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Abstract

We consider a single-species model of population dynamics allowing for migrations and the Allee effect.
Two types of migration are taken into account: one caused by environmental factors (e.g., a passive
transport with the wind or water current) and the other associated with biological mechanisms. While the
first type is apparently density-independent, the speed of migration in the second one can depend on the
population density. Mathematically, this model consists of a non-linear partial differential equation of
advection—diffusion-reaction type. Using an appropriate change of variables, we obtain an exact solution of
the equation describing propagation of travelling population fronts. We show that, depending on pa-
rameter values and thus on the relative intensity of density-dependent and density-independent factors, the
direction of the propagation can be different thus describing either species invasion or species retreat.
© 2003 Published by Elsevier Inc.
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1. Introduction

Spatial aspects of population dynamics, particularly the processes and mechanisms underlying
species dispersion and the patterns of spread during biological invasions have been a focus of
intense research during the last decade [1-6]. Invasion of exotic species often results in dramatic
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changes in native community and, consequently, in a major threat to biodiversity. Therefore, a
highly practical and theoretically important question is what environmental and biological factors
can affect the rate of invasion either speeding up or slowing down the spreading of invasive
species. This issue is usually treated in terms of diffusion-reaction models [7-9] or their modifi-
cations [5,10] which are essentially based on the assumption that the motion of individuals of
given population is random and isotropic, i.e., without any preferred direction.

There is, however, another type of dynamics when the individuals exhibit a correlated motion
towards certain direction. The origin of this motion can be different, and there are at least two
apparently different mechanisms resulting in the species transport. We will call ‘advection’ the
correlated motion caused by purely environmental factors such as wind in case of seeds or pollen
spreading or water current in case of plankton communities, and we will call ‘migration’ the
transport caused by biological interactions. Evidently, species transport due to the advection is
density-independent. As for migration, however, there are certain indications that the speed of the
individual motion can increase with the population density [1]. Note that, since a focus of this
paper is on the factors that can affect the rate of species invasion, we are not much interested in
the periodical return migrations which are typical for many bird and fish species. A point of
interest is the migration occurring on a smaller spatial scale when individuals or groups of
individuals of given species move from the regions with high population density towards the
regions where given species is either absent or exists at low population density [11]. Although these
small-scale migrations are often interpreted in terms of random motion, cf. ‘stratified diffusion’
[1,12], this phenomenon exhibits apparent spatial anisotropy. Interestingly, this mechanism of
species dispersion usually comes to operation when the population density becomes sufficiently
high [2].

The goal of this paper is to study the interplay between diffusion and advection/migration
regarding species invasion, spatiotemporal dynamics of the population being described by a non-
linear partial differential equation of advection—diffusion-reaction type. An issue of particular
interest is under what conditions such an interplay can block or reverse the species invasion.

Once the main processes underlying given phenomenon are identified and a mathematical
model is developed, it becomes a major problem to assess its properties for different parameter
values. Numerical simulations usually provide only meagre information on that account and
analytical solutions are rare, especially when the model is non-linear. Some examples of ad hoc
solutions to non-linear partial differential equations can be found in [13-15]. An approach first
considered by Hopf [16] and later used by a few other authors [17-19] (for a more general
framework see also [20]) is a suitable change of variables, which can linearize the equation under
study. In our work, we apply this approach to a non-linear advection—diffusion-reaction equation
taking into account the effect of density-dependent migrations and the Allee effect on population
growth [21,22] and obtain an exact solution describing propagation and interaction of travelling
population fronts.

The paper is organized as follows. In Section 2 we describe the model that will be used to study
the interplay between diffusion and advection/migration. In Section 3 we describe the method to
obtain exact solutions of non-linear partial differential equations and apply it to the equation
without migrations. In Section 4 the interplay between diffusion and advection/migration is an-
alyzed based on an exact solution of non-linear advection—diffusion-reaction equation. The last
section gives a discussion of our results.
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2. Main equations

Following the approach widely used in theoretical population dynamics, we assume that a
population can be described by the population density U. In a general case, U depends on the
position R = (X, Y, Z) in space and time 7. There are two basically different mechanisms making
U to change with time: the one associated with local processes such as birth, death and predation,
and the other associated with the redistribution of the population in space due to the motion of its
individuals. Correspondingly, in a rather general case the dynamics of a given population can be
described by the following equation:

dU(R, T)

or =—divJ + f(U)U, (1)

where J is the population density flux and the second term allows for the local processes, f(U)
being per capita growth rate. In the case /(U) = 0, Eq. (1) has the form of the conservation law; it
means that the total number of the individuals does not change with time unless the processes of
birth and death are taken into account.

The form of the flux J essentially depends on the properties of the motion. In the case that the
motion of the individuals can be regarded as random, the flux is usually assumed to be given by
the following equation:

J=-DVU(R,T), (2)

where D is diffusivity [23-25]. In this case Eq. (1) takes the form of the diffusion-reaction equation
which is of common use in theoretical studies, cf. [2,25,26] and references therein.

However, the motion of individuals cannot always be regarded as random. Another widely
observed dynamics is advection/migration when the individuals exhibit a correlated motion to-
ward a certain direction. Assuming for the sake of simplicity that at given position all the indi-
viduals move with the same speed A, we immediately obtain that J = AU (R, T'). In a more general
case, when the correlated motion is combined with the random motion, the population density
flux is given by the following equation:

J = AU(R,T) — DVU(R,T). (3)

For the rest of this paper we restrict our consideration to the one-dimensional case. The spa-
tiotemporal dynamics of a given population allowing for migrations and diffusion is then de-
scribed the following equation:

QU(X.T) , A(AU)
or X

where A is positive in the case that advection/migration is going in the direction of axis x and
negative otherwise.

It is well-known that, for a wide class of initial conditions, Eq. (4) describes the propagation of
travelling population fronts [27,28]. Concerning the dynamics of real ecological communities, that
may correspond either to species invasion (when the front moves towards the region where a given
species is absent) or to species retreat (when the front moves towards the region where a given
species is at its carrying capacity). Interestingly, each type of underlying individual motion

U
= D=+ f(U)U, (4)
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(random or correlated) can result in a similar phenomena, i.e., either in species invasion or species
retreat. For the correlated motion, these two options are obvious; whether the species is actually
invading or retreating depends on the sign of the speed of migration 4. For the random motion,
invasion of a species due to propagation of population fronts was first studied in [29,30], for an
account of recent advances see [2]. A possibility of species retreat resulting from increasing Allee
effect was considered in [4], for a more general discussion see also [27].

In theoretical studies, these two types of motion (random or correlated) are usually considered
separately (but see [11]). In a real ecological community, however, the individuals are likely in-
volved into a combination of these two types of motion. The following question may arise here:
what can be the interplay between these two types of motion regarding species invasion? In
particular, can advection (e.g., due to the impact of wind) block the species spreading in the case
when the invasion would otherwise take place due to random motion?

To address this issue, we study analytically the properties of an exact solution of the advection—
diffusion-reaction equation (4) describing propagation of travelling fronts. For the sake of ana-
lytical tractability, two additional assumptions are to be made. First, we assume that the growth
rate is damped by the Allee effect [21,22]. Following [4], we choose the square polynomial to
parameterize the per capita growth rate:

f(U) =a(U=Ty)(K - U), (5)
where K is the species carrying capacity, U is the ‘measure’ of the Allee effect [4] and « is a co-

efficient. We mainly restrict our attention to the case 0 < Uy < K which corresponds to the
‘strong’ Allee effect [7,31] when the growth rate becomes negative for sufficiently small population

density.
Second, for the speed of migration, we assume that it is given by the following equation:
A=4y+4,U, (6)

where Ay and A4; are parameters, 4, is the speed of advection (e.g., due to the impact of wind or
water current) and 4, U is the speed of migration due to biological mechanisms. For convenience,
we will call parameter 4, the per capita migration speed.
From (4)-(6), we obtain
oU(X,T) oU *U
——— 2+ (Ay +24,U) —==D—
o + (4o + 24, )GX aXz—i—oc

The dimensionless variables

U K2
u=—, t=ToK> x=X\/>, (8)
K D

are substituted to transform Eq. (7) as follows:

u, + (ap + ayu)uy = e — Pu+ (1 4+ pu* — o, 9)
where f = Up/K, ay = AOK‘I(aD)_l/ *a = ZAl(aD)_l/ * are dimensionless parameters, and sub-
scripts x and ¢ stand for the partial derivatives with respect to dimensionless space and time,
respectively. Eq. (9) will be studied in the unbounded domain with the following conditions

at infinity: the species is absent for x — —oo and the species is at its carrying capacity for
X — +00.

U(U = Up)(K = U). (7)
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3. No-migration case

Although the main goal of this paper is to study the interplay between the advection/migration
and the diffusive spread of the population (which will be done in the next section), for the sake of
clarity we begin with the case when the individuals perform only random motion. In this case
ay = a; = 0 and Eq. (9) reduces to

Uy = thye — Pu+ (14 B — . (10)

It was shown in [17,19,32] using different methods that Eq. (10) has an exact solution in the
following form:

_ Bexp(hié;) +exp(hads)

u(x,t) = , 11
(x.1) 1 +exp(41&)) + exp(4&,) (1)
where & =x —nit + ¢, m; = V2(1 + ) =32, i =1, 2,
1
A :ﬁ Jy = —— (12)

V2’ V2
and ¢, , are arbitrary constants. Since u(x, ) must be non-negative for any x and ¢, solution (11) is
valid only for f# = 0. The spatial distribution of the population as given by (11) for different time is
shown in Fig. 1. It must be mentioned here that, although solution (11) formally corresponds to a
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Fig. 1. Population density vs space at different moments as given by the exact solution (11) of diffusion-reaction
equation (10); curve 1 for t = 0, curve 2 for ¢t = 40, curve 3 for ¢t = 80, curve 4 for t = 120, curve 5 for t = 160, curve 6
for t = 700. Parameters are § = 0.2, ¢, = 100, ¢, = —100. For small time, the solution describes the propagation of two
‘partial’ population fronts connecting the homogeneous stable steady states # = 0 and u = 1 to the unstable state u = f3,
cf. upper and lower parts of curves 1-3. For large time, the solution describes propagation of a single population front,
cf. curves 4-6, the arrow indicating the direction of further propagation. While the ‘partial’ fronts always propagate
towards each other (see [17,19] for details), the direction of propagation of the population front connecting the states
u =0 and u = 1 (curves 4-6) depends on parameter f, cf. conditions (15).
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specific initial condition (which is immediately obtained from (11) setting ¢t = 0, cf. curve 1 in Fig.
1), convergence of initial conditions from a wide class to solution (11) was shown in [19].

Since 4; < /Ay, it is readily seen that, in the large-time limit (when the transients die out, cf.
curves 4-6 in Fig. 1 and see [17,19] for details) or for suitable values of ¢,, ¢,, solution (11)
reduces to

. exp(hd)
) T exp(dy) )

thus describing a travelling population front propagating with the speed 7, given by the following
equation:
3 2p-1
= VA4 p)— =1 14

The direction of the propagation can be either positive or negative:
1 1
(a) m<0 for f< 3 and (b) n, >0 for > 5 (15)

Thus, under condition (15a) the front propagates to the region where the species is absent, which
corresponds to species invasion, cf. Fig. 1; under condition (15b) the front propagates to the
region where the species is at its carrying capacity, which corresponds to species retreat. Condi-
tions (15) are in full agreement with more general mathematical considerations [27].

The fact that (11) is an exact solution of Eq. (10) can be checked immediately by substituting it
into (10). To arrive at solution (11) from Eq. (10), various approaches are available. In the
original paper [17], solution (11) was obtained by using a formal perturbation scheme. Later, it
was shown in [32] that (11) can be obtained by expanding the solution into Dirichlet series. In this
paper, however, we will use another approach [16,19] which is much less laborious, leads to es-
sentially the same result, and has been successfully applied to a few other non-linear problems as
well, cf. [16,18,33,34] and also see [35] for less straightforward examples.

Since we are going to apply to the general Eq. (9) the same method that was used in [19] to
obtain the exact solution (11) of Eq. (10), it is convenient to give a brief description here. Let us
introduce a new variable w(x, ¢) defined by the following equation:

Wy

u(x,t) =u (16)

w+a’
where 1 # 0 is a coefficient (the case 1 = 0 would correspond to the trivial solution u(x, ) = 0)
and o is a constant. In so far as we are, for biological reasons, primarily interested in bounded
solutions of Eq. (10), ¢ is included into the denominator of (16) in order to avoid singularities. If
we assume that function w is semi-bounded, i.e., there exists a certain w that either (i) w(x, ) <w
or (il) w(x,?) = w for Vx, ¢, then constant ¢ can have an arbitrary value under the constraint
g < —w or ¢ > —w corresponding to the cases (i) and (ii), respectively.
Substitution of (16) to (10) leads to the following equation:

(2 = @)W (w+ )+ welw, — 3w + (1 + B)uw ] (w+ 6) 7 + [ — By — W
x (w+a)' =0, (17)
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which, as constant ¢ is (nearly) arbitrary and different powers of (w + o) are linearly independent,
is equivalent to the following system:

Wyt = Wyex — ﬁwxv (18)
w; = 3wy — (1L + ) pw,, (19)
= +V2. (20)

Without loss of generality, we choose plus in Eq. (20) (minus would correspond to the change
x — —x). Taking the partial derivative of Eq. (19) with respect to x in order to eliminate w,, from
Eq. (18), then from the system (18)—(20) we arrive at

1+ 8 B

vax_—wxx+_wx:03 21
T3ty e1)

W, = 3w — V2(1 + f)wy. (22)
The solution of linear equation (21) has the following form:

wx, 1) = fo(t) + fi()e"" + fo(t)e™, (23)
where 4;, are the roots of the square polynomial:

14+ B
22

and thus 4,, are given by (12).
To obtain functions fj;,, we substitute Eq. (23) into (22). That leads to the following result:

folt) = Co, fi(t) = C&’" where y, =322 —V2(1 + )4, i=1,2 (25)

and Cy;, are arbitrary constants. Note that the form of w(x, ¢) defined by Eqs. (23)—(25) appears
to be in agreement with our earlier assumption about semi-boundedness of w; thus our analysis
has been consistent.

From (16), (23) and (25), we obtain

Cih exp(/llx + Vlt) + Cy/y exp(ﬂvzx + Vzl‘)
(Co + 0) + Crexp(Aix + ;1) + Crexp(lox + y,1)
Obviously, for u(x, t) to be positive, it is necessary that Cy + o, C; and C, have the same sign, i.e.,
either Cy+0>0, Ci,>0 or Co+0<0, C,<0. Thus, introducing new constants as
¢, = (1/4)In(C;/[Cy + a]), i = 1, 2 and taking into account that \/5/112 = u;, (Where u; = f and
uy = 1 are the steady states of the spatially homogeneous system), from Eq. (26) we arrive at (11).

u(x,1) = V2 (26)

4. Interplay between diffusion and migration

Now we are going to apply the method described in the previous section to obtain an exact
solution of the advection—diffusion-reaction equation (9). The exact solution will be then used to
study the interplay between the advection/migration and the diffusive spreading of the population.



86 S. Petrovskii, B.-L. Li | Mathematical Biosciences 186 (2003) 79-91

We begin by considering the cases of density-independent migration (advection) and density-
dependent migration separately proceeding then to a general case.

4.1. Density-independent migration

In the case that the speed of the species migration does not depend on the population density,
e.g., when drifting with the wind, the dynamics of the population are described by the following
equation:

ut+a0ux:uxx_ﬁu+(1+ﬁ)u2_u3a (27)

where ay is the (dimensionless) speed of advection.
Considering travelling wave coordinates, (x,¢) — (z,¢) where z = x — apt, so that u = u(z,1),
from Eq. (27) we obtain

i =i, — i+ (1 + P> — i (28)

Eq. (28) coincides with (10) and thus the exact solution (11) gives also an exact solution of (28)
with the obvious change x — z. In particular, in the large-time limit when the solution describes a
single travelling population front, it reads as follows:
exp{afx — (ny + ao)t
u(x’ [) — ﬁ(x o (l()f,t) ~ p{ 2[ ( 2+ 0) + ¢2]} ) (29>
I+ exp{lalx — (2 +ao)t + o]}

Here n, + aq is the speed of the front where #n, is given by Eq. (14); n, + a¢ < 0 corresponds to the
species invasion, n, + ap > 0 corresponds to the species retreat. Advection enhances the species
invasion in case ay < 0 and enhance the species retreat otherwise. Thus, the species will invade in
spite of the counteracting impact of advection (e.g., cross-wind or cross-current) in case n, < —ay,
1.e., for

2 —1
< —ay, 30
< (30)
which is equivalent to
1
ﬂ<§<1—\/§a0>. (31)

Relation (31) has an intuitively clear meaning: the weaker the Allee effect is for a given popula-
tion, the higher is its capability to invade new areas. This conclusion is in a good agreement with
the results of other authors, cf. [4,7]. In case we are restricted to the case of the ‘strong’ Allee effect,
B is positive while @y can be arbitrary. It means that the species affected by a ‘strong’ Allee effect
cannot invade in case the cross-wind is sufficiently strong, a, < 27'/2.

4.2. Density-dependent migration
In this section, we consider the case when the density-independent advection caused by envi-

ronmental factors is absent and migration takes place due to biological mechanisms which are
assumed to be density-dependent. Then @y = 0 and from (9) we arrive at the following equation:
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w + ayuity = e — Pu+ (14 pu? — o’ (32)
Eq. (32) differs from (10) and the exact solution (11) is not immediately applicable. However,
to obtain an exact solution of Eq. (32), we can try to make use of the approach described in
Section 3.
Introducing a new variable p(x, 1),

u(x, 1) = vp{’: —, (33)

where v is a coefficient and ¢ is a (nearly) arbitrary constant included in order to avoid singu-
larities, cf. Section 3. Having substituted Eq. (33) into (32), we arrive at the following system:

Pxt = Pxxx — ﬁpx; (34)

P = (3 + alv)pxx - (1 + ﬁ)vpxu (35)
1

v:§<a1j: a%+8>. (36)

Choosing plus in Eq. (36) without any loss of generality (minus would correspond to the change
a, — —ay, x — —x) and excluding p,; form Eq. (34), from (34)—(36) we obtain

(2 + a1v)poe — (1 + B)vpu + Ppe = 0, (37)
p= (3 +a)pe — (14 B)vp.. (38)
The solution of the linear equation (37) has the following form:
p(x, 1) = go(t) + g1(£)e”™ + go(1)e™™, (39)
where
1
U)]Zé, Wy = —. (40)
v v
Having substituted (39) into (38), we obtain
20(t) = By, gi(t) = Bie®" where §; = 3+ apv)o? — (1 + Bvay, i=1,2 (41)

and By, are arbitrary constants.

Considering Eq. (33) together with (39) and (41) and taking into account that coefficients
By + o, B| and B, must have the same sign in order to provide positiveness of the solution, we
arrive at the following exact solution of Eq. (32):

u(x, 1) = Bexp(wiy,) + exp(wayh,)
’ 1+ exp(my);) + exp(wah,)’

where ;, =x —qgit + €, ¢ = (1 + f)v— (3+a;v)w; and i = 1, 2, and €, are arbitrary constants.
Note that, apart from the above arguments leading to (42), the fact that (42) is an exact solution
to Eq. (32) can be proved straightforwardly having substituted (42) into (32).
The structure of solution (42) is apparently similar to that of (11) and it has similar properties.
Particularly, since w; < w,, in the large-time limit solution (42) describes a single travelling
population front:

(42)
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u(x ) ~ CXP(C‘)sz)
’ 1 + exp(ma,)

propagating with the speed ¢,. The species spreads into the region with low population density in
the case ¢, < 0, i.e., for

(43)

1 +v?

¢ =(1+p)yv— < 0. (44)

From inequality (44), we readily obtain the following condition of successful invasion:

1
B<;7 (45)

where v = 0.5(a; + \/a? + 8) so that v — +0 for a; — —oo and v — +o0 for a; — +o0. In the
case a; = 0 (no-migration), v = v/2 and (45) coincides with (15a).

Unlike the density-independent case, cf. (31), the right-hand side of inequality (45) is always
positive. Consequently, the interplay between the diffusive spread of the population and migration
appears to be different. Even a strong density-dependent migration (corresponding to large
positive a;) going from the region with low population density towards the region with high
population density cannot block the species invasion caused by the random dispersion of the
individuals in case the Allee effect (quantified by parameter /) is sufficiently small.

4.3. General case

In a general case, migrations can take place due to both density-dependent and density-inde-
pendent factors. The dynamics of a given population are then described by full equation (9) where
now ag # 0 and a; # 0. The results of the two preceding sections immediately apply to this case
leading to the following exact solution:

_Bexp{oifx — (g1 + a0)t + &} + exp{aa[x — (g2 + a0)t + e]}
1 +exp{an[x — (g1 + ao)t + €]} + exp{anly — (q2 + a0)t + €]}

(46)

u(x, 1)

where the notations are the same as in Eq. (42). Particularly, in the large-time limit, the solution
(46) takes the following form describing propagation of a population front:
u(r. 1) ~ exp{w[x — (2 + ao)t + &)}
" Tt exp{only — (g2 + ao)t + €]}

The condition of successful invasion now takes the form ¢, < —a, which, after a little algebra,
reads as follows:

(47)

ﬁ<r(v,a0):%—%. (48)

It is readily seen that » > 0 for v < 1/ay and r is negative otherwise. Thus, since f§ is assumed to be
non-negative, for any fixed f and v inequality (48) is violated in the case a is positive and suf-
ficiently large. In agreement with the results of Section 4.1, it means that the species invasion can
always be blocked or reversed in case of sufficiently strong counteractive advection (such as cross-
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wind or cross-current) provided that the density-dependent migrations are either absent or
enhance the species retreat (which corresponds to a; > 0 and v > /2). However, another property
of relation (48) is that, for any fixed positive value of ay, however large it can be, inequality
(48) becomes true for sufficiently small v. Small v corresponds to large negative a, i.c., to the
case when the density-dependent migrations takes place towards the region where the species
is absent. It means that even strong counteractive advection cannot stave off the spread of a
given population in the case of cooperative impact of biological factors enhancing the species
invasion.

5. Concluding remarks

In this paper, we have considered a single-species model of spatiotemporal population dy-
namics taking into account advection and/or migrations, diffusion due to the random motion of
the individuals, and the local growth of the population damped by a ‘strong’ Allee effect. The
model consists of a non-linear partial differential equation of the advection—diffusion-reaction
type. Using a suitable change of variables, we have found an exact solution of the equation
describing the propagation of a population front. By means of studying the properties of the
solution, the interplay between diffusion and different types of advection/migration (density-
dependent and density-independent) has been thoroughly investigated. Exact relations between
the parameters have been obtained, cf. (31), (45) and (48), which make it possible to forecast
whether the interplay between various factors leads to species invasion or to species retreat. In
particular, we have shown that species invasion caused solely by isotropic random motion of the
individuals can be blocked by sufficiently strong counteracting advection. However, in the case
that invasion caused by the random isotropic motion is supported by a correlated motion by the
individuals towards the region with low population density, the species spread cannot be blocked
by purely environmental factors (such as wind or water current) provided that per capita mi-
gration speed is sufficiently large. Surprisingly, our model predicts that density-dependent mi-
gration alone cannot block diffusive spreading in the case that the Allee effect is ‘not too strong’:
however large v is (which corresponds to the species retreat with large per capita migration speed),
there always exists a small positive f so that inequality (45) is true.

Since our conclusions are based on the properties of exact solutions (11), (42), (46), and thus
restricted to the assumptions made beforehand in order to obtain the solutions, cf. Section 2, our
study leaves a number of open questions. First, since the solutions are non-negative only for
p = 0, our conclusions mainly apply to the case of ‘strong’ Allee effect. It would be interesting to
know how the interplay between diffusion and advection/migration can be modified in the case of
species with either a ‘weak’ Allee effect (i.e., for —1 < <0, cf. [4,7]) or without an Allee effect at
all (for < — 1, cf. [4]). Second, to describe the density-dependent migrations, we assumed that
the migration speed increases linearly with the population density. It is quite possible, however,
that in real ecological communities this relation is more complicated. Third, Egs. (7), or (9) in
dimensionless variables, which we used to describe the spatiotemporal dynamics of a given
population, actually implies that the individuals migrate and produce offspring at the same time.
In reality, it seems more probable that the individuals are involved in different activities at dif-
ferent life-stages. These issues outline the direction of future research.
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