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Chaotic mixing induced transitions in reaction–diffusion systems
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We study the evolution of a localized perturbation in a chemical system with multiple homogeneous
steady states, in the presence of stirring by a fluid flow. Two distinct regimes are found as the rate
of stirring is varied relative to the rate of the chemical reaction. When the stirring is fast localized
perturbations decay towards a spatially homogeneous state. When the stirring is slow~or fast
reaction! localized perturbations propagate by advection in form of a filament with a roughly
constant width and exponentially increasing length. The width of the filament depends on the
stirring rate and reaction rate but is independent of the initial perturbation. We investigate this
problem numerically in both closed and open flow systems and explain the results using a
one-dimensional ‘‘mean-strain’’ model for the transverse profile of the filament that captures the
interplay between the propagation of the reaction–diffusion front and the stretching due to chaotic
advection. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476949#
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The problem of chemical or biological activity in fluid
flows has recently become an area of active research.1–8

Apart from theoretical interest this problem has a num-
ber of industrial 9 and environmental10,11 applications.
One of the simplest manifestations of nonlinear behavior
in reaction–diffusion systems is the possibility of travel-
ling front solutions. In this paper we study the effect of
chaotic mixing, by an unsteady laminar flow, in reaction–
diffusion systems supporting front propagation.

I. INTRODUCTION

Let us considerN interacting chemical or biologica
components, with dimensionless concentrationsCi(r ,t),i
51,..,N, advected by an incompressible fluid flow,v(r ,t),
that is assumed to be independent of the concentrations.
spatiotemporal dynamics of the fields is governed by the
of reaction–advection–diffusion equations

]

]t
Ci1v~r ,t !•¹Ci5Fi~C1 ,..,CN ;k1 ,..,kM !1kDCi ,

~1!

where the functionsFi describe the interactions between t
different components. These may be chemical reactions o
the case of biological populations~e.g., different plankton
species!, they may represent growth, grazing, reproducti
death, predation, etc.12,13 The parameterski are the reaction
rates characterizing the speed of the chemical or biolog
interactions andk is the diffusivity, assumed to be the sam
for all components. We assume that the flow is lamin
~smooth! and time-dependent implying chaot
advection,14–16i.e., fluid elements separate exponentially a
rate given by the Lyapunov exponent,17 l, of the advection
dynamics.
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Equation~1! can be nondimensionalized by the transfo
mations

x→ x

L
, t→ tU

L
, v→ v

U
, ki→

ki

k1
,

~2!

Fi~C1 ,...,CN!→ Fi~C1 ,...,CN!

k1
,

whereL andU are the characteristic length scale and velo
ity of the flow and one of the reaction rates,k[k1 , is used to
define a characteristic chemical time scale. Thus, the no
mensional problem can be written as

]

]t
Ci1v~r ,t !•¹Ci5DaFi~C1 ,...,CN!1Pe21 DCi , ~3!

where

Da[
kL

U
and Pe[

LU

k
~4!

are the Damko¨hler and the Pe´clet number, respectively. Th
Damköhler number,18,19 Da, characterizes the ratio betwee
the advective and the chemical~or biological! time scales.
Large Da corresponds to slow stirring or equivalently fa
chemical reactions and vice versa. The Pe´clet number, Pe, is
a measure of the relative strength of advective and diffus
transport. We are going to consider the case of large Pe n
ber, typical in many applications, when advective transp
dominates except at very small scales.

In applications it may be useful to understand the beh
ior of a chemical system for a range of stirring speeds wh
other parameters~e.g., reaction rate constants, diffusivity!
are kept unchanged. Although the stirring speed affects b
nondimensional numbers in~4!, its variation leaves the fam
ily of curves on the Da–Pe plane defined by Da
5constant invariant. For this case the appropriate nondim
© 2002 American Institute of Physics
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sional equation could be obtained by dividing both sides
~3! by Da, implying the use of the chemical time scale, 1k,
as the time unit. Then the two nondimensional parame
would be Da and DaPe5kL2/k, where the latter, represen
ing the ratio of the diffusive and the chemical time scales
independent of the stirring rate.

In this paper, we study the behavior of the chemi
system for different Damko¨hler numbers, when the Pe´clet
number is kept fixed. Strictly speaking, this corresponds
the variation of the chemical reaction rates and cannot
achieved by changing the stirring rate alone~except if the
diffusivity is also changed in order to keep Pe constant!.

For simplicity, in the following we consider the case
two-dimensional flow only, since it is computational
cheaper and easier to visualize. This is directly relevan
certain geophysical problems where density stratificat
makes the flow quasi-two-dimensional~e.g., stratospheric
chemistry, plankton in the ocean surface layer! and is also
accessible to laboratory experiments~using soap-films, strati-
fied fluids, etc.!. However we believe that many of the resu
presented in this paper can be straightforwardly extende
three-dimensional systems.

With the above assumptions the problem defined by
~3! is still very general until the interaction terms,Fi are
specified. Previous work has investigated the spatial st
ture of the chemical fields in the case of chemical dynam
with a single stable local equilibrium concentration, that i
function of the spatial coordinate.20–23 Here we consider the
case of chemical systems that in the spatially homogene
case would have multiple steady state solutions. There
many examples of multiple steady states in interact
chemical or biological systems, in models of atmosphe
chemistry,24 or in the dynamics of plankton populations.12,25

Perhaps the simplest is the autocatalytic reactionA1B
→2B.

Thus we assume that the dynamical system that
scribes the evolution of the spatially uniform chemical s
tem,Ci(r ,t)[Ci(t),

dCi

dt
5DaFi~C1 ,..,CN! ~5!

has more than one, stable or unstable, fixed point, or equ
lently the system of equations

Fi~C1* ,...,CN* !50 ~6!

has multiple roots in the positive quadrant.~Since the con-
centration fields must be positive everywhere, only the fix
points withCi* >0 are relevant.!

We study the response of the system, initially in one
the uniform steady states, to a localized perturbation.
localized we mean, that the the spatial extent of the per
bation,d, is much smaller than the characteristic length sc
of the velocity field,d!1. The evolution of the chemica
fields is investigated for different values of the Damko¨hler
number in both closed flow and open flow systems. T
cases of stable and unstable initial uniform states will
considered separately, each represented by a simple m
system.
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
f

rs

s

l

o
e

to
n

to

q.

c-
s

a

us
re
g
c

e-
-

a-

d

f
y
r-
le

e
e
del

In the following section we describe the models used
the reaction dynamics and for the flow, followed by the p
sentation of explicit two-dimensional numerical simulatio
in Sec. III. Then, in Sec. IV we introduce and investigate
one-dimensional reduced model and show that this may
used successfully to interpret the two-dimensional numer
simulations. The paper ends with a summary and discuss

II. THE MODELS

For the reaction term,F, we use two different models
with multiple equilibria with quadratic and cubic nonlinea
ity. The first is an autocatalytic reaction, a generic model
the propagation of a stable phase into an unstable one.
second model is a bistable system and we study the trig
ing of a transition from one stable state to the other by
localized perturbation.

~1! Autocatalytic reaction—Let us consider the reac
tion A1B→2B, with the corresponding rate equations f
the spatially uniform system

dCA

dt
52rCACB ,

dCB

dt
5rCACB . ~7!

Observing thatCA1CB ~the total number of moleculesA
andB! is conserved by the reaction, we can eliminateCA and
characterize the state of the system with a new variableC
[CB /(CA1CB) (0,C,1) representing the proportion o
componentB, that evolves according to

dC

dt
5kF~C![kC~12C!, ~8!

wherek5r (CA1CB).
There are two steady states:~i! C50 ~componentA

only!. This is unstable, since the addition of a small amo
of B leads to the complete consumption ofA through the
autocatalytic reaction;~ii ! C51 ~componentB only!. This is
stable—a small amount ofA is quickly transformed back to
B.

The temporal evolution of the spatially homogeneo
system can be obtained by integrating~8! as

C~ t !5F11S 12C~0!

C~0! De2ktG21

, ~9!

whereC(0) is the initial proportion of componentB.
In the numerical experiments, the initial state is the u

stable phase,C50, perturbed by a localized pulse of th
form

C~x,y,t50!5C0e2(x21y2)/2d2
, ~10!

whereC0!1 andd!1, representing a small dilute patch o
the catalyst, componentB.

The reaction term~8! can also be interpreted as the, s
called, logistic growth of a population26 modelling the
growth of the population limited by the availability of th
resources~e.g., nutrients!, implying that the concentration
saturates atC51. Furthermore, the same reaction term a
pears in the Kolmogorov–Piskunov–Petrovsky~KPP!
equation27 used in combustion,9,28 which describes the
propagation of a flame front separating fresh~unburned! pre-
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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mixed reactants (C50) and burned gases (C51). Thus our
numerical experiments can also be regarded as represe
the evolution of a plankton bloom stirred by ocean curre
or of a flame embedded in a laminar flow.

~2! Bi-stable system—As a second model we use a sy
tem with two stable states defined by the reaction equat

dC

dt
5kF~C!5kC~a2C!~C21!, 0,a,1. ~11!

The stable fixed points areC50 andC51, and their basins
of attraction are separated by the unstable fixed pointC
5a. Although this system does not represent a real chem
reaction scheme, it is the simplest possible model for mu
stability. We expect that more realistic chemical and biolo
cal systems with multiple stable steady states would sh
similar behavior. We start the system in the stable unifo
state,C50, and a localized perturbation of the form~10! is
added. Now the amplitude of the perturbation is chosen s
to exceed the threshold,a ~we useC051.0!. @Since the ini-
tial state is stable, any perturbation that is below the thre
old everywhere,C(x,0),a, dies out.#

We note that whenC5a is chosen as an initial state th
bistable model shows qualitatively similar behavior to t
autocatalytic model.

Stirring will be modelled by two simple time-periodi
model velocity fields, representing a closed and an open fl
system, respectively. We stress, however, that the results
scribed in this paper are valid for a wide class of tw
dimensional time-dependent laminar flows, since the o
important assumption is the chaotic motion of fluid elemen

For the closed flow we choose a sinusoidal shear fl
with the direction of the shear periodically alternating alo
the x andy axis.29,30 The velocity field is

vx~x,y,t !5AQ~ 1
2 2t mod 1!sin~2py1f i !,

~12!
vy~x,y,t !5AQ~ t mod 12 1

2!sin~2px1f i 11!,

defined on a doubly periodic square domain of unit lengthQ
is the Heaviside step function andA is a parameter~we use
A50.7!, that controls the chaotic behavior of the flow. T
avoid transport barriers~due to KAM tori,17 typically present
in periodically driven conservative systems! the periodicity
is broken by using a random phase,f i , different in each
time period.

We also consider open flow systems in which fluid co
tinuously flows in and out a finite mixing zone. Such syste
are relevant for certain chemical reactors and also in so
geophysical problems. Advection in this type of open flo
has been shown to be governed by a chaotic scattering
escape process generating fractal patterns of the adve
tracers.31,32

As an example of an open flow system we use a velo
field modelling the flow around two alternately open
point-sinks in an unbounded two-dimensional domain.33,34

The fluid particles approach the mixing zone from infin
and leave the domain through one of the sinks. The velo
field is composed by the superposition of a point-vortex a
a point-sink, centered on the active sink. The complex po
tial corresponding to the vortex-sink is
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
ing
s

al
i-
-
w

ch

h-

w
e-

-
ly
.

w

-
s
e

s
pe
ted

y

ty
d
n-

w~z!52~Q1 iK !lnuz2zsu, ~13!

wherez5x1 iy is the complex coordinate,zs is the position
of the sink andQ and K are the sink-strength and vortex
strength, respectively. The corresponding velocity field
polar coordinates with the origin fixed to the active sink i

v r52
Q

r
, vf5

K

r
, r 5A~x2xs!

21~y2ys!
2. ~14!

The half distance separating the two sinks is assumed to
unity (xs50,ys561). The sinks are alternately opened f
equal times and the period of the flow is the time unit. T
inflow concentration at the boundaries of a square domai
kept constant at the value corresponding to the initial ba
ground concentration,C(63.0,y)5C(x,63.0)50.0.

For both closed and open flows we integrate t
advection–reaction–diffusion problem for the autocataly
and the bistable model on a 100031000 lattice using a semi
Lagrangian scheme. The value of the Pe´clet number is Pe
51000, and the Damko¨hler number is varied in a range from
zero to few hundred.

III. NUMERICAL RESULTS

A. Closed flow

We find for both chemical models two distinct regim
separated by a critical Damko¨hler number, Dac . The critical
values are Dac'2.0 for the autocatalytic reaction and Dac

'20.0 for the bistable model.
In the slow reaction/fast stirring regime (Da,Dac), in

both models the initial perturbation quickly decays toward
homogeneous state~Fig. 1!. In the case of the autocatalyti
reaction the homogenization of the perturbation is follow
by a spatially uniform transition to the stable equilibrium
C51, as in a reactor with initially premixed componen
This is because the original uniform state is unstable,
cannot be restored by the homogenization of the pertu
tion, since the homogenized state still deviates slightly fr
the unstable equilibrium. In the bistable system the pertur
tion is dispersed and the system simply returns to the un
turbed initial state,C50. In this regime, the chemical reac
tion is too slow to sustain the localized perturbation that
diluted by the strong stirring. Note that for both chemic
models the final state would be the same for a spatially u
form perturbation with the same spatial mean. Thus, a co
grained model could, at least qualitatively, reproduce
evolution of the system.

When Da.Dac the localized perturbation may persi
and propagate in the form of a filament with a roughly co
stant width and rapidly increasing length~Fig. 2!. This con-
tinues until the filaments cover the whole domain and fina
the system becomes uniform again,C51. This occurs in all
cases in the autocatalytic case, but only ifa,0.5 in the
bistable case. Ifa.0.5 a localized perturbation in th
bistable case decays. The width of the propagating filame
increases with Da. We note, that the average profile of
filament ~width, amplitude! is apparently independent of th
details of the initial perturbation, indicating that it is dete
mined by the interplay between the chemical and transp
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 1. Snapshots of the spatial distribution for the autocatalytic reaction
Da51.0 (,Dac) at t50.0, 2.0, 4.0, 6.0, 8.0. The amplitude of the initi
perturbation is chosen to beC050.5 in order to make the initial deca
visible.
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
dynamics in the system. In this regime the transition from
initially uniform state to the final one is strongly nonunifor
in space. Since the spatial variation is essential, a co
grained model that was unable to resolve the filame
would produce very different outcomes.

The transition from the nonhomogeneous to homo
neous reaction in the case of the autocatalytic model for
creasing Da is clearly shown by the snapshots of the sp
distribution taken at the midpoint of the transition defined

the spatial mean concentrationC̄50.5 ~Fig. 3!. To character-
ize the change in the nonuniformity of the reactions as Da
varied we plotted the relationship between the first and
second moments (M1[^C& andM2[^C2&) of the chemical
distribution ~Fig. 4!. There are two extreme situations.
case of a spatially uniform system the averaging can be
nored and thusM25M1

2. For a strongly nonuniform distri-
bution with only two possible values 1 and 0~representing a
two-phase system with a very narrow transition zone! the
square for the second moment is irrelevant andM25M1 .
Figure 4 clearly shows the transition from the linear to t
quadratic relationship as Da is decreased.

The time dependence of the mean concentration,C̄
~equivalent here to the spatial average of the deviation fr
the initial state! is shown in Fig. 5 for different Da numbers
For large Da numbers, after an initial transient time, an
ponential growth can be observed with the growth rate in
pendent of the Damko¨hler number for both chemical models
This shows that the growth of the mean concentration
controlled by the stirring, that increases the length of
propagating filament. Note, that for the bistable system
localized perturbation with its spatial mean concentrat

r

u-

e

FIG. 2. Snapshots of the spatial distribution for the a
tocatalytic model for a supercritical Damko¨hler number,
Da57.0 at t50.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. Th
amplitude of the initial perturbation isC050.5. The
bistable model shows qualitatively similar behavior.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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well below the threshold,a, can flip the system to the othe
steady state. This is a strong example where spatial smo
ing does not work.

For Da,Dac the homogeneous dynamics is relevant.
the bistable system the mean concentration simply decay
zero exponentially as in the homogeneous system~for C̄
!1!

dC̄

dt
5Da

dF
dC̄

C̄52a DaC̄, C̄;e2a Da t. ~15!

In the autocatalytic model, the growth of the mean conc
tration depends on the Da number. When the time dep
dence is plotted against Dat ~Fig. 6! ~i.e., the time unit is the
chemical time! the curves corresponding to Da,Dac col-
lapse showing that in this regime the transition is indep
dent of the stirring rate, as expected for a spatially unifo
system, and the numerical results agree well with the s
tion obtained for the homogeneous system~9!. In this regime
the two reactants~A andB! are brought close to each oth
by the flow at a higher rate than they can react, theref
further increase of the mixing rate cannot enhance the
duction. The growth of the mean concentration is limited

FIG. 3. Snapshots of the spatial distribution for the autocatalytic mode
the midpoint of the transition@defined by ^C&(t)50.5# for Da535.0,
12.0, 8.40, 4.1, 2.9, 1.0.
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
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mixing ~transport! for supercritical Damko¨hler numbers and
limited by the chemical reaction~local dynamics! below the
critical value.

B. Open flow

In the open flow case we find again a transition a
critical value of the Damko¨hler number.

When the stirring is strong (Da,Dac) any localized per-
turbation dies out and both models return to the origi
state. There is no homogeneous transition for the autoc
lytic system as this would be incompatible with the inflo
boundary conditions. In other words, the perturbation is
pelled completely from the system~through the sinks! and
thus even the unstable basic state (C50) can be restored.

When Da.Dac , similarly to the closed flow case, th
perturbation produces a propagating filament. However
this case due to the continuous outflow and inflow the fi
ment cannot fill the domain uniformly. After a short transie
a nonuniform stationary state sets in, with the mixing zo
partly covered by a complex filamental structure~Fig. 7!. In
our case the stationary pattern varies periodically with
period of the flow. For the autocatalytic model, a small a

at

FIG. 4. The relationship between the first and the second moment of
spatial distribution for different values of Da.~a! Autocatalytic,~b! bistable.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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plitude perturbation is sufficient to initiate the propagati
filament, while in the bistable model only perturbatio
larger than the threshold,a, are able to trigger the transitio
to the nonuniform stationary state.~Furthermore an addi
tional condition for the existence of the nonuniform statio
ary state is again thata,0.5.!

One can observe that the nonuniform~periodic! station-
ary pattern follows the fractal unstable manifold of the no
escaping set formed by fluid particles that are trapped fore
in the mixing zone.34 The unstable manifold can be easi
visualized by simply following the evolution of an ensemb
of fluid elements~e.g., representing a droplet of dye! ad-
vected by the flow~Fig. 8!. For the autocatalytic reaction thi
has been already observed in a kinematic model wherB
particles are treated as individual tracers.35 As in the closed
flow case, the width of the filaments increases with the
number~Fig. 9!. The dependence on the Da number of t
total concentration~i.e., the area covered by the filaments! in
the stationary state is shown in Fig. 10. We find a continu
transition for the autocatalytic reaction (Dac52.3) and a dis-
continuous one for the bistable model (Dac524.2).

FIG. 5. The time dependence of the total concentration for different va
of Da, ~a! autocatalytic reaction and~b! bistable model. The dashed lin
indicates the rate of growth of the length of a filament due to advection
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
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IV. THE LAGRANGIAN FILAMENT SLICE MODEL

Here we introduce a reduced one-dimensional mode
order to explain the numerical results described in the p
ceding section. In the presence of chaotic transport fluid
ements are stretched into elongated filaments. This is w
known from numerical simulations and has been observe
laboratory experiments using dye droplets.16,32,36 In a two-
dimensional system, one can assign to any point of the fl
a convergent and a divergent direction associated with
eigenvectors corresponding to the negative and posi
Lyapunov exponents~2l and l! of the chaotic advection
These directions are tangent to the stable and unstable f
tions of the advection dynamics, respectively. Any advec
material line~e.g., isocontours of a conserved tracer! tends to
align along the unstable foliation in forward time, or alon
the stable foliation in backward time. Thus, the stirring pr
cess smooths out the concentration of the advected tr
along the stretching direction, whilst enhancing the conc
tration gradients in the convergent direction.

Let us now separate the original reaction–advectio
diffusion problem along the~Lagrangian! stretching and con-
vergent directions. In the stretching direction the perturbat

s
FIG. 6. Same as Fig. 5 with rescaled time. The dashed line shows the
dependence for the spatially homogeneous system.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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is spread by advective transport, that is the dominant pro
being much faster than diffusion. In the convergent direct
the formation of small scale structure indicates that all th
processes of reaction, advection, and diffusion are impor
and need to be considered together. The resulting equa

FIG. 7. Snapshots of the spatial distribution for the autocatalytic reactio
the open flow system for a supercritical Damko¨hler number, Da514.0
.Dac at t50.0, 1.0, 2.0, 3.0, 4.0, 5.0. The distribution att55.0 has al-
ready reached the time-periodic stationary state. The amplitude of the
turbation isC050.5. For subcritical Damko¨hler numbers the perturbation
dies out.~The bistable model shows similar behavior but for different valu
of Da.!

FIG. 8. The evolution of an ensemble of particles~e.g., representing a drop
let of dye! in the open flow system (t50.0, 2.0, 4.0, 6.0).
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
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determines the mean transverse profile of the filament
propagates along the divergent direction following the u
stable foliation.

Thus one expects that the locus of the center of the fi
ment can be obtained simply by advecting a material cont
starting in the region of the initial perturbation. This is co
firmed by the numerical simulations as shown in Fig. 11
the closed flow model, and is consistent with Fig. 8 for t
open flow system. An important difference between the t
is that while in the closed flow the contour gradually fills th
whole domain, in the open flow it draws out the unstab
manifold of the set formed by all nonescaping orbits. T
length of the contour increases exponentially~Fig. 12!,
L(t);exp(ut) with u'2.05. We note, that the contou
lengthening rate,u is always larger than the Lyapunov exp
nent ~l!, which represents the average growth rate of infi
tesimal line elements. This is because the instantane
stretching rate fluctuates and the increase of the total len
is dominated by the growth of a line elements that expe
ence a faster than average stretching. In dynamical syst
language the contour lengthening rateu is given by the to-
pological entropy17,37,38of the advection dynamics.

In the convergent direction we have the following on
dimensional equation for the average profile of the filame

in

er-

s

FIG. 9. Spatial distribution in the open flow for the autocatalytic model
the time-periodic stationary state for Da570.0, 24.0, 11.8, 4.0.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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]

]t
C2lx

]

]x
C5kF~C!1k

]2

]x2 C, ~16!

representing the evolution of a transverse slice of the fi
ment in a Lagrangian reference frame~i.e., following the
motion of a fluid element!. The second term on the left-han
side is a stretching term that takes into account the m
convergent flow andF is the original reaction term. The
stretching term in Eq.~16! can be interpreted as advection b
a pure strain flow along its convergent directionvx52lx.
In the two-dimensional problem the strength of stretch
fluctuates in space and time. To capture the average beh
this can be represented by a constant stretching rate,l, equal
to the Lyapunov exponent of the chaotic advection. The
fore the equation above can be regarded as a Lagran
mean field description. Equation~16! has also been studie
recently by McLeodet al.39 investigating the filament width
of oceanic plankton distributions.

Equation~16! is defined on2`,x,` with the bound-
ary conditions

C~x→6`!50,
dC

dx
~x→6`!50 ~17!

FIG. 10. The total concentration in the steady state for the open flow sy
as a function of the Damko¨hler number for the autocatalytic reaction~a! and
the bistable model~b!. The dashed line in the inset indicates the predic
asymptotic behaviorCtotal;Da(22D)/2 whereD is the fractal dimension of
the unstable foliation of the nonescaping set,D51.69.
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representing the assumption that most of the system is in
background state,C50, so that different parts of the filamen
are well separated from each other and they do not inter
The single filament approximation is not valid for the la
stage of the evolution when the filaments can overlap.

m

FIG. 11. Temporal evolution of a material line advected by the closed fl
The radius of the initial circular contour isr 50.06 and the figures corre
spond tot50.0, 0.5, 1.0, 1.5, 2.0, 2.5 as in Fig. 2, for comparison.

FIG. 12. The growth of the length of the contour shown in Fig. 11 a
function of time. The continuous line represents an exponential gro
;exp(2.05t).
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The homogeneous steady state,C(x)[0, is a trivial so-
lution of ~16! and~17!. Let us now consider the evolution o
a localized pulselike disturbance.~We use perturbations cen
tred at the origin, but it turns out that the asymptotic beh
ior is independent of the initial position of the perturbation!

For a nonreactive tracer (k50) the equation~16! has
asymptotic solutions~for large t! of the form of a Gaussian
pulse whose amplitude decays exponentially in time

C~x,t !;exp~2lt !expS 2
x2l

2k D . ~18!

The width of the Gaussian,l dif[Ak/l, is determined by the
balance between the strain and diffusion.

Let us now consider the case of a reactive tracerk
Þ0) without stretching (l50). It is well known that
reaction–diffusion systems with multiple equilibria ha
travelling front solutions connecting different stea
states.26,40,41The fronts move with a constant speedv0 with
no change of shape,C(x,t)5C(x2v0t).

The reaction–diffusion problem corresponding to the
tocatalytic model is known as the Fisher equation42 ~or
Kolmogorov–Petrovsky–Piskunov equation27 in the com-
bustion literature! and describes the propagation of a sta
phase~C51, componentB! into an unstable one~C50,
componentA!. Localized perturbations evolve into a pair
fronts moving away from the center with the asympto
speed,v052Akk.

For the bistable model~11! the velocity of the front join-
ing the two stable states,C(x→2`)51 andC(x→`)50,
is26,40,41

v05AkkE
0

1

F~C!dC5Akk

2
~122a!. ~19!

The sign of the above expression can be either positive
negative showing that the direction of the propagation
pends on the parametera. The single travelling front solution
can be found analytically26 as

C~x2v0t !5F11expS x2v0t

&
D G21

. ~20!

When the initial basic state isC50 a localized perturbation
can initiate a pair of propagating fronts moving away fro
each other only ifa,0.5, otherwise the direction of th
front propagation is such that the fronts approach each o
and the perturbation dies out. This explains the decay of
perturbations fora.0.5 in the two-dimensional simulation
independently of the stirring rate.

Thus, in the absence of stretching both type of syste
have travelling front solutions with the front speed prop
tional to Akk. A localized perturbation generates a pair
fronts moving in opposite directions away from the cent
~For bistable systems this happens only ifa,0.5.! For the
autocatalytic model the amplitude of the perturbation can
arbitrarily small, while it must exceed the thresholda in the
bistable case.
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In the presence of stretching,l.0 one expects that the
convergent flow will eventually stop the propagation of t
fronts at a pointx5w where the speed of the propagation
balanced by the advection

wl'Akk. ~21!

This gives an estimate for the width of the resulting filame
as

w;
Akk

l
5 l difADã, Dã[

k

l
, ~22!

where we have introduced the Lagrangian Damko¨hler num-
ber, Dã. This is defined on the basis of the Lyapunov tim
1/l, of the flow, representing the Lagrangian characteris
time scale of the two-dimensional advection problem. T
turns out to be more appropriate for the filamentation pr
lem than the definition~4! based on Eulerian characteristic
like the average flow velocityU.

The propagation velocity~21! is for an isolated front
only. Therefore we expect that the scaling for the filame
width ~22! is valid when the distance between the two fron
representing the edges of the steady filament, is sufficie
large compared to the diffusive scale,w@ l dif , that is Dã
@1.

Equation~16! can be nondimensionalized by using th
Lyapunov time,l21, as the time-scale unit and the diffusiv
scale,l dif , as the unit length

]

]t
C2x

]

]x
C5DãF~C!1

]2

]x2 C. ~23!

Since the one-dimensional problem is defined on an
bounded domain, the Pe´clet number does not appear in~23!.
For the two-dimensional problem the characteristic scale
the velocity field,L, is finite and this can be used to define
Lagrangian Pe´clet number based on the Lyapunov expone
of the flow as

Pẽ[
L2l

k
5S L

l dif
D 2

. ~24!

Using this the expression for the width of the filament can
rewritten as

w

L
;

Akk

lL
5ADã

Pẽ
. ~25!

The straining flow approximation can only be valid for sca
smaller thanL (w!L), thus~25! is expected to be correct in
the range 1!Dã!Pẽ.

In the open flow model in the stationary state the fi
ments cover a fractal set. For the parameter values use
our simulations the dimension of this was found to beD
'1.69. The area of the large concentration region can
obtained by using the dimensionless filament widthw/L as
the resolution when observing this region. Since the num
of boxes of sizew/L needed to cover the region is propo
tional to (w/L)2D,17 the areaA of this regions is

A

L2 ;S w

L D 22D

5S Dã

PẽD
(22D)/2

. ~26!
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FIG. 13. Steady solutions of the one-dimensional reaction–advection–diffusion problem, for different values of the Damko¨hler number~a! Dã580, 40,
20, 10, 5.0, 2.5, 1.25;~c! Dã5800, 400, 200, 100, 50, 25, 12.5, 11.0 and the dependence of the total concentration in the steady state as a function o˜, ~a!,
~b! autocatalytic,~c!,~d! bistable. The dashed line in the inset indicates the predicted asymptotic behaviorCtotal;ADã.
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This shows, that due to the overlaps the total area gr
more slowly with the Damko¨hler number than the area of
single isolated filament. An analogous scaling has been
tained for autocatalytic reaction on an open baker map
Ref. 43.

Numerical simulations of the reduced problem~23!
show that for both chemical models there is a critical va
of the Damko¨hler number. When Da˜.Dãc there exists a non
uniform steady solution to~23! centered on the origin~Fig.
13!. Otherwise all perturbations decay and the only ste
solution is the trivial one,C(x)[0. The width of the non-
uniform steady solution increases with Da˜, that appears to be
consistent with~22! for large Damko¨hler numbers. Numeri-
cal continuation of the nonuniform steady solution for d
creasing Da˜ confirms that this solution disappears at a critic
value. The transition is found to be continuous for the au
catalytic model and discontinuous for the bistable model~see
Fig. 13!. Let us now analyze the transition in the reduc
problem ~23! in more details for the two chemical model
separately.

A. Autocatalytic model

For the autocatalytic model the nonuniform solution a
proaches and coalesces with the uniform solution when˜c

is approached from above. When Da˜,Dãc localized pertur-
wnloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP 
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bations decay, showing that the uniform state,C(x)50, in
spite of being an unstable fixed point of the homogene
system is stable against localized disturbances. Thus stir
stabilizes the unstable equilibrium of the homogeneous s
tem by dispersing and diluting the perturbation. This is co
sistent with the behavior observed in the two-dimensio
simulations for subcritical Damko¨hler numbers, showing ho
mogenization and decay of the perturbation followed
growth only after the reactants were distributed uniformly
space. For supercritical Damko¨hler numbers the uniform so
lution is unstable against localized perturbations. Arbitrar
weak perturbations are sufficient to reach the nonunifo
steady state.

Just above the critical point, Da˜2Dãc!1, the amplitude
of the nonuniform solution is small and the chemical dyna
ics can be linearized about the background state

]C

]t
2x

]C

]x
5DãC1

]2C

]x2 . ~27!

This problem has been studied by Martin44 in the context of
plankton populations. Equation~27! has asymptotic solutions
of the form

C~x,t !;e2x2/2e(Dã21)t, ~28!
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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that decay in time when Da˜,1 and grows exponentially
moving out of the domain of validity of the linear approx
mation, otherwise.~The nonlinearity would eventually sto
the growth.! Thus we obtain the critical value for the aut
catalytic model, Da˜c51.

Close to the transition, Da˜511e,0,e!1, one can look
for a steady nonuniform solution of the form

C~x;e!5eC1~x!1e2C2~x!1¯ . ~29!

Substituting this into~16! for the term first order ine we
obtain

d2C1

dx2 1x
dC1

dx
1C150 ~30!

that has the solutionC15Ae2x2/2, whereA is a constant tha
can be determined from the equation for the terms sec
order ine,

d2C2

dx2 1x
dC2

dx
1C25C1

22C1 . ~31!

The left-hand side of the equation can be written as

d

dx S xC21
dC2

dx D5C1
22C1 . ~32!

Integrating both sides over the whole domain the left-ha
side vanishes, according to~17!, and an equation for the
constantA is obtained

E
2`

`

~C1
22C1!dx5A2Ap2AAp

2
50 ~33!

that givesA51/&. Thus, the steady solution close to th
transition point can be approximated as

C~x;e!5
e

&
e2x2/21O~e2!. ~34!

B. Bistable model

For the bistable case the transition at Da˜c is discontinu-
ous. The nonuniform solution disappears with a finite am
tude far from the uniform state. The uniform solution
stable for any Da˜ thus small perturbations decay indepe
dently of the Damko¨hler number. In the supercritical regim
the uniform and nonuniform stable solutions coexist sugg
ing the presence of a threshold for exciting the nonunifo
perturbation.

To investigate the transition further let us look for stea
solutions of Eq.~23!,

d2C

dx2 52DãF~C!2x
dC

dx
~35!

that are consistent with the boundary conditions~17!. Since
the nonuniform steady state is symmetric about the origi
is sufficient to consider the domain 0,x,`, with the con-
straints

C~x→`!→0,
dC

dx
~0!50. ~36!
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Note that, ifx is interpreted as time andC as a spatial coor-
dinate, the problem~35! is equivalent to the motion of a
particle in an asymmetric two-humped potential~Fig. 14!,

dV

dC
[DãC~a2C!~C21!,

~37!

V~C!52DãC2S 1

4
C21

~11a!

3
C2

a

2 D ,

under the effect of linear friction, with friction coefficien
increasing linearly in time. The two maxima of the potent
are at the stable fixed pointsC50 andC51 and the minima
is at C5a. The potential difference between the tw
maxima is proportional to Da˜. The particle trajectory satis
fying ~36! starts from the left slope of the higher potenti
hill @a,C(x50),1# with zero velocity and ends exactl
on the top of the lower hill. Thus the problem reduces
finding the appropriate values of the initial coordinate,C0

[C(x50). For initial conditionsC0P(a,1), C8(x50)50
the trajectory of the particle may either end in the poten
well C5a or may cross the smaller hill and escape to2`.
The trajectories corresponding to the nonuniform steady
lutions are at the boundary between these two types
asymptotic behavior.

We calculated numerically trajectories for a set of init
conditions in the rangeC0P(a,1) for a set of different val-
ues of the Damko¨hler number, Da˜P(0,40). The asymptotic
behavior of the trajectories is indicated on theC0– Dã plane
~Fig. 15!: blank,C(x→`)→a; black,C(x→`)→2`. The
required steady solutions are on the boundary of the
regions. The numerical results show that for small Da˜ there
is no such boundary and a solution of the type~36! does not
exist. In the particle analogy the interpretation of this is th
the difference in the height of the two hills is not sufficient
large to compensate for the energy dissipated by fricti
thus the particles cannot escape. When Da˜ is increased above
the critical value Da˜c there are two solutions. If the hill a
C51 is high enough there are initial conditions for whic
the particles have sufficient energy to cross the potential
rier. Clearly, particles with initial conditions below the heig
of the lower potential hill are still trapped in the potenti

FIG. 14. The two-humped potentialV(C) for Dã51 anda50.25.
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well. Also, particles started from a point very close to the t
of the higher hill are unable to escape since they may sp
very long time in the neighborhood of the stationary po
and go through the potential well at a late time when
friction is strong. Thus, for Da˜,Dãc the initial conditions
C0

escapefor which particles escape to infinity are in an th
interval of the form

a,C0,1~Dã!<C0
escape<C0,2~Dã!,1, ~38!

where C0,1(Dã) are C0,2(Dã) are initial conditions corre-
sponding to steady nonuniform solutions of~16!. As the
Damköhler number is decreased the two solutions appro
each other and disappear at Da˜c511.0.

The trajectory starting fromC(x50)5C0,2(Dã) clearly
corresponds to the steady nonuniform solution found in
numerical simulations of the time-dependent problem. T
solution corresponding to the lower branch,C(x50)
5C0,1(Dã), however, is not found as an attractor of the tim
dependent problem. This suggests that this is an unst
solution playing the role of a threshold separating the ba
of attraction of the uniform and non-uniform stable solution
@It can be shown that all initial conditions that are abo
~below! this separating solution everywhere, converge to
nonuniform~uniform! steady state. This, of course, does n
say anything about initial conditions partly below and par
above the separating solution.#

V. SUMMARY AND DISCUSSION

The one-dimensional Lagrangian filament model~16!
clearly explains the qualitative features of the tw
dimensional numerical results. It shows how a steady fi
ment profile can arise as a result of the interaction betw
the propagation of a reaction–diffusion front and stretch
due to chaotic advection. The disappearance of the filam
type solution for subcritical Damko¨hler numbers explains th
transition observed in the two-dimensional simulations. T
advective propagation of the filament along the unstable
liation of the chaotic advection explains the exponen

FIG. 15. The shaded area shows initial conditions resulting in the escap
the particle from the potential well. The boundary of the shaded area co
sponds to the steady filaments solutions. Note, that the filament solu
disappears for subcritical Damko¨hler numbers (Da˜511.0).
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growth of the mean concentration. In principle, these res
could be used as a numerical technique for obtaining
approximate spatial distribution of the chemical compone
by combining a two-dimensional contour–advection calcu
tion with the information about the filament width obtaine
from the steady solution of the one-dimensional model.

In order to compare the critical Damko¨hler numbers pre-
dicted by the one-dimensional mean strain model with
ones obtained from the direct numerical simulations we c
culate the Lagrangian Damko¨hler numbers corresponding t
the two-dimensional problem. The Lyapunov exponents
the advection in the two model flows was found to
lclosed'1.66 andlopen'2.19. The critical values of the La
grangian Damko¨hler number based on these Lyapunov exp
nents are presented in Table I and show a very good ag
ment.

In our analysis we neglected the fluctuations of t
stretching rate. In reality there is a distribution of stretchi
rates. The effect of this is visible in the numerical simu
tions showing that the width of the filament slightly fluctu
ates in space and time. Also the direction of the stretch
fluctuates and foldings of the filament may lead to large c
vatures whose effect is not captured by our one-dimensio
description. Another effect is the nonuniform density of t
unstable foliation pointed out by Alvarezet al.38 Thus the
advected filament can overlap with itself well before it fil
the whole domain. Some regions of the flow are filled wh
others are still empty.

Here we investigated only reactive systems described
the distribution of a single species. We expect, however,
the basic phenomena described in this paper remain valid
multicomponent reactive systems that may have a numbe
different chemical time scales. One example of this type
the case of excitable systems26,41,45under stirring by a cha-
otic flow discussed in Ref. 46. Excitable systems have t
different time scales corresponding to fast and slow com
nents. Although these systems only have a single~stable!
steady state, the rest state, they also have a metastabl
cited state that persists for a finite time only. Excitable s
tems under stirring exhibit similar behavior to the one p
sented here, including advective propagation in form o
steady excited filament and the existence of a criti
Damköhler number. The one-dimensional excitab
reaction–diffusion systems have travelling pulse solutio
that in the presence of stretching leads to the appearance
steady excited filament solution. This can be simple unim
dal, as in our case, but it can also have a bimodal struc
with the central part of the filament returned to the rest sta
Thus the existence of an extra chemical time scale in
system allows for somewhat more complex structures an

of
e-
n

TABLE I. The critical values of the Lagrangian Damko¨hler number for the
two-dimensional simulations and for the one-dimensional single filam
model

Closed Open 1D model

Autocatalytic '1.2 1.05 1.0
Bistable '12.0 11.06 11.0
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further transition in the large Da number range, being a tr
sition from coherent to noncoherent excitation of the syste

A nice example of an advectively propagating perturb
tion, of the kind described in this paper, has been obser
recently in a so-called ocean fertilization experimen47

where the injection of a trace element affecting the plank
ecosystem triggered a phytoplankton bloom in the form of
elongated filament, observed on satellite images. The
sponse of plankton ecosystem models to such perturbatio
the presence of stirring has been studied in Ref. 48. We
gest that similar phenomena could also be investigated
laboratory experiments.
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