 2.

A. One-dimensional system

The calculations described in Sec. III show that the
normal form for this case is

F=Ar+ar’+bru?, u=puu +eru+du’ . 2)

The r variable describes the Hopf mode and u the Tur-
ing model. The value of r characterizes the amplitude of
the temporal oscillations (r is the radius of the limit cycle
on the center manifold in the normal coordinates), while
u represents the amplitude of the spatial pattern. Note
that the r variable can only be positive while ¥ may have
either sign. However, Eq. (2) are invariant with respect
to the sign of both variables. The bifurcation described
by normal form (2) is called the pitchfork-Hopf bifurca-
tion [7]. The coefficients a, b, ¢, and d of the normal form
are calculated at the point of intersection of the lines of
Turing and Hopf bifurcations (point a in Fig. 2). They
depend on the system parameters «, /3,6, on the geometry
of the problem, and on the boundary conditions as will be
shown below. A and u are the unfolding parameters.

~pF
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FIG. 2. The parameter plane for the reaction-diffusion sys-
tem (1). Domain 1 is the region of the stable homogeneous
steady state (A<0, u<0). In domain 2 the homogeneous
steady state is destabilized by the Turing mode (A <0, u<0),
and in domain 4, stability is lost through the Hopf mode
(A>0, u<0). Domain 3 (A>0, u>0) is unstable both to Tur-
ing and Hopf modes.
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For the LE model (1), the value of A is negative above
and positive below the Hopf boundary and the value of u
is negative above and positive below the Turing boundary
(Fig. 2). The parameter plane is thus divided into four re-
gions with different combinations of signs of A and u as
illustrated in Fig. 2.

As illustrated in Figs. 1(b), and 1(c) the position of the
point a is solely determined by the value of the diffusion
ratio =D, /D,: the smaller & the further this point
moves to large a. The coefficients a, b, ¢, and d are thus
functions of a,(8) and B,(8) while the unfolding parame-
ters A and p are actually functions of the varying parame-
ters a and S3.

The dynamics of the normal form depends primarily
on the sign of the parameter A=ad —bc. Our calcula-
tions show that for the LE model (1), as well as for the
BZ reaction and Brusselator models, as discussed in Sec.
IIC, A is always negative. This implies that from the set
of dynamical modes that may arise a priori from the
Turing-Hopf interaction only a subset actually occurs. It
turns out that bistability between pure Turing and Hopf
modes are the dominant result of this interaction. The
more interesting cases of coupled Turing-Hopf (spa-
tiotemporal) modes occur only for A > 0.

The character of the bifurcation is controlled by the
signs of the parameters a and d: negative a (or/and d)
means that the Hopf (or/and Turing) bifurcation(s) is
(are) supercritical; otherwise the corresponding bifurca-
tion is subcritical. The influence of the diffusion ratio &
on the signs of ad and hence on the bifurcation character
is illustrated by Fig. 3. When 6> §, then the Turing line
(not shown) intersects the solid portion of the Hopf line
shown here, and a,d > 0, and both bifurcations are super-
critical. Intersection in the dashed interval ab occurs for
8, <8<8,. For these & values, a <0 and d > 0, rendering
the Hopf bifurcation supercritical and the Turing bifur-
cation subcritical. Both bifurcations become subcritical
when the intersection occurs with the dash-dotted seg-
ment of the Hopf curve above the point b (6§ <§,,a,b <0).

0o | |
5 10 15
&«

FIG. 3. When the Turing line intersects the solid portion of
the Hopf line (below a; 8> 11.5), both bifurcations are super-
critical. When the crossing occurs in the dotted segment ab
(11.5>8>10.4) then the Turing bifurcation is subcritical and
the Hopf bifurcation is supercritical. Crossing above b
(8 <10.4) makes both bifurcations subcritical.
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It should be noted that in the subcritical Turing cases
(8 <$§,) spatial patterns may be accessed by threshold
perturbations (hard excitation) in a limited domain in re-
gion 1 above the Turing line (Fig. 5). Similar cir-
cumstances apply to the subcritical Hopf case.

If A <O, as in all of the models analyzed in this paper,
the normal form analysis can tell little about the asymp-
totic structures when both bifurcations are subcritical
(6 <8;) or when Hopf is supercritical and Turing subcrit-
ical (8,<8<$6,), except that the locally stable steady
state (A <0, u <0) can always be destabilized by an ap-
propriate finite perturbation. When 8, <8 <§, (supercrit-
ical Hopf and subcritical Turing) the same is true both
for the region of the steady state (A <0, u<0), and for
the homogeneous limit cycle oscillations (A >0, u <0).
Only when both bifurcations are supercritical (8 > §,) can
the analysis reveal more detail, as summarized in Fig. 4.
In domain 1 where A,u <0, the homogeneous steady state
is stable. Domain 2 corresponds to homogeneous oscilla-
tions. It consists of the region of pure Hopf instability
(A>0, u<0) bounded by H and 7, and of the adjacent
part of the region bounded by T and the line labeled B,
where A, >0. The latter boundary B is determined by

a
—u—=0
A—pu . , (3)

where A and u are functions of the parameters a and f3 as
explained above. The line of Turing bifurcation and the
line 4 determined by

b
A—u p 0 (4)
form the boundary of domain 3 where stationary, spatial-
ly periodic patterns exist. Region 4 between lines 4 and
B is the domain of bistability. There the Turing pattern
coexists with the homogeneous oscillation and initial con-
ditions determine which of the two modes is realized.

If, in addition to the conditions a,b,A <0, the
coefficients b and ¢ were positive, then the stationary pat-
tern in the domain A <0, x> 0 (domain 2 in Fig. 2) or the
homogeneous oscillation in the domain A>0, u<O0
(domain 4 in Fig. 2) may not be globally stable and they
could be destabilized by an appropriate hard-mode per-
turbation. However, this combination of parameters nev-
er occurs in any of the models considered here.

The main conclusion drawn from this section is that at
least in the vicinity of the Turing-Hopf point a, the re-
gion where Turing patterns can be found is actually much
larger than the narrow strip where only pure Turing
structures exist. While the latter is bounded by the Tur-
ing line T from above and by the Hopf line H from below
of Hopf bifurcation from the bottom, the former includes
the domains 3 and 4 shown in Fig. 4.

B. Two-dimensional systems

While the spatial pattern in one spatial dimension is
uniquely described by the wave vector k, in higher di-
mensions k|, k, (and k; where applicable) may combine
under different angles and with different amplitudes, giv-
ing rise to numerous spatial modes that have to be con-



6318 ARKADY ROVINSKY AND MICHAEL MENZINGER 46

3 I T T A=ab —cd remains negative and the transitions from the

H sub to supercritical bifurcations occur almost at the same
B values of a as in the one-dimensional (1D) case (the
difference lies within 10%; see Fig. 3). Therefore, the

2 7 analysis and results of the previous section are applicable

B ©) Furina struct to the 2D case with only minor quantitative changes that
are not of current interest.

L H Homog.osail D] A third type is a hexagonal pattern. Its complexities
are more interesting. The hexagonal mode can be
represented in the form

T A
o i | N U(r)=u, cos(k;-r)+u, cos(k, r)+us;cos(ksr), (7)
7 3 s where |k,|=|k,| = |ks;| =k, and k, +k,+k;=0.

FIG. 4. The parameter plane for the one-dimensional system
governed by Eq. (2).

sidered separately.
cases.

For two spatial dimensions the Turing-Hopf normal
form is

Here we analyze only the simplest

F=hrtar’tbr Y uu oy, (5a)
K=k,
wy=pugterfugduy, 3 upuoy
A=
+e > Up Up, s (5b)
K, +k,=k
Ik, ky,ky=kg

where u, is the amplitude of the inhomogeneous mode
with wave vector k, and k is the critical wave number
(i.e., the wave number of the inhomogeneous perturba-
tion which destabilizes the homogeneous steady state at
u— +0). The essential difference between this form and
that (2) for 1D system is the presence of the last (quadra-
tic) term in Eq. (5b). We are not aware of any published
analysis of this normal form and begin by considering a
few special cases.

One obvious solution to these equations is the one that
describes Turing structures in the form of parallel rolls.
In other words, the inhomogeneous mode depends only
on a single spatial coordinate and it is characterized by a
single wave vector k. In this case system (5) is essentially
one dimensional and it reduces to Eq. (2) analyzed in Sec.
ITA.

Another type of structure can be viewed as a superpo-
sition of two intersecting systems of rolls that form a
rhombic pattern. This mode is determined by

U(r)=u, cos(k,-r)+u,cos(k,r),

(k[ =1k, =kq) .

(6)

We assume that u, =u,=u. Since there are no modes
with wave vectors k;, k,, and k; such that k,=k,+kj,
the quadratic term in Eq. (5b) becomes zero. Then the
normal form (5) reduces again to Eq. (2), however, with
different values of the parameters a, b, ¢, and d. Actual
calculations show that in this case too the value of

For regular hexagons (u;,=u,=u;=u) the normal
form (5) reduces to

F=Ar+ar’+bru?, a=pu-+criu+du+teu’ . (8)

Calculations show that in this case too, the parameter
A=ab —cd is always negative and the parameters a and d
change their signs almost at the same value of a as in the
previous cases.

It is known (Ref. [12] and references therein) that for
r =0 (the pure stationary inhomogeneous mode) there
can exist two different hexagonal structures differing only
in their amplitudes. One is the small amplitude branch
[soft mode, u(u—0)—0] and the other the large ampli-
tude (hard-mode) branch, illustrated by Fig. 5. The in-
teresting feature in the d <O case is that the large ampli-
tude branch remains stable at negative u as long as
w>e’/4d.

Analysis of the normal form (8) leads to the following
conclusions: the stability region of the homogeneous os-
cillations is defined by the inequalities

A>0, p=Ac/a<0, )

that of the large-amplitude stationary hexagonal struc-
ture by

2

e b a2 2 12
u> 4’ A+ e [e*—2dpu+ele*—4du)’°1<0, (10)
and that of the small-amplitude pattern by
2
p>0, rA+bls<o. (1
e
2
o e/i4d _ o_—
u ://
H

FIG. 5. The bifurcation diagram for the two-dimensional,
hexagonal patterns (noninteracting with the Hopf mode).
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FIG. 6. The parameter plane for the system described by
normal form (8): (a) the large-amplitude and (b) small-amplitude
hexagonal structures interacting with the Hopf mode. The inset
of 6(b) shows its central area magnified. The shaded region is
the very small domain where the mixed-mode (oscillating hexag-
onal) pattern exists.

These cases are illustrated by Figs. 6(a) and 6(b).

Figure 6(b) demonstrates that there is a very small re-
gion near the degeneracy point a where neither the
homogeneous steady state, nor the homogeneous oscilla-
tory state or the small-amplitude stationary inhomogene-
ous structure are stable. Inside this tiny region, indicated
by the shaded part of the inset of the figure, the normal
form (8) has a stable steady state (r*,u*) with both r*
and u* nonvanishing. This corresponds to a spatiotem-
poral mode where a hexagonal pattern with amplitude u *
undergoes temporal oscillations with amplitude »*. This
mixed-mode pattern, corresponding to a superposition of
Turing and Hopf modes, has been simulated numerically
and it is shown in Fig. 7.

A stable mixed-mode pattern may probably exist not
only within that small region but in a wider area, presum-
ably above the line B in Fig. 6, defined by u=2Ac/a <0.
The comprehensive investigation of this possibility has
not been completed.

C. The BZ reaction model and the Brusselator

The calculations were repeated for the BZ reaction
model [13,14] and Brusselator [15] models, even though
they do not appear as relevant to experiments as does the

Space

FIG. 7. The oscillating hexagonal (mixed-mode) pattern: (a)
the spatial pattern at a fixed time [shaded area in Fig. 6(b)], (b)
the time evolution of a one-dimensional cut through the struc-
ture shown in (a).

6319

LE model. The BZ model describes quite accurately the
ferroin-catalyzed BZ reaction. However, the appearance
of the Turing structures seems unlikely in that system
due to an inappropriate ratio of diffusion coefficients.
The Brusselator is a purely formal model.

The important result of these calculations is that, just
as in the Lengyel-Epstein model treated above, the nor-
mal form coefficients a and d, as well as A=ab —cd, are
always negative in the parameter regions considered.
This means that the interaction of the Turing and Hopf
bifurcations for these two models can only lead to the
same behavior as that of the LE model described in the
previous section.

III. REDUCTION TO THE NORMAL FORM

In this section we outline the ideas behind the
Poincaré-Birkhoff reduction of the kinetic model (1) to
the normal forms (2), (5), and (8).

Consider the reaction-diffusion system

94X _ f(x;p)+DAx (12)

dt
near the homogeneous steady state x(r,¢;p)=xy(p). As-
sume that at p =p, the system undergoes both the Hopf
and Turing bifurcations. This means that the Jacobian
L =0f(xy(py);po)/0x has a purely imaginary pair of ei-
genvalues and that the operator L —k?D has a zero ei-
genvalue at some k.

In some vicinities of p, one may expect that system
(12) displays homogeneous oscillations,

x(r,t;p)=x%,(po)+x(¢t;p) (13)
inhomogeneous stationary structures,

x(r,8;p)=x%y(po)+xP(1;p) , (14)
and, generally, spatiotemporal structures,

x(r,t;p)=x,+xV(0)+xP(r,1) . (15)

Expanding (12) as a Taylor series and retaining terms up
to third order yields

2 of

X

'V +x > x+DAax?
a
1 9°f
+ = (a)g(B)
2 Jx0dx 53" x

1 af
6 0x0x9x

3 x“xPx+0(4), (16)
a,By

where a, 3, and ¥ =1,2.
Now x'?)(r,1) is expanded in a series of the eigenfunc-
tions I;(r) of the operator Da,

x2(r,p)=3 u ()L, (r) . (17)

We can choose the homogeneous
Iy,(r)=const=1 and present

eigenfunction

xV()y=u'l(s) . (18)



6320

Substituting (17) and (18) into (16), expanding the re-
sulting products of I; into series of I;(r) functions,

I sz‘H

(19)
Il(r)lm 2 Cl?il;—l)ll
and disengaging the modes with different I, gives
2
1 9
—7 (@), Iyl
=L ’a+2 9x;0x; Frrl A
33
1 i (a) , (B (8)
- 20
6axj8xk6xlcmﬁu uiluj 20)
where a,5,7,6=1,2,
L= =Y ap 1)
Yooax T Y ax =i

j
and k is the number at Wthh L " has a zero eigenvalue.
Since the b/31/ and cﬁyé matrlces are determined by the
eigenfunctions I,(r) they depend on the dimensionality,
the geometry, and the boundary conditions of the prob-
lem. Here we consider only zero-flux (Neumann) bound-
ary conditions and a rectangular geometry for the 2D
case. Cosine eigenfunctions are appropriate in this case.
Thus, in the 1D case, the b(ﬁ‘fy’ and C(B% matrices are

10
0 2

by = , (22)
0 1
10
10 0 1
o+ Lo

cEs= . (23)
01 10
10 032

For the 2D rhombic structures the matrices are

10
0 1

by = , (24)
0 1
10
10 01
01 10

Chvs = , (25)
01 10
10 03

and for 2D hexagonal structures,
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10
0 3
b = , (26)
0 1
11
1o o0 3
03 2 3
s = : (27)
01 1 1
11 1 &

Further calculations of the normal form are a cumber-
some but straightforward implementation of the
Poincaré-Birkhoff method as described, e.g., in Refs.
[8,16]. The basic idea of the method is to find a nonlinear
transformation of the variables u/®' that reduces Eq. (20)
to the simplest form by eliminating as many nonlinear
terms as possible. The complex normal coordinates z and
z that naturally appear in the Hopf mode are then re-
placed by real r and ¢ through substitution z =r exp(i@).
Since the equation for ¢ is rather trivial it is not included
in the normal forms (2), (5), and (8).

IV. THE NORMAL-FORM ANALYSIS

The detailed analysis of the normal form (2) has been
reported in [8,17-21]. To illustrate the approach, we
present the analysis for the following case: A,u >0;
a,b,c,d <0; A=ad —bc <0. We also discuss different
kinds of spatiotemporal patterns that may plausibly be
expected in systems governed by normal form (2), al-
though it turns out that some of them ultimately do not
occur in the three models studied.

For the case defined above, the normal form (2) always
has three steady states: (I) r,=u,=0 (the reference
homogeneous steady state); (I) 73 = —1/a,u, =0 (homo-
geneous oscillations); and (III) r; =0,u% = —u/d (station-
ary, spatially periodic pattern). The Jacobian matrix for
these cases is

A+bu?+3ar? 2bu,r,

= 8
L 2cu;r; pterf+3du? |’ 2%

where u;,r; are the steady-state values { =1,2,3. Thus
the eigenvalues for these three cases are

(I) A, >0 (the trivial steady state; always unstable) ,

(II) —2A (<0), #—Ai, (29)

(111) /\—u%, —2u (<0) .
The steady state (II) (homogeneous oscillations) is stable
when p—Ac/a <0 and the stationary inhomogeneous
structure [steady-state (III)] is stable when A—ub /d <O0.
Since A <0 it can be seen that the stability regions of the
steady states (II) and (III) overlap so that the system is
bistable when
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FIG. 8. The parameter plane (a) the phase portraits (b)—(d) of
the normal form (2). The fixed points I, II, III are described by
(29) and IV by (31).

d u _c

—<E <= (30)

b A a
Depending on the initial conditions it can be found either
in the homogeneous oscillatory or inhomogeneous sta-
tionary state. When the inequalities (30) hold, a fourth
steady state appears in the normal form:

(IV) ri:__)"d—A_'_b/i’ ui—_—l‘%ﬂ_ (31)

For the kinetic models considered in this paper this
steady state is always unstable (a saddle point). As shown
in Fig. 8(a) the parameter plane is divided into the three
regions characterized by the phase portraits Figs.
8(b)-8(d).

All three kinetic models considered here are character-
ized by A <0. The emerging state of the system is there-
fore either homogeneously oscillating (Hopf bifurcation),
or spatially periodic and stationary (Turing bifurcation).
If A were positive, however, the steady state (IV) (r4,u,)
of the normal form could become stable. This would cor-
respond to the temporal oscillations of the Turing struc-
ture as a whole. If, in addition to A >0, the produce ad
were negative this state would also become unstable and
be surrounded by a stable limit cycle. Such limit cycle
oscillations would correspond to doubly periodic oscilla-
tions of the inhomogeneous Turing structure such that
both the mean value and the amplitude of the pattern os-
cillated with different frequencies. The analysis of nor-
mal form (8) is conducted in a similar fashion.

V. DISCUSSION

The most important result of this study is that the sta-
bility region of the inhomogeneous stationary patterns is
generally much wider than the narrow strip where the
pure Turing structures alone are stable, although in the
major part of this stability region the patterns must coex-
ist with the homogeneous oscillations. This fact has
probably contributed to a great extent to the success of

the experiments in which the Turing patterns were
discovered [2-4]. This also means that a domain of
stable stationary patterns may be found within the oscil-
latory domain even when the pure Turing bifurcation
never occurs (i.e., when the locus T of Turing bifurca-
tions lies entirely within the oscillatory domain). The
latter usually happens when the ratio & of diffusion
coefficients is close to 1—the common case for most
chemical systems in solution. Moreover, although the
necessary condition for the pure Turing instability is that
the diffusion coefficient of the “inhibitor”” should exceed
that of the “activator” [24], the present results imply that
even when this condition is not met, there may be sub-
stantial regions within the oscillating domain where inho-
mogeneous patterns coexist with homogeneous (limit cy-
cle) oscillations.

It remains puzzling why the analyses of the three quite
different kinetic models have consistently shown that the
Turing structures in 1D and the 2D roll and rhombic
structures never couple with the Hopf mode to yield tem-
porally oscillating inhomogeneous (mixed-mode) pat-
terns. The appearance of the oscillations or double-
periodic oscillations of the inhomogeneous mode is deter-
mined by the coefficients of the normal forms (2) or (5).
These coefficients are not fully independent since they all
derive from the same original equations. It is not yet
clear under which physical conditions the system would
be characterized by the normal form with A=ad —bc >0
(which may exhibit periodic oscillations of the spatial
structure) and with ad <0 (leading to doubly periodic os-
cillations).

In the course of this work we made a series of
simplifications and have left several interesting problems
unsolved. In the 2D case in particular, we did not con-
sider the large class of patterns with an arbitrary angular
distribution of wave vectors and with different ampli-
tudes in the different directions of the wave vectors. The
analyses for these cases will be more intricate, but their
dynamics promise to be of interest. It is likely, further-
more, that the full three-dimensional system possesses a
bifurcation structure that is not completely captured by
the present 1D and 2D cases.

The stability analysis was limited only to homogeneous
perturbations and perturbations with the wave vector of
the Turing mode. It was shown earlier [22,23] that small
arbitrary inhomogeneous perturbations can destabilize
the homogeneous oscillations and lead to the onset of
high-dimensional chaos. They are also important for the
stability of the inhomogeneous stationary structure (Ref.
[12] and references therein), although the comprehensive
analysis even in this case has not been completed. In our
case the implications can be even more significant.

The present approach does not allow one to find all the
final destinations of the system in the case of subcritical
bifurcations. One can expect, however, that in the vicini-
ty of the point where the bifurcation changes from super-
critical to subcritical (where a or d changes its sign), the
emerging structure and its stability will be qualitatively
similar to the supercritical cases. A thorough analysis
may reveal further interesting and relevant aspects of the
problem.
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