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Pattern formation and nonlocal logistic growth
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Logistic growth process with nonlocal interactions is considered in one dimension. Spontaneous breakdown
of translational invariance is shown to take place at some parameter region, and the bifurcation regime is
identified for short and long-range interactions. Domain walls between regions of different order parameter are
expressed as soliton solutions of the reduced dynamics for nearest-neighbor interactions. The analytic results
are confirmed by numerical simulations.
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I. INTRODUCTION large amount of florgsay, a tregat certain spatial point. One

may expect the water density to adjyatmost instantly to

the tree and to equilibrate in some water profile that is lower

eration at a single site, it has been extended to include spatia ound '.ts location. The immediate neighborhood .Of th_e tree,
! ough, is less favorable for a second tree to flourish; instead

ome_dimensional continuu version one consider the corC® MaY EXpect the next to grow up some typical distance
. o : . “““away, reducing the water level between them even more.
centration of a reactant(x,t), with time evolution that is

) . This seems to be a plausible and generic mechanism for seg-
given by the rate equation regation induced by resource competition. These arguments
ac(x,t) ) may be relevant to the dynamics of almost any unstirred
BT DVZc(x,t) +ac(x,t) = b(x,t), (1) reactive system; interesting example is the process of evolu-
tionary speciation where new species may survive only “far
whereD is the diffusion constang is the growth rate, and ~ enough”(in the genome space, where the spatial structure is
is the saturation coefficient set by the carrying capacity of thegiven, say, by Hamming distanc&om its ancestor, in order
medium. to find a nonoverlapping biological niche.

The Fisher process is a generic description of the invasion Surprisingly it turns out that the partial differential equa-
of a stable phase into an unstable region. It is applicable ttions that describe this proce@isere presented in a nondi-
wide range of phenomena, ranging from genettbe origi-  mensionalized form, where stands for water densiti, for
nal context of Fisher work, proliferation of a favored muta- flora, andR is the “rain”)
tion or geng to population dynamics, chemical reactions in )
unstirred reactors, hydrodynamic instabilities, invasion of b(x,t) = V?b — ub — wb,
normal states by superconducting front, spinodal decomposi-
tion, and many other branches of natural sciences. A compre-
hensive survey may be found in recent review article by van
Saarlooq3]. yield only a linearlystablehomogenous solution. In order to

The Fisher process ends up with a uniform saturatedjet patterns one should add a cross-diffusion effeloiwving
phase, in contrast with other nonlinear and reactive systemslown of the water diffusion in the presence of flptaat
which yields spatial structures with no underlying inhomo-leads to Turing-like instability as in Ref5], but this is a
geneity. These patterns are usually related to an instability dfifferent mechanism, and one may wonder about the validity
the homogenous solution, most commonly of Turing or Hopfof the basic intuitive argument presented above.
types[4]. Spontaneous symmetry breaking of that type mani- Recent work[6] suggests a hint for the answer. It seems
fests itself in vegetation patterns, where competition of florahat a continuum and local description of a reactive system
for common resourcéwater induces an indirect interaction fails to capture the competition induced segregation dis-
and may lead to &Turing-like) spatial segregatiofb]. cussed above. The continuum process is trying to “smear”

The basic motivation of this work comes from recentthe reactant profile, and instead of getting spatially segre-
study of non-Turing mechanism for pattern formation in thegated structure of large biomass unitseeg it favors ho-
vegetation-water system, which yields ordered or glassynogenous profile of “grass” covering all the area. In Ré¥.
structureg6]. Basically, it is easy to realize thabmpetition  a biomass unit was allowed for long time survival only if it
for common resource induced some indirect “repulsion” exceeds some predetermined threshold, and simulation of the
among agents, which may lead to spatial segregathman  system reveals an immediate appearance of spontaneous seg-
example, consider the vegetation case: there is a constarggation and stable patterns.
flow of water into the systerfrain), and the water dynamics Similar situation appears, presumably, in the process of
(evaporation, percolation, diffusipis much faster than the bacterial colony growth where the food supply is limited. As
dynamics of the flora. Now let us assume the existence of aoted by Ben-Jacoét al.[7], spatial segregation and branch-

Logistic growth is one of the basic models in population
dynamics. First introduced by Verhulst for saturated prolif-

w(x,t) =DV?w+R-w-wb (2)
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ing are induced by the competition of bacteria for diffusiveis devoted to the appearance of topological defects in the
food. A communicating walkers model is used by these ausegregated phase. Finally in Sec. IV some discussion and
thors to simulate the branching on a petridish, where conpossible implications are presented.

tinuum equation dictates the food dynamics while the indi-
vidual bacteria are discrete objects. The discreteness of
bacteria adds some weak threshold to the system and induces
segregation. Note, however, that the model admits weak de- The model is a one-dimensional realization of long-range
pendenc_e of the diffusion on the local bacterial density at th%ompetition system on a lattiqevith lattice spacing) and
boundaries of the colony. the continuum limit is trivially attained & — 0.

In thys work | consider the One-Species analqu of the In the generic case of diffusion and nonlocality the time
competition problem, namely, a logistic growth witlonlo-

cal interactions where the carrying capacity at a site is re- evolution of the reactant density at the nth sitg, is given
duced due to the presence of “life” in another site. Nonlocaby

competition has been recently considered by Sayatrel. c® B

[8] and by Fuentest al. [9]. Both groups uncover the pos- Jdcy(t) _D ~ ~ ~ ~
sibility of spontaneous symmetry breaking and patterns, de- ~— 51 E[‘ ZE1(1) +Cpaa(t) + g (D] + &CH(1) = BEA(D)
pending on the strength and the smoothness of the “weight

function” that controls the nonlocality. It seems that nonlocal e _

interactions are not simply an effective model obtained by = Cnlt) 2 FelCnur () + e (D], 3
integrating out the fast degrees of freedom; rather, it incor- r=t

porates some nonlinear effectie the thresholgand allow
for linear instability that manifests the intuitive “competition
induced segregation” argument.

II. INSTABILITY CONDITIONS

whereD is the diffusion constant and,b,” are the corre-
sponding reaction rates. The definition of dimensionless

Sayameet al. [8] deal with a two-dimensional model of quantities,
population dynamics, with no diffusion term. Both the local D
growth term and the carrying capacity at a site dep@oad in r=at, c=bta, y=Y/b, D=—3, (4)
the same wayon the population of neighboring sites; in a alg

crowded neighborhood the growth term becomes lafdee (the new “diffusion constant’ isD:W2/I§, where W

to offspring migration while the carrying capacity decreases * —— . . . . .

as a result of long-range competition. The conditions for an . \D/ais the V.V'dth of the Fisher fropjprovides the dimen-
instability of the homogenous solution have been found ana§|onless equation
lytically and demonstrated numerically for a “stepwise” Py

weight function (taking as the effective neighborhood the — 0 =D[-2¢,+Chag+Crq] + Cn(l = > lChar
average density inside a prescribed radius around the Kite aT r=1

was also pointed out that a Gaussian weight function yields
+ Cn—r])

o

no instability.

In the numerical work of Ref[9], a one-dimensional re-
alization of diffusing reactants has been considered, equiva-
lent to Fisher equation with nonlocal interactions. Again itthat may be expressed in Fourier spa¢eith A,
was shown that a stepwise weight function may lead to in==, c,€¥"0) as
stability while Gaussian weights lead to stable homogenous

©)

solution; the authors proceed to consider intermediate weight A= aAc- 2 Br-aAPr-q» (6)
functions that interpolate between Gaussian and a step func- q
tion.
. . where

As in any case of spontaneous symmetry breaking, the
system falls locally into one of the “minima” of the order a,=1-2D[1 - cogkly)], (7)
parameter, and typically domains are formed. These domain
walls determine the low lying excitation spectrum of the sys- w0
tem, as their movement is “smooth”: if the broken symmetry _
S : =1+2 coqrklp). 8
is continuous the resulting Goldstone modes may destroy the P 2:1 ncosrklo ®

long-range order at finite temperature, and the same is true

for the domain walls if discrete symmetry is broken. Al- As c, is positive semidefinited, is always “macroscopic.”

though we are dealing with an out of equilibrium system, oneAny mode is suppressed I8y, and for smally, one expects

may guess that the response to small noise is determined loply the zero mode to surviid0]. If, on the other handy,

these domain walls. increased above some threshold, bifurcation may occur with
The goals of this work are twofold: in the following Sec. the activization of some othék mode&s), and the homog-

I will try to give more comprehensive discussion of the in- enous solution becomes unstable. This is the situation where

stability condition, with and without diffusion, and its depen- patterns appear and translational symmetry breaks.

dence on the weight functions: it turns out that it depends on To get a basic insight into the problem, let us consider the

the minimal value of its Fourier transform. The third sectioncase with no diffusiofD=0, a=1). Eq. (5) becomes
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TABLE I. The functiongy and the instability conditions for various types of nonlocal interactions. The results for the Gaussian case are
in the continuum approximation.

Type % Bk Instability condition

sinh([In(yy)|/ &)

E tial re No instabilit
xponentia (v1) cosH{In(y1)]/€) -cosKlo) o instability
> (Klp)? 6
Quadratic % L+2yy| o~ mklo/2 + : ¥z k=l
. [ka
st J1 r=p s'”(E(Zp”) AL _4pa
ep "o r>p . [ka argep. ko= 3
sinl—
2
2 2 — o T (Uk|0)2
Gaussian (yp) 779 If Voxlg, ~—| exp — No instability
2\‘J||n(71)| 4\[InCyy)|
€=C 1=y > % (Cour = Cry) (9) paper, thoughpgy is used only for the first pattern-forming
n n n r n+r n-r
r

instability criteria, and the details of the emerged structure
are presented just for nearest-neighbor interaction.

Once diffusion is added to the system, its features
changes, but not so much. The homogenous state is still char-
acterized byc,=1/B, and the first pattern formation instabil-
ity appears when somiemode satisfies.

and division byc, vields, for the steady state, the linear
equationQ -c=y, where@ is a circular matrixg is the vector
of ¢,'s andy=(...,1,1,1,1,.). The sum of the elements of
any row of Q is the same, so the homogenous statalar
multiplication ofy) should be an eigenvector. On the other Br < —2B,D[1 - cogklp)]. (10
hand, if Q is nonsingular it must admit a full set of mutually
orthogonal eigenvectors. Only the constant eigenvect@ of
has nonvanishing projection on so the onlypositive defi-

nite, nondiverging steady state,=0, c,>00n) solution is o ~ [ey(Bo* B - Bo
the homogenousne, c,=1/4,. Ag= y AEAN T o (1)

As implied by Eq.(6), the homogenous steady state is Pot B BdBo+ B
unstable iff, for somek, B,<0. In that case bifurcation oc- and there are no zeroes @f. This result fits perfectly with
curs, and the new steady state is a combination of the zenthe numerical data presented in Fig. 1. Again thté insta-
mode and thek mode with equal weight®\,=A=1/(8, bility involves the activation of 2 modes, although the sta-
+By). bility analysis is more complicated.

The function B,k e [0,7/1y], is discrete for finite sys- The question of pattern instability is thus translated to the
tems and becomes continuous at the thermodynamic limit. Ifletermination of the minimal value of the Fourier coefficient
B, never crosses zero there is no bifurcation and the homogpf the weight function(or the “weight series™y,). If the
enous solutiorc,=1/, is stable. The results for few types minimal value is smaller than some prescribed nungbero
of interaction ranges, with the critical valug (where the if there is no diffusion instability takes place and patterns
instability occurs, andk, (the first excited mode are sum- emerge. Unfortunately | am not familiar with a general theo-
marized in Table I. rem that sets bounds on the minimal value of the Fourier

It is interesting to note that these expressions may be gergoefficient of a function based on its “smoothness,” or other
eralized to yield a full, period doubling type, instability cas- analytic properties, so any case should be considered sepa-
cade. Themth instability involves 2' modes, and the steady rately, with the generic examples given in Table I.
state is 1E, B, where the sum runs over all the “active”

Above this instability, the amplitudes of the modes are not
equal,

modes. Trﬁ conditio_n for thmfrl bifurcation[activation of IIl. DOMAIN WALL STRUCTURE
another 2"+ mode§ is the existence of a wave number
such that¥y B, <0, with the sum runs, again, over aff'2 Above the pattern formation threshold generic initial con-

activek’s. There are, however, some obstacles for the impli-ditions fail to yield perfect “lattice,” as different domains
cation of these solutions above the first bifurcation. Degenfeach saturation with different “phases.” These domains are
eracies inp, (e.g., for y,=6 4, both kly=m/4 and kl  connected by solitonlike solutions of the time independent
=37/4 are minima and solitons between different stable equation in the following sense: any stable solutioftx,t)
phaseqdescribed beloyvmay blur the native state. In this =0] should satisfy(in the continuum limit
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D FIG. 2. A typical “soliton” of lengthL=20, an outcome of for-

ward Euler integration of Eq13) on 1024 lattice points with peri-
FIG. 1. Maximal amplitude ofc, differences [maxc,) odic boundary conditions and random initial conditions st
—min(c,)] (circles for a sample of 1024 siteeriodic boundary  =0.505 (just above the bifurcation There is a perfect agreement
conditiong and the predicted difference according to Etfl) for  with the theoretical prediction, Eq21), up to the accuracy of the
nearest-neighbor interaction witj=0.8 (dashed ling The agree- numerics(here, four to five significant digits
ment is up to the numerical error.

different trajectory, buk; should be selected such that after

d%c(x) L steps of the magfor domain wall of sizel) the 101010
D42 :c(x)—c(x)ff(x—y)c(y)dy, (12 solution is rendered. In a matrix form, the condition that
determinedX; (x, for a givenL) is
thus it looks like a trajectory of mechanical partigleith L
massD) in a nonlocal potential, withk as the “time.” A 0 1 1 1 x& xi
domain wall is a finite size structure, so it must connect fixed Ll 0% 0% L
points of this fictitious dynamics, i.e., a domain wall corre- Tl 1 0 o =MH 0] (9
sponds tdheteroclinic orbit In this section we consider these 1 0o o0 1 1 1

solitons and look for their shape and size at different condi-
tions. In order to simplify the discussion, only the nearestwhere we assume symmetry of the soliton, lsonust be
neighbor case is considered, both with and without diffusioneven. In other words, the condition that deterrmhhds

With no diffusion andnn competition, Eq.(9) takes the L

form 1 1
-= -1 = 01 0||/x
Jc 4 Y1 -[1 00|]|lo]|=0 (9
—= Cn[l —Ch— Y(Cn+1 + Cn—l)]- (13) 1 0 0
ar 0 o 1 00 1|/\1

The uniform solution, in this case, ==1/(1+2y), and the
nonuniform solution is eithec,=1 for odd n andc,=0 for
even, or vice versa. Stability analysis shows that the uniform SIMS=D, (17
solution becomes unstable at=1/2, and thezero-one

phase is stable above this value. One may expect, though, Y§1€re

see a jump from homogenous to patteriieero-ong phase 1 0 0

at y.. However, if the initial conditions are taken from ran- _ _in

dom distribution, there is a chance for a domain wall be- D=|0 -e 0' (18)
tween two regions, as indicated by the numerical results pre- 0o 0 -g'

sented in Fig. 2. B ——
Clearly, such a soliton should be a solution of the “map”@"d f=arctariy4y’~1)=arccosl/2y). o
The eigenvalue problerfi6) may be written in terms of

Diagonalization ofM is given by the matrixS

1-¢ the diagonal matrix,
Ch+1 = Tn ~ Cp-1, (14)
CO{— + (p)
of course, 01010101..codd 0’9 and 101010101..(even =S.-8 I3 2 (19
0's) are already solutions of this equation. We are looking for 1Tt Lo
the solution that connect these two fixed points. Such a tra- co Py tn

jectory begins in, say, 010101010 state, but then after the . .
zero it gives not 1 buk,. The dynamics now continue in a and usingS,,=S,,=r1,€% andS,,=S,,=r,4€7 it implies that
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FIG. 4. Soliton siz€lL) as a function of 1{e, (e= v=v.), for a
L1 [1=T _1(1/2y) nearest-neighbor interaction without diffusion. The circles are the
x1= 2y+1 1+ 1-Toa(1/2y) ] (200 results of a numerical simulation and the line7ig(2Ve). In the
inset, the characteristic length of the soliton tgilis plotted against
1/Vn for y=0.505 for the solitons shown in Fig. 3. The circles

come from the numerics and the line is the best linear fit that give a
slope of 0.198, to be compared with\32=0.177.

where T,(x) is the nth Chebyshev polynomial of the first
kind. After determiningx'i the same method may be used to
derive a general expression for all the elements of thelsize
soliton (x, where I<=m=<L)

4

V25(x) = - ﬁé(x) (24)

€
Lo 1 { 1o (- g [P Tana(12)

™o 2y+1 2y-1 with e=y—1v, goes to zero at the transition, so le=21.

oont The solution of Eq(24) that satisfies the boundary condi-
—(-pm yz’xl V1 +sz(1/27)] (21)  tions 5(0)=0 together withs(L)=1 is
8y -2
_sin(2y/ex) )
and it fits perfectly the numerical experiment presented in (x) = sin(2\«‘re)L' (25)

Fig. 2 (see captions

The above analysis gives the shape of a soliton for anyrhis expression fails to converge smoothly to the “back-
prescribed length., but simulation indicates that onlgne  ground” ordered 010101 phagat x=0 it has a finite slope
soliton sizeL is selected for any set of parameters, and itsand is also asymmetric. Put it another way, there are no non-
length diverges ay approaches its critical value. Looking trivial heteroclinic orbits for a parabolic potential. On the
carefully at the solutiong21) one realizes that all other pos- other hand, close to the transition, where the size of the do-
sible solitons admit values for some of thgs that are either main wall is large, it seems that it should fit a solution of the
negative or larger than 1, so these options are unphysicabntinuum approximation. The only way out is to pick a
(negative or unstable to small perturbations. soliton sizeL such that the continuum equation admib

The actualL(y) may be forecasted by a rough argumentsolution at all i.e.,
based on a continuum approach. Defining the local deviation
from the one-zero solutiort,=1 andc,.;=0, L= 2_77_ (26)

VE

Cht1= Onz1, Cr=1-6, (22) . .
Such a choice forces us back to the discrete equdfidn

and its solution(21). This argument turns out to give the
right length of the stable soliton in the larg¢e— 0) limit,
as shown in Fig. 4.

Snag+ Ong = ﬁ_ (23) Let us consider now the domain walls for the finite diffu-
sion case. As seen in Fig. 3, there are also solitons for the
finite diffusion case, but now they admit tails that asymptoti-

Subtracting of 2, from both sides and taking the continuum cally looks like 5~ exp(-x/¢), and ¢ diverges at the transi-
limit (i.e., assuming that the changesdifrom site to site are tion [e.g., atD,=(2y-1)/4(2y+1) for nearest-neighbor in-
small compared td,, here taken to be unifyone gets teractiorj. Defining a vectorial “order parameter” according

and plugging it into Eq(14) gives
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to the largerc values, soliton solution interpolates between  (2s+2dy— 1+ 2D)8"®"+ (D - 19)(5°%+ 6299 = 0,
(1,0) (largerc on the odd sitesto (0,1) (even sitey and its

shape is given by the saddle point solution of the appropriate (2d+2sy— 1+ Z:))ggdd_F (D - yd)(88%e"+ 58"8) = 0,
dynamics. Although the determination of its full shape is

difficult, it is possible to determiné by linearizing around (27
one fixed point. For small deviations,,,:A0+A77,|0—5n and  where SEAO+A7T,IO and dEAO—AW“o, These coupled equa-
Cre1=Ao~ A+ O and Eq.(14) yield the two coupled lin-  tion may be solved with the ansatzs®'~a,
ear equations for odd and even n’s xexp(—x/ £), 6 °4~ a,exp(—-x/ £) to give

g:

2 _ _ 2 _ _ 2 -1
[arccos?{l\/(4+64D 32D),7 + (20D - 8D2 - &)y + 1 203” | 8

2 D(y-D - 2yD)

As the diffusion constant approaches its critical valDe, walls, on the other hand, are much less stable, and their
=D.—», £ diverges like 1432%. This prediction is tested in density and dynamics have to be strongly effected by an
the caption of Fig. 4 against the numerics and there is resexternal noise. This is very much like the situation in mag-

sonable quantitative agreement, given the difficulties in getnetic system, where the response functions of the material

ting reliable numerical accuracy for the slope of the logarith-are basically determined by the domain walls and not by the
mic tail of the soliton. “bulk.” In magnetic systems, however, one may define the

state of the system at finite temperature and a minimum of
the free energy function and consider the effect of noise sim-
ply as temperature increase. The situation seems to be differ-

The model of logistic growth with long-range interaction ent for the long-range competition model: no simple Li-
term may serve as a generic, minimal model for competitiorapunov function exists for this system, and the steady state is
for common resource and pattern formation in excited medianot derived from some variational principle. In spite of that it
In this paper this model has been analytically discussed, witfs plausible to assume that the defected solutions determine
two main outcomes. First, a general scheme for the identifithe response function of the segregated phase, and maybe an
cation of the pattern-forming instability has been presentedeffective dynamical equation for the solitons may be set up
along with explicit results for few common cases. Second}o give an approximate Liapunov function for this system.
the defected solutions for random initial conditions has been

IV. CONCLUDING REMARKS
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