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We study the evolution of a localized perturbation in a chemical system with multiple homogeneous
steady states, in the presence of stirring by a fluid flow. Two distinct regimes are found as the rate
of stirring is varied relative to the rate of the chemical reaction. When the stirring is fast localized
perturbations decay towards a spatially homogeneous state. When the stirring isosltast
reaction localized perturbations propagate by advection in form of a filament with a roughly
constant width and exponentially increasing length. The width of the filament depends on the
stirring rate and reaction rate but is independent of the initial perturbation. We investigate this
problem numerically in both closed and open flow systems and explain the results using a
one-dimensional “mean-strain” model for the transverse profile of the filament that captures the
interplay between the propagation of the reaction—diffusion front and the stretching due to chaotic
advection. ©2002 American Institute of Physic§DOI: 10.1063/1.1476949

The problem of chemical or biological activity in fluid Equation(1) can be nondimensionalized by the transfor-

flows has recently become an area of active researéi®  mations

Apart from theoretical interest this problem has a num-

. .19 . 0,11 . . X tU U ki

ber of industrial® and environmental®*! applications. X——, to— vo— k——,

One of the simplest manifestations of nonlinear behavior L L U Ky

in reaction—diffusion systems is the possibility of travel- F(Cq,....CN) 2

ling front solutions. In this paper we study the effect of }](Cl,...,CN)—>k—,

chaotic mixing, by an unsteady laminar flow, in reaction- 1

diffusion systems supporting front propagation. whereL andU are the characteristic length scale and veloc-
ity of the flow and one of the reaction ratéssk,, is used to
define a characteristic chemical time scale. Thus, the nondi-

I. INTRODUCTION mensional problem can be written as

Let us considerN interacting chemical or biological d _,
components, with dimensionless concentratid®gr,t),i GtV - VCi=Dafi(Cy,...Cn) +PETAC, (3)
=1,..N, advected by an incompressible fluid flow{r,t),
that is assumed to be independent of the concentrations. TH41€re
spatiotemporal dynamics of the fields is governed by the set kL LU
of reaction—advection—diffusion equations Da= - and Pe= P (4)

J are the Damkbler and the Paet number, respectively. The
GtV - VCi=F(Cq,.. Cniky,. k) +<AC;, Damkihler number®° Da, characterizes the ratio between
(1) the advective and the chemic@r biologica) time scales.
Large Da corresponds to slow stirring or equivalently fast
where the functionsr; describe the interactions between the chemical reactions and vice versa. ThelBenumber, Pe, is
different components. These may be chemical reactions or, ia measure of the relative strength of advective and diffusive
the case of biological population®.g., different plankton transport. We are going to consider the case of large Pe num-
specie} they may represent growth, grazing, reproductionber, typical in many applications, when advective transport
death, predation, efé:'® The parameterk; are the reaction dominates except at very small scales.
rates characterizing the speed of the chemical or biological In applications it may be useful to understand the behav-
interactions andk is the diffusivity, assumed to be the same ior of a chemical system for a range of stirring speeds when
for all components. We assume that the flow is laminamther parameterge.g., reaction rate constants, diffusiyity
(smooth and time-dependent implying  chaotic are kept unchanged. Although the stirring speed affects both
advection*~1¢i.e., fluid elements separate exponentially at anondimensional numbers i@), its variation leaves the fam-
rate given by the Lyapunov exponéft), of the advection ily of curves on the Da-Pe plane defined by DaPe
dynamics. =constant invariant. For this case the appropriate nondimen-
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sional equation could be obtained by dividing both sides of In the following section we describe the models used for

(3) by Da, implying the use of the chemical time scalé,1/ the reaction dynamics and for the flow, followed by the pre-

as the time unit. Then the two nondimensional parametersentation of explicit two-dimensional numerical simulations

would be Da and DaPekL?/ k, where the latter, represent- in Sec. Ill. Then, in Sec. IV we introduce and investigate a

ing the ratio of the diffusive and the chemical time scales, isone-dimensional reduced model and show that this may be

independent of the stirring rate. used successfully to interpret the two-dimensional numerical
In this paper, we study the behavior of the chemicalsimulations. The paper ends with a summary and discussion.

system for different Damkder numbers, when the Blet

number_ i§ kept fixed. Strigtly speak_ing, this corresponds tq; THE MODELS

the variation of the chemical reaction rates and cannot be

achieved by changing the stirring rate alofxcept if the For the reaction term7, we use two different models

d|ffus|v|ty is also Changed in order to keep Pe Congtant with muItIpIe equilibria with quadl’atic and cubic nonlinear-
For simplicity, in the following we consider the case of ity. The first is an autocatalytic reaction, a generic model for

two-dimensional flow only, since it is computationally the propagation of a stable phase into an unstable one. The

cheaper and easier to visualize. This is directly relevant t&econd model is a bistable system and we study the trigger-

certain geophysical problems where density stratificatiodnd of a transition from one stable state to the other by a

makes the flow quasi-two-dimensioné.g., stratospheric localized perturbation.

chemistry, plankton in the ocean surface layand is also (1) Autocatalytic reaction—Let us consider the reac-

accessible to laboratory experimefising soap-films, strati- tion A+B—2B, with the corresponding rate equations for

fied fluids, etc.. However we believe that many of the results the spatially uniform system

presented in this paper can be straightforwardly extended to dC, dCs

three-dimensional systems. F T rCaCsg, rTa rCaCsg.- 7
With the above assumptions the problem defined by Eq.

(3) is still very general until the interaction termg; are  Observing thatC,+Cg (the total humber of molecule&

specified. Previous work has investigated the spatial stru@ndB) is conserved by the reaction, we can eliminggeand

ture of the chemical fields in the case of chemical dynamicsharacterize the state of the system with a new vari@ble

with a single stable local equilibrium concentration, that is a=Cg/(Ca+Cg) (0<C<1) representing the proportion of

function of the spatial coordinat8-2*Here we consider the componenB, that evolves according to

case of chemical systems that in the spatially homogeneous

case would have multiple steady state solutions. There are — =kZF(C)=kC(1-C), 8

many examples of multiple steady states in interacting

chemical or biological systems, in models of atmospheriavherek=r(C,+Cpg).

chemistry?* or in the dynamics of plankton populatiotfs?® There are two steady state§) C=0 (componentA
Perhaps the simplest is the autocatalytic reactfonB only). This is unstable, since the addition of a small amount
—2B. of B leads to the complete consumption Afthrough the

Thus we assume that the dynamical system that deautocatalytic reactior(ji) C=1 (componenB only). This is
scribes the evolution of the spatially uniform chemical sys-stable—a small amount & is quickly transformed back to

tem, C;(r,t)=C;(t), B.
The temporal evolution of the spatially homogeneous
ﬁ=Da]~‘~(C1 Cy) (5) system can be obtained by integratif® as
dt nee
cn=l1 1-C(0)\ _,, -1 g
has more than one, stable or unstable, fixed point, or equiva- (=14 C(0) ' ©
lently the system of equations whereC(0) is the initial proportion of componers.
F(C* =0 6 In the numerical experiments, the initial state is the un-

stable phaseC=0, perturbed by a localized pulse of the

has multiple roots in the positive quadrafince the con- form
centration fields must be positive everywhere, only the fixed 24?82
points withC* =0 are relevant. Clxy,t=0)=Coe *VI7, (10

We study the response of the system, initially in one ofwhereCy<1 and <1, representing a small dilute patch of
the uniform steady states, to a localized perturbation. Byhe catalyst, componef.
localized we mean, that the the spatial extent of the pertur- The reaction tern{8) can also be interpreted as the, so-
bation, 8, is much smaller than the characteristic length scalealled, logistic growth of a populatiéh modelling the
of the velocity field, 5<1. The evolution of the chemical growth of the population limited by the availability of the
fields is investigated for different values of the Darhley  resources(e.g., nutrients implying that the concentration
number in both closed flow and open flow systems. Thesaturates aC=1. Furthermore, the same reaction term ap-
cases of stable and unstable initial uniform states will bepears in the Kolmogorov—Piskunov—PetrovskiKPP)
considered separately, each represented by a simple modsjuatio’ used in combustio??® which describes the
system. propagation of a flame front separating fréahburned pre-
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mixed reactants@=0) and burned gase€&1). Thus our w(z)=—(Q+iK)In|z—z, (13
numerical experiments can also be regarded as representin

the evolution of a plankton bloom stirred by ocean current . .
or of a flame embgdded in a laminar flow. 4 of the sink andQ andK are the sink-strength and vortex-

(2) Bi-stable system—As a second model we use a sys- strength, re_spective_ly. The c_:o_rre_sponding velo_city f_ield_ in
tem with two stable states defined by the reaction equationpmar coordinates with the origin fixed to the active sink is

Q K
(jj—i::kf(C):kC(a—C)(C—l), O<a<l. (1) =T U= TENOCX)THY Y (14

erez=x+iy is the complex coordinate, is the position

The half distance separating the two sinks is assumed to be
unity (xs=0)ys==*1). The sinks are alternately opened for
. aﬁqual times and the period of the flow is the time unit. The

reaction scheme, it is the simplest possible model for multiinflow concentration at the boundaries of a square domain is

stability. We expect that more realistic chemical and biologi-kept c(;)nstant it t?er[\;alﬂz (c)orrisgondlng? Oto_tg%mmal back-
cal systems with multiple stable steady states would sho round concentratiorG:(* 3.0y) = C(x, *3.0)=0.0.

similar behavior. We start the system in the stable uniform FOT both cI_osed _anq open flows we integrate the
state,C=0, and a localized perturbation of the forh0) is advection—reaction—diffusion problem for the autocatalytic

added. Now the amplitude of the perturbation is chosen sucﬁnd the blstable model on a 1000000 [attlce using a semi-
to exceed the threshold, (we useC,=1.0). [Since the ini- _agrang|an scheme.' The value OT thec_lée P“mber is Pe
tial state is stable, any perturbation that is below the thresh- 1000, and the Damider number is varied in a range from
old everywhereC(x,0)<«, dies out] zero to few hundred.

We note that whel€ = « is chosen as an initial state the
bistable model shows qualitatively similar behavior to the; NUMERICAL RESULTS
autocatalytic model.

Stirring will be modelled by two simple time-periodic A Closed flow
model velocity fields, representing a closed and an open flow e find for both chemical models two distinct regimes
system, respectively. We stress, however, that the results dgeparated by a critical Damkter number, Da. The critical

scribed in this paper are valid for a wide class of two-values are Da~2.0 for the autocatalytic reaction and Da
dimensional time-dependent laminar flows, since the only~20.0 for the bistable model.

important assumption is the chaotic motion of fluid elements.  |n the slow reaction/fast stirring regime (Bda,), in

For the closed flow we choose a sinusoidal shear flowhoth models the initial perturbation quickly decays towards a
with the direction of the shear periodically alternating alonghomogeneous stat&ig. 1). In the case of the autocatalytic
thex andy axis”**° The velocity field is reaction the homogenization of the perturbation is followed

1 . by a spatially uniform transition to the stable equilibrium,

vx(Xy,) =AB(z —tmod Dsin(2my+ ), C=1, as in a reactor with initially premixed components.
(12 This is because the original uniform state is unstable, and
cannot be restored by the homogenization of the perturba-
defined on a doubly periodic square domain of unit len@th, tion, since the homogenized state still deviates slightly from
is the Heaviside step function ardis a parametetwe use the unstable equilibrium. In the bistable system the perturba-
A=0.7), that controls the chaotic behavior of the flow. To tion is dispersed and the system simply returns to the unper-

avoid transport barrier&lue to KAM toril’ typically present turbed initial stateC=0. In this regime, the chemical reac-
in periodically driven conservative systentbe periodicity  tion is too slow to sustain the localized perturbation that is

is broken by using a random phasg,, different in each diluted by the strong stirring. Note that for both chemical
time period. models the final state would be the same for a spatially uni-

We also consider open flow systems in which fluid con-form perturbation with the same spatial mean. Thus, a coarse
tinuously flows in and out a finite mixing zone. Such systemgrained model could, at least qualitatively, reproduce the
are relevant for certain chemical reactors and also in somevolution of the system.
geophysical problems. Advection in this type of open flows  When Da>Da. the localized perturbation may persist
has been shown to be governed by a chaotic scattering tymand propagate in the form of a filament with a roughly con-
escape process generating fractal patterns of the advectsthnt width and rapidly increasing lengthig. 2). This con-
tracers>:32 tinues until the filaments cover the whole domain and finally

As an example of an open flow system we use a velocitghe system becomes uniform aga@¥ 1. This occurs in all
field modelling the flow around two alternately openedcases in the autocatalytic case, but onlyaif 0.5 in the
point-sinks in an unbounded two-dimensional dontdi#f.  bistable case. Ifa>0.5 a localized perturbation in the
The fluid particles approach the mixing zone from infinity bistable case decays. The width of the propagating filaments
and leave the domain through one of the sinks. The velocityncreases with Da. We note, that the average profile of the
field is composed by the superposition of a point-vortex andilament (width, amplitude is apparently independent of the
a point-sink, centered on the active sink. The complex potendetails of the initial perturbation, indicating that it is deter-
tial corresponding to the vortex-sink is mined by the interplay between the chemical and transport

The stable fixed points ai@=0 andC=1, and their basins
of attraction are separated by the unstable fixed pdint,

vy(X,y,t)=A0(t mod 1 3)sin(2mX+ ¢; 1),
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dynamics in the system. In this regime the transition from the
initially uniform state to the final one is strongly nonuniform

in space. Since the spatial variation is essential, a coarse
grained model that was unable to resolve the filaments,
would produce very different outcomes.

The transition from the nonhomogeneous to homoge-
neous reaction in the case of the autocatalytic model for de-
creasing Da is clearly shown by the snapshots of the spatial
distribution taken at the midpoint of the transition defined by

the spatial mean concentratiGn= 0.5(Fig. 3). To character-

ize the change in the nonuniformity of the reactions as Da is
varied we plotted the relationship between the first and the
second momentsM;=(C) andM,=(C?)) of the chemical
distribution (Fig. 4). There are two extreme situations. In
case of a spatially uniform system the averaging can be ig-
nored and thusv,=M?3. For a strongly nonuniform distri-
bution with only two possible values 1 and@presenting a
two-phase system with a very narrow transition Zotre
square for the second moment is irrelevant &hg=M ;.
Figure 4 clearly shows the transition from the linear to the
quadratic relationship as Da is decreased.

The time dependence of the mean concentration,
(equivalent here to the spatial average of the deviation from
the initial statg is shown in Fig. 5 for different Da numbers.
For large Da numbers, after an initial transient time, an ex-
ponential growth can be observed with the growth rate inde-
pendent of the Damkder number for both chemical models.
This shows that the growth of the mean concentration is
FIG. 1. Snapshots of the spatial distribution for the autocatalytic reaction fogontrolled by the stirring, that increases the length of the
Da=1.0 (<Dg,) att=0.0, 2.0, 4.0, 6.0, 8.0. The amplitude of the initial propagating filament. Note, that for the bistable system a

perturbation is chosen to b&,=0.5 in order to make the initial decay . . . . .
visible. localized perturbation with its spatial mean concentration

FIG. 2. Snapshots of the spatial distribution for the au-
tocatalytic model for a supercritical Dantker number,
Da=7.0 att=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. The
amplitude of the initial perturbation i€,=0.5. The
bistable model shows qualitatively similar behavior.

Downloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



430 Chaos, Vol. 12, No. 2, 2002 Neufeld, Haynes, and Teél

g T 1 1 1
0 01 02 03 04 05 06 07 08 O 1
(a) <C>

FIG. 3. Snapshots of the spatial distribution for the autocatalytic model at i

the midpoint of the transitior{defined by (C)(t)=0.5] for Da=35.0, 0 WL L L 1 L 1 L L

12.0, 8.40, 4.1, 2.9, 1.0. 0 01 02 03 04 05 06 07 08 0. 1
(b) <C>

FIG. 4. The relationship between the first and the second moment of the

. spatial distribution for different values of Déa) Autocatalytic,(b) bistable.
well below the thresholdg, can flip the system to the other P @ ytic,(0)

steady state. This is a strong example where spatial smooth-

ing does not work. o mixing (transport for supercritical Damkbler numbers and
For Da<Da, the homogeneous dynamics is relevant. Inlimited by the chemical reactiofiocal dynamics below the

the bistable system the mean concentration simply decays itical value.

zero exponentially as in the homogeneous systéan C

<1) B. Open flow
In the open flow case we find again a transition at a
dc dF_ . 5 critical value of the DamKaler number.
T Da—C=—aDaC, C~e “Pa. (15) When the stirring is strong (DaDa,) any localized per-
dcC turbation dies out and both models return to the original

state. There is no homogeneous transition for the autocata-
In the autocatalytic model, the growth of the mean concenlytic system as this would be incompatible with the inflow
tration depends on the Da number. When the time deperboundary conditions. In other words, the perturbation is ex-
dence is plotted against DdFig. 6) (i.e., the time unitis the pelled completely from the systefthrough the sinksand
chemical time the curves corresponding to Bda, col-  thus even the unstable basic sta@=0) can be restored.
lapse showing that in this regime the transition is indepen- When Da>Da;, similarly to the closed flow case, the
dent of the stirring rate, as expected for a spatially uniformperturbation produces a propagating filament. However, in
system, and the numerical results agree well with the soluthis case due to the continuous outflow and inflow the fila-
tion obtained for the homogeneous systé@n In this regime  ment cannot fill the domain uniformly. After a short transient
the two reactant$A andB) are brought close to each other a nonuniform stationary state sets in, with the mixing zone
by the flow at a higher rate than they can react, thereforpartly covered by a complex filamental structdfég. 7). In
further increase of the mixing rate cannot enhance the prosur case the stationary pattern varies periodically with the
duction. The growth of the mean concentration is limited byperiod of the flow. For the autocatalytic model, a small am-
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. . . FIG. 6. Same as Fig. 5 with rescaled time. The dashed line shows the time
FIG. 5. The time dependence of the total concentration for different Value?iependence for the spatially homogeneous system.
of Da, (a) autocatalytic reaction anth) bistable model. The dashed line
indicates the rate of growth of the length of a filament due to advection.

IV. THE LAGRANGIAN FILAMENT SLICE MODEL

plitude perturbation is sufficient to initiate the propagating Here we introduce a reduced one-dimensional model in
filament, while in the bistable model only perturbationsorder to explain the numerical results described in the pre-
larger than the threshold, are able to trigger the transition ceding section. In the presence of chaotic transport fluid el-
to the nonuniform stationary staté-urthermore an addi- ements are stretched into elongated filaments. This is well
tional condition for the existence of the nonuniform station-known from numerical simulations and has been observed in
ary state is again that<0.5.) laboratory experiments using dye dropl&s$2*6in a two-
One can observe that the nonunifofperiodig station-  dimensional system, one can assign to any point of the flow
ary pattern follows the fractal unstable manifold of the non-a convergent and a divergent direction associated with the
escaping set formed by fluid particles that are trapped forevezigenvectors corresponding to the negative and positive
in the mixing zone”* The unstable manifold can be easily Lyapunov exponent$—\ and \) of the chaotic advection.
visualized by simply following the evolution of an ensemble These directions are tangent to the stable and unstable folia-
of fluid elements(e.g., representing a droplet of dyad- tions of the advection dynamics, respectively. Any advected
vected by the flowFig. 8). For the autocatalytic reaction this material line(e.g., isocontours of a conserved tradends to
has been already observed in a kinematic model wiBere align along the unstable foliation in forward time, or along
particles are treated as individual trac&rds in the closed the stable foliation in backward time. Thus, the stirring pro-
flow case, the width of the filaments increases with the Dacess smooths out the concentration of the advected tracer
number(Fig. 9). The dependence on the Da number of thealong the stretching direction, whilst enhancing the concen-
total concentratiorfi.e., the area covered by the filamerits  tration gradients in the convergent direction.
the stationary state is shown in Fig. 10. We find a continuous Let us now separate the original reaction—advection—
transition for the autocatalytic reaction (3a2.3) and a dis- diffusion problem along th@_agrangian stretching and con-
continuous one for the bistable model (3&24.2). vergent directions. In the stretching direction the perturbation

Downloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



432 Chaos, Vol. 12, No. 2, 2002 Neufeld, Haynes, and Teél

FIG. 7. Snapshots of the spatial distribution for the autocatalytic reaction in
the open flow system for a supercritical Darhler number, Da 14.0
>Dg, att=0.0, 1.0, 2.0, 3.0, 4.0, 5.0. The distribution tat5.0 has al-
ready reached the time-periodic stationary state. The amplitude of the per
turbation isC,=0.5. For subcritical DamKkder numbers the perturbation
dies out.(The bistable model shows similar behavior but for different values
of Da)

is spread by advective transport, that is the dominant process

being much faster than diffusion. In the convergent directiorFIG. 9. Spatial distribution in the open flow for the autocatalytic model in
the formation of small scale structure indicates that all threéhe time-periodic stationary state for 830.0, 24.0, 11.8, 4.0.
processes of reaction, advection, and diffusion are important

and need to be considered together. The resulting equation

. —_ determines the mean transverse profile of the filament that
.1 | .1 | propagates along the divergent direction following the un-
stable foliation.
Tr T Tr T Thus one expects that the locus of the center of the fila-
- 0F ° 4 = of - ment can be obtained simply by advecting a material contour
L | L ) starting in the region of the initial perturbation. This is con-
firmed by the numerical simulations as shown in Fig. 11 for
2r i 2r 1 the closed flow model, and is consistent with Fig. 8 for the

3 L 3 — open flow system. An important difference between the two
R o is that while in the closed flow the contour gradually fills the
whole domain, in the open flow it draws out the unstable
manifold of the set formed by all nonescaping orbits. The
3 T T T 7 3 L length of the contour increases exponentiallyig. 12,

. L(t)~exp() with #~2.05. We note, that the contour
lengthening rated is always larger than the Lyapunov expo-
nent(\), which represents the average growth rate of infini-

> or 1>°r 1  tesimal line elements. This is because the instantaneous
1 \@ . 1 . stretching rate fluctuates and the increase of the total length
oL i oL i is dominated by the growth of a line elements that experi-
o o ence a faster than average stretching. In dynamical systems
s 2 4 0 1 2 3 4 2 4 o 1 2 3 language the contour lengthening ratés given by the to-
x x pological entropy’*8of the advection dynamics.
FIG. 8. The evolution of an ensemble of particlesy., representing a drop- In the convergent direction we have the following one-
let of dye) in the open flow systemt&0.0, 2.0, 4.0, 6.0). dimensional equation for the average profile of the filament
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0 0 100 200 300 400 500 500 FIG. 11. Temporal evolution of a material line advected by the closed flow.
(b) Da The radius of the initial circular contour is=0.06 and the figures corre-

spond tot=0.0, 0.5, 1.0, 1.5, 2.0, 2.5 as in Fig. 2, for comparison.
FIG. 10. The total concentration in the steady state for the open flow system
as a function of the Damkder number for the autocatalytic reactita and

the bistable modelb). The dashed line in the inset indicates the predicted . . L.
asymptotic behavioC,,,~Da? 22 whereD is the fractal dimension of representing the assumption that most of the system is in the

the unstable foliation of the nonescaping &t 1.69. background stat&; =0, so that different parts of the filament
are well separated from each other and they do not interact.
The single filament approximation is not valid for the late

J J 52 stage of the evolution when the filaments can overlap.
N — - — + -
G A5 C=KFC)+ k- C, (16)

representing the evolution of a transverse slice of the fila- 10000 77T T T 1

ment in a Lagrangian reference franiee., following the

motion of a fluid element The second term on the left-hand

side is a stretching term that takes into account the mean

convergent flow andF is the original reaction term. The

stretching term in Eq16) can be interpreted as advection by

a pure strain flow along its convergent directiof= — A X.

In the two-dimensional problem the strength of stretching |

fluctuates in space and time. To capture the average behavior 10 k

this can be represented by a constant stretchingxatgual

to the Lyapunov exponent of the chaotic advection. There- L

fore the equation above can be regarded as a Lagrangian 1 F

mean field description. Equatidqi6) has also been studied

recently by McLeocet al 2 investigating the filament width

of oceanic plankton distributions. 0.1
Equation(16) is defined on— o <x< e with the bound-

ary conditions

1000

100 ¢

L(t)

0 05 1 15 2 25 3 35 4 45 5
t

dc FIG. 12. The growth of the length of the contour shown in Fig. 11 as a
C(x—*0)=0, —(X—=*0)=0 (17) function of time. The continuous line represents an exponential growth
" odx ~exp(2.0%).

Downloaded 21 Mar 2006 to 128.239.130.240. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



434 Chaos, Vol. 12, No. 2, 2002 Neufeld, Haynes, and Teél

The homogeneous steady stai€x)=0, is a trivial so- In the presence of stretching>0 one expects that the
lution of (16) and(17). Let us now consider the evolution of convergent flow will eventually stop the propagation of the
a localized pulselike disturbanc@Ve use perturbations cen- fronts at a pointk=w where the speed of the propagation is
tred at the origin, but it turns out that the asymptotic behav-balanced by the advection
ior is independent of the initial position of the perturbatjon.

For a nonreactive tracek&0) the equation(16) has W~ k. (22)
asymptotic solutiongfor larget) of the form of a Gaussian This gives an estimate for the width of the resulting filament
pulse whose amplitude decays exponentially in time as

X2\ Vkk —  k
C(x,t)~exp(—mexp( - Z) (18) w~——=lqVDa Da=, (22

) ] ] ] where we have introduced the Lagrangian Dahikonum-
The width of the Gaussiamy;= \/m is determined by the her D3 This is defined on the basis of the Lyapunov time,
balance between the strain and diffusion. . 1/\, of the flow, representing the Lagrangian characteristic
Let us now consider the case of a reactive trader ( {ime scale of the two-dimensional advection problem. This
#0) without stretching X=0). It is well known that ;g out to be more appropriate for the filamentation prob-
reaction—diffusion systems with multiple equilibria have o than the definitiorf4) based on Eulerian characteristics
travellmg 41front solutions connecting different  steady |ike the average flow velocity.
states’®“**!The fronts move with a constant speeglwith The propagation velocity21) is for an isolated front
no change of shap&(x,t)=C(x—wvot). _ only. Therefore we expect that the scaling for the filament
The reaction—diffusion problem corresponding 10 the auyigth (22) is valid when the distance between the two fronts,
tocatalytic model is known as the Fisher equaffofor representing the edges of the steady filament, is sufficiently

Kolmogorov—Petrovsky—Piskunov equaﬁériq the com-  |3rge compared to the diffusive scale>lg;, that is Da
bustion literaturg and describes the propagation of a stables, 1

phase(C=1, componentd) into an unstable onéC=0, Equation(16) can be nondimensionalized by using the
componentA). Localized perturbations evolve into a pair of Lyapunov time) ~%, as the time-scale unit and the diffusive
fronts moving away from the center with the asymptotic g5/ I, as the unit length

speedp =2 kx. ,

For the bistable mod€lL1) the velocity of the front join- a9 d
ing the two stable state§;(x— —=)=1 andC(x—)=0, at c anC—ﬁ}‘(C)Jr axzc' (23
1o26,40,41
is=040:

Since the one-dimensional problem is defined on an un-
bounded domain, the Blet number does not appear(23).
1 Kk . . .
Vo= /kkf F(C)dC= A /_(1_2a). (19 For the two-dimensional problem the characteristic scale of
0 2 the velocity field,L, is finite and this can be used to define a

Lagrangian Pelet number based on the Lyapunov exponent
The sign of the above expression can be either positive asf the flow as

negative showing that the direction of the propagation de-

2 2
pends on the parameter The single travelling front solution Pe= L_)‘ = (L) (24)
can be found analyticalﬁ‘? as K laif)
1 Using this the expression for the width of the filament can be

X—vot ;
1+ ex 0 (20) rewritten as
V2

w  Vkk Da
itial basi - - - L™~ Vee @9
When the initial basic state i§=0 a localized perturbation A e

can initiate a pair of propagating fronts moving away fromtpe straining flow approximation can only be valid for scales

front propagation is such that the fronts approach each othghe range xDa<Pe

and the perturbation dies out. This explains the decay of the | the open flow model in the stationary state the fila-
perturbations for>0.5 in the two-dimensional simulations ments cover a fractal set. For the parameter values used in
independently of the stirring rate. our simulations the dimension of this was found to be
Thus, in the absence of stretching both type of systems.1 g9, The area of the large concentration region can be
have travelling front solutions with the front speed propor-gptained by using the dimensionless filament width. as
tional to vkx. A localized perturbation generates a pair of the resolution when observing this region. Since the number
fronts moving in opposite directions away from the center.gf poxes of sizew/L needed to cover the region is propor-

(For bistable systems this happens onlyxif0.5) For the  tional to w/L) 2, the areaA of this regions is
autocatalytic model the amplitude of the perturbation can be

C(X_Uot):

arbitrarily small, while it must exceed the thresheldn the A (w sz: Da) (2= (26)
bistable case. L% L Pe
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FIG. 13. Steady solutions of the one-dimensional reaction—advection—diffusion problem, for different values of thdlBamkober(a) Da= 80, 40,
20, 10, 5.0, 2.5, 1.25c) Da=800, 400, 200, 100, 50, 25, 12.5, 11.0 and the dependence of the total concentration in the steady state as a fundtin of Da
(b) autocatalytic|c),(d) bistable. The dashed line in the inset indicates the predicted asymptotic beﬁ@\gpr\/'D:a’,

This shows, that due to the overlaps the total area growbations decay, showing that the uniform stai€x)=0, in

more slowly with the DamKaler number than the area of a spite of being an unstable fixed point of the homogeneous

single isolated filament. An analogous scaling has been olsystem is stable against localized disturbances. Thus stirring

tained for autocatalytic reaction on an open baker map irstabilizes the unstable equilibrium of the homogeneous sys-

Ref. 43. tem by dispersing and diluting the perturbation. This is con-
Numerical simulations of the reduced proble(@3) sistent with the behavior observed in the two-dimensional

show that for both chemical models there is a critical valuesimulations for subcritical Damlkder numbers, showing ho-

of the Damkdler number. When DaD3, there exists a non- mogenization and decay of the perturbation followed by

uniform steady solution t¢23) centered on the origifFig.  growth only after the reactants were distributed uniformly in

13). Otherwise all perturbations decay and the only steadgpace. For supercritical Damikier numbers the uniform so-

solution is the trivial oneC(x)=0. The width of the non- lution is unstable against localized perturbations. Arbitrarily

uniform steady solution increases with Ohat appears to be weak perturbations are sufficient to reach the nonuniform

consistent with(22) for large Damkdler numbers. Numeri- steady state.

cal continuation of the nonuniform steady solution for de-  Just above the critical point, BeDa.<1, the amplitude

creasing Daonfirms that this solution disappears at a criticalof the nonuniform solution is small and the chemical dynam-

value. The transition is found to be continuous for the autoics can be linearized about the background state

catalytic model and discontinuous for the bistable magdeé

Fig. 13. Let us now analyze the transition in the reduced dC dC _  4°C

problem (23) in more details for the two chemical models, Gt Xgx - DaCt oz

separately.

(27)

This problem has been studied by Maffiin the context of

plankton populations. Equatid27) has asymptotic solutions
For the autocatalytic model the nonuniform solution ap-of the form

proaches and coalesces with the uniform solution when Da ,

is approached from above. Whéen 83, localized pertur- C(x,t)~e ¥ 72Da-1)t (28

A. Autocatalytic model
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that decay in time when Bal and grows exponentially, 0.045 — . . . . .
moving out of the domain of validity of the linear approxi- 0.04
mation, otherwise(The nonlinearity would eventually stop 0.035
the growth) Thus we obtain the critical value for the auto- '
catalytic model, Dg=1. 0.03
Close to the transition, Bal+ €,0< e<1, one can look 0.025
for a steady nonuniform solution of the form S 002
>
C(x;€)=€Cy(X)+ €*Cy(X)+- - . (29 0.015
Substituting this into(16) for the term first order ine we 0.01
obtain 0.005
¢°Cy 3% e o (30) i
a2 X— 1= -0.005 1 1 1 1 1 1
dx dx 0 0.2 0.4 0.6 0.8 1
c

. 2 .
that has the solutiof;=Ae *'2, whereA is a constant that
can be determined from the equation for the terms second FIG. 14. The two-humped potenti®l(C) for Da=1 ande=0.25.
order ine,

d’c, dcC

——= ¥ —2 +Cy= Ci— C,. (31) N.ote that, ifx is interpretgd as t.ime and as a spati.al coor-
dx dx dinate, the problen(35) is equivalent to the motion of a
The left-hand side of the equation can be written as particle in an asymmetric two-humped potentigig. 14),
dv
d dC, 2 —E%C(a—C)(C—l),
5( XC2+ W)—Cl—cl. (32) dC
i i ; 1 (1+a) a (37)
Integrating both sides over the whole domain the left-hand V(C)=-Dac? >c2+ _
side vanishes, according td7), and an equation for the 4 3 2
constantA is obtained under the effect of linear friction, with friction coefficient
- = increasing linearly in time. The two maxima of the potential
f (Ci—Cl)dx= A2\[m—A \/;:0 (33 are at the stable fixed poin&=0 andC=1 and the minima

is at C=a. The potential difference between the two

that givesA=1/2. Thus, the steady solution close to the maxima is proportional t6 DaThe particle trajectory satis-
transition point can be approximated as fying (36) starts from the left slope of the higher potential
hill [a<C(x=0)<1] with zero velocity and ends exactly

on the top of the lower hill. Thus the problem reduces to
finding the appropriate values of the initial coordinat,
=C(x=0). For initial conditionsCye («,1), C'(x=0)=0
the trajectory of the particle may either end in the potential
well C=« or may cross the smaller hill and escape-te.

For the bistable case the transition at.Dediscontinu-  The trajectories corresponding to the nonuniform steady so-
ous. The nonuniform solution disappears with a finite amplidutions are at the boundary between these two types of
tude far from the uniform state. The uniform solution is asymptotic behavior.
stable for any Dahus small perturbations decay indepen-  We calculated numerically trajectories for a set of initial
dently of the Damkbler number. In the supercritical regime conditions in the rang€, < (a,1) for a set of different val-
the uniform and nonuniform stable solutions coexist suggesties of the DamKoler number, Da (0,40). The asymptotic
ing the presence of a threshold for exciting the nonuniformbehavior of the trajectories is indicated on thg-Da plane

C(x: €)= ée—xz/% O(€?). (34)

B. Bistable model

perturbation. (Fig. 15: blank,C(x—®)— «a; black,C(x—®)— —. The
To investigate the transition further let us look for steadyrequired steady solutions are on the boundary of the two
solutions of Eq.(23), regions. The numerical results show that for smalltBere
42c dc is no such boundary and a solution of the tyB6) does not
P _’551]:((;)_)(& (35  exist. In the particle analogy the interpretation of this is that

the difference in the height of the two hills is not sufficiently
that are consistent with the boundary conditi¢h®. Since large to compensate for the energy dissipated by friction,
the nonuniform steady state is symmetric about the origin ithus the particles cannot escape. WheridDiacreased above

straints C=1 is high enough there are initial conditions for which
dc the particles have sufficient energy to cross the potential bar-
C(x—®)—0, —(0)=0. (36) rier. Clearly, part|cle_s W|t_h initial c_ondmons b_elow the hmg_ht
dx of the lower potential hill are still trapped in the potential
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TABLE I. The critical values of the Lagrangian Dantker number for the

two-dimensional simulations and for the one-dimensional single filament
model
0.8
Closed Open 1D model
06 L Autocatalytic ~1.2 1.05 1.0
s Bistable ~12.0 11.06 11.0
\>I-é’
O
0.4 - Da<Da,
02 growth of the mean concentration. In principle, these results
' could be used as a numerical technique for obtaining the
approximate spatial distribution of the chemical components

0 : L L L L L ' by combining a two-dimensional contour—advection calcula-
¢ & 10 15 2 2% 30 3 40 oy with the information about the filament width obtained
Da . . .
from the steady solution of the one-dimensional model.
FIG. 15. The shaded area shows initial conditions resulting in the escape of  |n order to compare the critical Damkler numbers pre-
the particle from the pot_ential well. Th_e boundary of the shgded area corregjctad by the one-dimensional mean strain model with the
sponds to the steady filaments solutions. Note, that the filament solution . . . . .
ones obtained from the direct numerical simulations we cal-
culate the Lagrangian Damkter numbers corresponding to
the two-dimensional problem. The Lyapunov exponents of
well. Also, particles started from a point very close to the topthe advection in the two model flows was found to be
of the higher hill are unable to escape since they may spenticiosed™1.66 andi ope~2.19. The critical values of the La-
very long time in the neighborhood of the stationary pointgrangian Damkbler number based on these Lyapunov expo-
and go through the potential well at a late time when thenents are presented in Table | and show a very good agree
friction is strong. Thus, for DaDa. the initial conditions ment.
Cesearfor which particles escape to infinity are in an the  In our analysis we neglected the fluctuations of the
interval of the form stretching rate. In reality there is a distribution of stretching
escape rates. The effect of this is visible in the numerical simula-
a<Coy(D8)<CF**=Co (DA <1, (38 tions showing that the width of the filament slightly fluctu-
where C,1(D@) are CoADa) are initial conditions corre- ates in space and time. Also the direction of the stretching
Sponding to Steady nonuniform solutions @6). As the fluctuates and foldings of the filament may lead to Iarge cur-
Damkdhler number is decreased the two solutions approachatures whose effect is not captured by our one-dimensional
each other and disappear at.Bdl1.0. description. Another effect is the nonuniform density of the
The trajectory starting fron€(x=0)=C, ADa) clearly unstable foliation pointed out by Alvareat al®® Thus the
corresponds to the steady nonuniform solution found in thédvected filament can overlap with itself well before it fills
numerical simulations of the time-dependent problem. Théhe whole domain. Some regions of the flow are filled while
solution corresponding to the lower brancig(x=0)  others are still empty.
= CO,l(,D\la)! however, is not found as an attractor of the time- Here we investigated Only reactive systems described by
dependent problem. This suggests that this is an unstabtge distribution of a single species. We expect, however, that
solution playing the role of a threshold separating the basinf1€ basic phenomena described in this paper remain valid for
of attraction of the uniform and non-uniform stable solutions.multicomponent reactive systems that may have a number of
[It can be shown that all initial conditions that are abovedifferent chemical time scales. One example of this type is
(below) this separating solution everywhere, converge to théhe case of excitable systefig"*°under stirring by a cha-
nonuniform(uniform) steady state. This, of course, does nototic flow discussed in Ref. 46. Excitable systems have two
say anything about initial conditions partly below and partly different time scales corresponding to fast and slow compo-
above the separating solutidn. nents. Although these systems only have a sir(gtable
steady state, the rest state, they also have a metastable ex-
cited state that persists for a finite time only. Excitable sys-
tems under stirring exhibit similar behavior to the one pre-
The one-dimensional Lagrangian filament mod&6) sented here, including advective propagation in form of a
clearly explains the qualitative features of the two-steady excited filament and the existence of a critical
dimensional numerical results. It shows how a steady filaDamKdler number. The one-dimensional excitable
ment profile can arise as a result of the interaction betweereaction—diffusion systems have travelling pulse solutions,
the propagation of a reaction—diffusion front and stretchinghat in the presence of stretching leads to the appearance of a
due to chaotic advection. The disappearance of the filamersteady excited filament solution. This can be simple unimo-
type solution for subcritical Damkder numbers explains the dal, as in our case, but it can also have a bimodal structure
transition observed in the two-dimensional simulations. Thewith the central part of the filament returned to the rest state.
advective propagation of the filament along the unstable foThus the existence of an extra chemical time scale in this
liation of the chaotic advection explains the exponentialsystem allows for somewhat more complex structures and a

disappears for subcritical Darmiter numbers (D& 11.0).

V. SUMMARY AND DISCUSSION
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further transition in the large Da number range, being a tran®J. M. Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport
sition from coherent to noncoherent excitation of the system, (Cambridge University Press, Cambridge, 1889

A nice example of an advectively propagating perturba-
tion, of the kind described in this paper, has been observed

recently in a so-called ocean fertilization experimé&nt,

163, M. Ottino, C. W. Leong, H. Rising, and P. D. Swanson, Natuosdon
333 419(1988.

E. Ott, Chaos in Dynamical Systeni@€ambridge University Press, Cam-
bridge, 1993.

where the injection of a trace element affecting the planktort®G. z. Damkaler, Z. Elektrochem. Angew. Phys. Che#®, 846 (1936.
ecosystem triggered a phytoplankton bloom in the form of arfo- Paireau and P. Tabeling, Phys. Re\b6 2287(1997).

elongated filament, observed on satellite images. The re;

OM. Chertkov, Phys. Fluid40, 3017(1998.
“*M. Chertkov, Phys. Fluid41, 2257(1999.

sponse of plankton ecosystem models to such perturbation iz neyfeld, C. Lpez, and P. H. Haynes, Phys. Rev. L8g, 2606(1999.
the presence of stirring has been studied in Ref. 48. We Su@3z. Neufeld, C. Lopez, E. Hernandez-Garcia, and T, Pays. Rev. B51,
gest that similar phenomena could also be investigated in 3857(2000.

laboratory experiments.
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