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Synopsis
We discuss steady-state solutions of systems of semilinear reaction-diffusion equations which model
sitnations in which two interacting species u and v inhabit the same bounded region. It is easy to find
solutions to the systems such that either u or v is identically zero; such solutions correspond to the
case where one of the species is extinct. By using decoupling and global bifurcation theory techniques,
we prove the existence of solutions which are positive in both © and v corresponding to the case where
the populations can co-exist.

1. Introduction
The system of reaction-diffusion equations

u(x, )—d, Au(x, t)=a,u—bu?+c,uv, (1.1)
v (x, 1) —d, Av(x, t) = a,v — byv? £ ¢ u, ’

for xe D and t=0, where D denotes a bounded region in R" (n=1,2,3) and A
denotes the Laplacian, models the situation where two species co-exist in D;
u(x, t) and v(x, 1) represent the population densities of the species at the time ¢
and at a point x € D. The constants d,, d,>0 give the rates at which the species
diffuse. The constants a, and a, give, if positive, the net birth rates of the species
and, if negative, the net death rates of the species. We shall assume throughout
that the constants b,, b,>0; this assumption ensures that the species are self-
limiting, i.e. u and v must remain bounded as t -~ %, The signs of the constants ¢,
and ¢, are determined by the nature of the interaction between the species; in the
paper, we shall consider both the case where v preys on u and the case where u
and v are competing species.

We discuss steady-state solutions of (1.1) satisfying homogeneous Dirichlet
boundary conditions. We give a partial description of the structure of the
non-negative solutions of

—d, Au=a,u—b,u’*+c,uv, for xeD, (1.2)
~dy Av = a,v — b0+ couv,
u(x)=ov(x)=0, for xeaD. (1.3)

Sub and supersolution techniques have recently been used by Leung [7], Zhou
and Pao [11], Schiaffino and Tesei [10] to prove the existence of solutions to
equations like (1.2)~(1.3). The above system has also been studied by Conway,
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Gardner and Smoller [4] in the case of a single space dimension. Our approac
here produces similar but more unified results. We use a decoupling technique
introduced by Brown [2] and discuss (1.2)—(1.3) by using bifurcation techniques.
We regard all of the constants in the problem as fixed except for either a, or a,
and we describe how the set of steady-state solutions changes as a, or a, changes.

Roughly speaking, our decoupling technique consists of fixing one of the
functions, u say, solving with this fixed u the second equation in (1.2) for v to
obtain a solution v(u) and then substituting v(u) for v in the first equation which
can then be regarded as a single equation in u. This technique was used in [2] for
the case of inhomogeneous boundary conditions; the technique is harder to apply
here as the homogeneous boundary condition leads to the possibility that v(u)
might be the zero function and so a more careful analysis of solutions of a single
equation is required. Section 2 is used to collect all the results we require about
the solutions of a single equation. In Sections 3 and 4, we discuss cases where v
preys on u regarding first a, and then a, as the bifurcation parameter. In Section
5, we discuss the case where u and v are competing species. Finally, in Section 6,
we show how simple analogues of our results hold in the case of Neumann
boundary conditions.

For simplicity, we work throughout with equations of the form (1.2) and
Dirichlet boundary conditions. Qur results, however, generalize to equations of
the form

—d; Au=flu,v); —d,Av=g(u,v),

where f and g satisfy suitable hypotheses, and to mixed boundary conditions of
the form u+ a(0u/on) = 0 where a >0.

2. Non-negative solutions of single elliptic equations

In this section, we collect together some known results about single equations
which are required later.

It is well known that the linear eigenvalue problem
—~Ap=Ad on D; ¢=0 on ID,

has an infinite sequence of eigenvalues {\,} such that O0<A,<A,=A;...with
corresponding eigenfunctions ¢,, ¢,, @5, ... where ¢,(x)>0 for xe D. Suppose
that q: D —R is smooth and that d is a positive real number. Then the linear
eigenvalue problem

~dAut+qu=AuonD; u=0o0n3D, (2.1)

also has an infinite sequence of eigenvalues which are bounded below. We denote
the lowest eigenvalue of (2.1) by A,(d, q). It is known that A(d, g) is a simple
eigenvalue and that the corresponding eigenfunctions do not change sign on D.
Clearly, A(d, 0)=A,d and A,(d, q) is an increasing function of q.

Consider now the non-linear boundary value problem

—dAu+qu=au—bu’on D; u=0o0naD, (2.2)

where d and g are as above and a and b are real numbers with b > 0. It is known
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that, if a =A.(d, q), then u =0 is the only non-negative solution of (2.2) whereas,
if a>A(d, q), then (2.2) has a solution u which is positive on D. In the (a, u)
plane, these positive solutions lie on a curve of solutions bifuracting from the zero
solution at (A,(d, q),0). The existence of this positive solution can also be
established by sub and supersolution techniques; a supersolution u is given by the
constant function u=>""(|a|+sup {{q(x)|: xeD}) and a subsolution is given by a
sufficiently small multiple of the positive eigenfunction of (2.1) corresponding to
A:(d, q) (see Sattinger [9]). Since u— (au—bu®)/u is a decreasing function, it
follows that (see Cohen and Laetsch [3]), for each fixed a >A,(d, q), there is a
unique solution of (2.2) which is positive on D.

3. Predator-prey systems with a, as bifarcation parameter
Consider the system
—d, Au=a,u—bu’—c,uv in D,
—dy Av = a,v — byv* + cyuv, (3.1)
u=v=0on 3D,

where the constants by, b,, ¢y, ¢, >0. Equation (3.1) arises from the situation in
which the v population preys on the u population. We shall regard all the

parameters to be fixed apart from a,, the birth rate of the predator species, which
we shall treat as a bifurcation parameter.

Our approach involves decoupling the two equations in (3.1) in the way in
which we now describe. Let v e CH{D) and consider the following equation for u:

—diAu=a,u—bu*—cuvin D; u=0o0naD. (3.2)
We can write this as
—d, Au+cyou=au—bu*;, u=0onabh, (3.3)

which we can regard as a special case of (2.2) with q=c,v. Thus, if a,=
Ay(d,, ¢1v), then (3.3) has no positive solution whereas, if a,>A,(d,, c,v), then
(3.3) has a unique positive solution. We define a map from C (D) to C{D) by

u(v)=0 it a,=ir,(d;, civ)
= unique positive solution of (3.2) if a;>A,(d,, c,v).

Clearly, (u(v), v) will be a solution of the system (3.1) if v satisfies the single
equation

—d, Av =av—bv* +cu(vvin D; v=0o0nsD. (3.4)

11.1 order to investigate the solution of (3.4), we require the properties of v — u(v)
given by the following lemma.

“LEMMA 3.1. (i) v— u(v) is a continuous function from C'(D) to CY(D);
(i) if v, 2 0,, then u(v,)=u(v,).

_ Proof. (i) Let v, —v in CY(D). In order to prove that v — u(v) is continuous,
it suffices to prove that u(v,) — u(v) in C}(D).
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Since
X(dy, cqv) = inf {L (lerad u|* + c,vu?) dx: ue HY(D), |jul,, = 1}
and
Ady, v, ) =inf {L (lgrad ul*+c,v,u?) dx: ue HY(D), Yull,, = 1}

and v, converges uniformly to v on D, it follows that {A,(d,, c,v,)} converges to
A(dy, c;v) as n — oo,

Firstly, suppose that u(v) is non-zero. Then we must have that a, > A,(d,, ¢,v).
Hence, when n is sufficiently large, a,> A,(d;, ¢,v,) and so u(v,) is non-zero. Let
¥, denote the positive eigenfunction of —d, A+ c,v, corresponding to the eigen-
value A, (d;, ¢,v,) such that sup {¢(x): xeD}=1. Then,

—dAu+cv,u=a,u—bu’onD; u=0ondD,

has a subsolution b1'(a;—A:(d{, c,v.))¥, and a supersolution given by any
sufficiently large positive constant. Thus, u(v,) must be between these sub and
supersolutions and so there must exist £ >0 such that, for all sufficiently large n,
u(v,)> &b .. Therefore there exists, for sufficiently large n, an x, € D such that
u(v,)¥{x,)>eb’. Hence, no subsequence of {u(v,)} can converge to the zero
function.

Assume that u(v,) does not converge to u{v) in C'(D); we shall obtain a
contradiction. Then we can find a subsequence of {u(v, )}, which we again denote
by {u(v,)}, lying outside a certain C' necighbourhood of u(v). Since {v,} is
uniformly bounded, there exists k >0 such that a, k —b,k*—c, kv, (x)<<0 for all n
and all xe D. Let U={xe D: u(v,}x)>k}. Since we have

—d; Au(v,) = a,u(v,) — b, [u(v, )F —c u(v, v,

it follows that —Au(v,){x) <0 for x € U. Hence, u(v,) must attain its maximum on
U at a point on aU. However, u(v,)(x})=k on aU and so u(v,)(x)=<k for all
x € D. Thus, {u(v,)} is uniformly bounded. Hence, a,u(v,)— b [u(v,) T — ¢ ulv,)v,
is uniformly bounded in L, (D) for any p=1. Thus, standard bootstrapping
arguments applied to equation (3.2) show that {u(v,)} is uniformly bounded in
C**YD) and so possesses a subsequence, again denoted by {u(v,)}, which
converges in C*(D) to w say. Now w# u(v) and w is not equal to the zero
function but this is impossible as, letting n — o in (3.2), we can see that w must
be a non-negative solution of

—d;Aw=a,w—bw*~cwvinD; w=0onaD.

Hence, {u{v,)} must converge to u(v) in C'(I?) and so the proof is complete for
the case where u(v) is non-zero.

Now suppose that u(v) is the zero function. Then the zero function is the
unique non-negative solution of (3.2). Assume that {u(v,)} does not converge to
the zero function in C'(D). Then there is a subsequence of {u(v,)}, again denoted
by {u(v,)}, lying outside a certain C' neighbourhood of the zero function.
Compactness and bootstrapping arguments like those used above show that
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{u(v,)} possesses a subsequence which converges in C*(D) to w say. Now w °

cannot equal the zero function but must be a non-negative solution of (3.2), which

is impossible. Hence, {u(v,}} must converge to the zero function in CcHD).
Thus the proof of (i) is complete,

(i) Suppose v, =uv,. There exists a constant k >0 such that a;—bik—cu(x)<0

forxeD and i=1,2. Then, for i=1,2, u=k is a supersolution of

—d; Au=a,u—bu’—cyuv, in D; w=0o0naD.

If we choose M>0 such that u— a,u—b,u?—c,v,(x)u+Mu are increasing
functions for i=1,2 and all xe D, it is well known (see, e.g. Amann [1]) that

u(v;) is the limit of the decreasing sequence u?’ which is defined inductively by
P=k and
iy

—d; Aull + Mu®, | ={a, —buy —c, v+ Mu® in D, u®, =0 on aD.
Since v1Z 0y, it follows from the maximum principle that ui=uf® and, by
induction, that ul’ <u? for all n. Thus, u(v) =u(v,).

We now return to the study of (3.1). First

we consider the case when q,, the
birth-rate of the prey, is small.

THEOREM 3.2. Suppose a,=A,(d,,
(3.1). Then,

(1) u is the zero function,

(i) if ax=A,(d,, 0), v is also the zero function; if a, > A,(d,, 0), v is either the zero
function or the unique positive solution of

0) and {(u,v) is a non-negative solution of

~d, Av=a,v-b,v%inD: v=0o0nabD. (3.5

Proof. On multiplying the first equation in (3.1) by u and integrating over D,
we obtain

~d, L Au(x)u(x) dx§a1J‘

D

u3(x) dx — le. uw’(x) dx.
fol

But, by the spectral theorem,

hdlj Au(x)u(x)dxé)tl(dl,O)J‘ u?(x) dx
D {2

and so we must have that u is the zero function.

Since u is the zero function, v must satisfy (3.5) and so statement (ii) follows
from the discussion in Section 2 about the solutions of a single equation.

Now suppose that a; >Ay(dy, 0). Then, (3.1) has solutions (0, 0) and (u{0), 0)
for. all values of a,. We shall seek values of a, which correspond to bifurcation
points f.rom the line of solutions (u(0), 0). Tt is straightforward to carry out a
bifurcation analysis directly on (3.1) but this yields only local results. We shall

instead c}iscuss the decoupled equations as we are then able to apply results from
global bifurcation theory to equation (3.4).

Let L be the differential expression defined by
Lv=—d, Av—c,u(0)v.

We assume without loss of generality that L is invertible, ie. that
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A (dy, —cou(0)) #£0. (Otherwise, we replace L by L+k so that L+ k is invertible
and write (3.4) as

(L +k)v = av— bv*+ c[u(v)—-u(0)]v,

where a=a,+k, and then argue as below.) Then it is well known that the
equation

Lu=fonD; u=0onaD,

has a unique solution for all fe L*D); if we denote this unique solution by K,
then K: LA D) — L*D) (and K: CY(D)— C'(D)) is a compact linear operator.
Let F: CY(D)— C'(D) be defined by

F(v) = —byv?+ c;[u(v) - u(0)]v.

Then F is continuous and, by Lemma 3.1(i), we see that [|[F(v){ = o(|v])} as v -0
in C'(D) where || | denotes the norm in C'(D).
We may write (3.4) as

v = a,Kv+ KFuv. 3.6

Since |KFvl|=o(vl) as v =0 in CY(D), the well known bifurcation results o
Crandall and Rabinowitz [5] and Rabinowitz [8] can be applied to (3.6). Since
@, = A(d,, —c,u(0)) is a simple characteristic value of K, bifurcation occurs at thi:
value of a, and in a neighbourhood of the bifurcation point all non-trivial
solutions (a,v) of (3.6) lie on a curve in RxCYD) of the form
{(a(a), Yy(a)): —¢ Sa =&} where a(0) = A,(d,, —c,u(0)) and yYr(ar) = aup; + terms O
higher order in « where ¢, is a positive eigenfunction of L corresponding t
A(dy, —cou(0)). Thus, for a sufficiently small and positive, the correspondin
non-trivial solutions v lie in the cone

P={veC‘(D): {x)>0 for x eD;g—::-(x)<0 for xeaD}.

Moreover, there exists a connected set of non-trivial solutions of (3.6) denoted b
S such that either S joins (A,(ds, —c,u(0)),0) to © in RXC'(D) or S join
(A(ds, —c,u(0)), 0) to (b, 0), where b is some other characteristic value of K. 1
addition, S has a connected subset $* < §—{(a(x), Y(a)): - =a =0} such tha
S+ also satisfies one of the above alternatives. Clearly, solutions (a;, v) in S
sufficiently close to the bifurcation point lie in the cone Rx P. In fact, more can b
proved.

THEOREM 3.3. (i) The connected family of solutions S* is contained in R
(i) {x eR: (A, v) € §7}=(A,(dz, —c,u(0)), ).

Proof. (i) Suppose that S™ is not contained in R X P. Then there exists (Aq, vo)
S*N{RxaP) such that (Ag, vo) # (A {d;, —c2u(0)), 0) and (A, vo) is the limit of
sequence {(A,,v,)} contained in S*N(RXP). Choose M>0 such tha
Ao — botg+ exu(vg) —u(0)+ M>0 and M —c,u(0)>0 for all xeD. Then, as v
satisfies

(L +M)vg=(Ag— bty + co(ulvg) —u(0)) + M)ug, for xeD,

we have
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we have that
(L+M)vg(x)=0, for xeD. (3.7

Since vqeaP, either v, has an interior zero in D or su lon has a zero on 6D
Hence, .1t follo.ws from (3.7) and the strong maximum pri;ciple that v,=0 Thus.
(Ao, 0) is a bifurcation point of (3.6). Hence, Ao must be an eig?enva;]ue oE
~d, Au—c,u(0); but, since close to a bifurcation point all bifurcating solutions
have thefsalme nodal behaviour as the corresponding eigenfunctions and v, =0 for
ggn:;;i:edoli I;)\ﬁh_‘;sxt;?t Ao = Ay(ds, —c,u(0)), which is a contradiction. Hence, S* is
(i) Let (A, v)€S8™*. We have that

Ly = Av—bv*+ o[ u(v) — u(0)]v in D. (3.8)

:ir;ie I!)) fn% z S(“u) E; 11;:(0). Thusl, ?ultiplying both sides of (3.8) by v and integrating
g the spectral theorem as in the proof of Th
A Zleast eigenvalue of I, ie. A=A (d,, —czu(O)I)). corem 3.2 shows that
It. remains to prove .that S” cannot approach « for any finite value of A; we
?;hli\)ferteigs by ;Pta(ljt;;ng an a priori bound for the solutions of (3.6) Supf)ose
2 ies on . oose Mfia,) such that a,v—b,v?+ 0
v>M(az). Let U={xe€ D: v(x)>M(a,)}. Then,2 : catlOv <0 whenever

—d> AV = 4,0 — b0° + u(V)V = a0 — byv? + cu(0)v =0, for xeU.

Smce< v(x})=M(a,) for xeal, it follows from the maximum principle that
u.(x)=M(a2) .for x e U. Hence, v(x)=M(a,) for all xeD. Thus, the right hand
side of equation (3.4) is bounded in C(D), the constant being dépendent on a

and so standard bootstrapping argument show that there exists K(a;)>0 2};
that [|v||<.K(a2) where || || denotes the C(D) norm. i "

Wh"grhusi,s :fn {A: ()-Ll,)lu)eS "} were bounded, $* would be bounded in Rx C(D),
i COHHGCIEESSI't e. Hence, {\: (A, v)€ 8§} is unbounded and so, since this set is

o connecte ,3 i r}?ust equal (A .,(dz, —c,u{0)}, =0). This completes the proof.
oo 50111 g shows the f:x1stence of §¥, an unbounded continuum of
o) _1ons]0f equatf(‘_).n (3.6). Close to the bifurcation point (A,(ds,
mazy incr;aséz 1sd small and positive so that u(v) is also positive. As a, increases, v
oasrease : n io u(t;) may become equal to the zero function, i.e. a non-trivial
on v T'hgua l(:ﬂ }(1 .6) may correspond to a solution (u, v) of the system (3.1)
oA Of. a 6)nex theorem shows that, for sufficiently large a,, the non-trivial
.6} must correspond to a trivial solution of (3.1).

THE
a2>K01:;15:l 3.4. For every fixed value of a,, there exists K >0 such that, whenever
» tnere are no solutions (u, v) of (3.1) with u and v both positive.

Proof. Let (u,v) be an .
s the wuni y non-negative solution of (3.1). Suppose that
Then, v is the unique positive solution of the equation PP at v#0.

—dy; Av—cuv =au—bw2in D; v=0o0naD. (3.9)

Let .
tisntlfcfﬁme.: ;he %e?l st eigenvalue and let ¢, denote the corresponding eigenfunc-
is easy to cl\lmtk Dlnch}?t boundary conditions such that max {¢(x): xe D} =1. It

eck that by '(ax—d,A,)é, is a subsolution for (3.9) provided a,>daA,
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and that any sufficiently large positive constant is a supersolution. Hence, if
a;>d,A,, we must have that v = b3 (a,— dyA,)d, = k(a,)d; where k(a,) — = as
Ay —> &,

Now consider the linear eigenvalue problem

—~dy Au+ck({a)du=AuinD; u=0o0naD. (3.10

Let w,(a,) denote the least eigenvalue of (3.10). Then,
wi(a,) = inf U (dilgrad ul? + ¢ k{az)$ u?) dx: ue HYUD), [lull,,= 1}-
i

We now show that w,(a,) — ® as a, — . Suppose otherwise. Then there exists
sequence {u, } < HY(D) such that  u2 dx =1, [, |grad u,|* dx is uniformly bounded
and p ¢uZdx —>0 as n — . Since {u,} is a bounded sequence in Hj(D) and
H{(D) can be embedded compactly in L,(D), there exists a subsequence which
we again denote by {u,} such that {u,} converges to u, in L,(D). Thus
Jo & uddx =0 and so u, must be the zero function; since we must also have
fud dx =1, this is impossible and so p,(a,) —> % as a,— .

Suppose a, is chosen sufficiently large so that u{a,)>a,. Then the smalles
eigenvalue of

~dy Ad+cop=Ap inD; ¢=0o0onaD
is greater than a, and so the only non-negative solution of
—d,Au+cou=a,u—bu*in D; u=0onaD

is the zero function, i.e. if a5 is chosen sufficiently large and v# 0, we must have
that u=0 and so the proof is complete.

We can now give a reasonable description of the bifurcation diagram in th
a,—{u, v) plane. The only way in which the continuum of solutions S™ fo
equation (3.6) can join the bifurcation point (A,(dy, —c,u(0)), 0} to = is by u(v
becoming equal to zero for a, sufficiently large. If, however, u(v)=0, then v mus
be a solution of

—d, Av=a,v—b,v*inD; v=0o0naD.

Thus, the continuum of solutions of system (3.1) {(a., u(v), v): (a;, v)e S*} mus
join up with the continuum of solutions {(as, 0, v): (a,, v) is a solution of (3.5)
discussed in Theorem 3.2(i).

It is not clear that there is a unique solution which is positive in bot
components and so kinks may be possible in the continuum of solutions positiv
in both components. The above discussion on global bifurcation, however, doe
lead to the following result. -

THEOREM 3.5 (i) There exists A*>A,(d5,0) such that, for all a,e
(Ai(ds, —cou(0)), A™®), system (3.1) has at least one solution (u, v) which is positiv
in both components.

(i) There exists A =A™ such that, for all a,> X, every non-negative solution (u, v
of system (3.1) has at least one component identically equal to zero.

The above results are natural from the ecological point of view. If the birth-rat
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of the predator_ 15 t0o low (<Ai(d,, —c,u(0))), then it is impossible for the
pred:ator to survive. Note, however, that the above birth-rate is lower than that
r?qulred for the predator to survive in the absence of prey (i.e. Ay{d,, 0)}. If the
birth-rate of the predator is too high (>X), then the prey cannot survive in the
presence o.f the predator. Theorem 3.5 guarantees the existence of a range of
predator birth-rates for which prey and predator can co-exist.

4. Predator-prey systems with a, as bifurcation parameter

We ag.ain study system (3.1) but this time we fix all the parameters except for
31, the lblrt;]h-rate of the prey, which we treat as a bifurcation parameter. We now

ecouple the equations by fixing u and solving for v, Let ! '
the following equation for v: ; b et e CUD) and consider

~d; Av=a,v—bv*+cuv in D: v =0o0n aD,
which can be rewritten as
—d, Av—cuv = av~bw?in D; ©=0o0naD. (4.1)

TtlLe al?Oth equf;tion has a unique positive solution if as > A (d,, —c,u) but
otherwise the only non-negative solution of (4.1) is the i ’
o from CD) 6 G ) zero function. We define a

'U(u) =0 if azé)ll(dz, _Czu)
=unique positive solution of (4.1) if a,> A(dy, —cou).

By dustilfg the sar(ne) methods as used on v — u(v) in Lemma 3.1, it can be

prove at u —v(u) is a continuous function from CND (D
u—>v(t.4) is an increasing function. (D) to CHDY and tha
E](o)n;ﬁier a, to be fixed. For all values of a,, system (3.1) has the solution u = 0,
:Ol—uf. ?n a, = )Ll(aFI, 0), there bifurcates from this zero solution a continuum of
sol nlc;ns_ ()c-h’ u,v) with v=0 and u=u(0) where u(0) is the solution of (3.2)
e t_— ; note thatf u(0) depends on a,. The discussion in Section 2 shows that
rcation 1s to the right of A,(d,, 0) and the continuum of solutions extends from

a1=/\1(d1, 0) to a) = oo,

Whlifew s(t:)p)op_ose a2>A1(d2, 0). Then system (3.1) also has a solution (a,, 0, v(0))
aere 03 h1s the solution of (4.1) when u =0. Arguments similar to those of
n 3 show that, when a, = A,(d,, ¢,v(0)), there bifurcates from this branch of

solutions a continuum of i
atishos solutions of the form (a,, u, v) where v = v{u) and u

—dyAu=a,u—bu’—co(w)uin D; uw=0onaD. (4.2)

&Z tbe;gre,' it can b(.i shov"fn that ther.e exists a continuum of solutions $* of (4.2),
i u)ls Sc%n_tamed in RxP, ie. uz=0 whenever (a,,u)eS" and that
j_ef.v(:,’) ise , d— (/\}(dl, c1v(0)), ). If (a,, u) € S*, then u =0 and so v(u) = v(0),
1 not identically zero. Hence, the continuum of solutions of the systemn

Ay {lag, w, v(w): (a, u)e $*} cannot meet the continuum of solutions

{(ay, u(0), 0): @, > A,(d -
»ull), 0): @y >A4(d;, 0}, Thus, considerati ' - -
to the following result.l nsideration of the bifurcation diagram leads
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THEOREM 4.1. Suppose a,>> A(d,, 0). The system (3.1) has a solution which i
positive in both components provided that a, > A ,(d,, c,v{0)).

Now suppose that we fix a, = A,(d,, 0). We cannot obtain existence results o
non-trivial solutions directly by using bifurcation theory but we can procee
indirectly by using our previous results.

THeEOREM 4.2. Suppose a,=A,(d,,0). Then, provided a, is sufficiently large
system (3.1) has a solution which is positive in both components.

Proof. We have that u(() satisfies the equation
—d, Au=a,u-bu*inD; u=0o0naD.

Since the constant function a,/b, is a supersolution and b;'(a, —A,d,)¢,, where
A, is the least eigenvalue and ¢, is the principal eigenfunction of —A wit
max ¢,(x)=1, is a subsolution of the above equation, it follows that b7'(a,—
Aldl)d’léu(o)éalbfl-

It follows from an argument similar to that used in the proof of Theorem 3.
that A,(d,, —c,u{0)} — —= as a,— . Hence, for a, sufficiently large, we hav
that A,(dz, —c,u(0))<a,=A,(d,, 0) and so it follows from our previous result
(see Theorem 3.5(i)) that system (3.1} has a solution which is positive in bot
components.

Since u(0) is a non-straightforward function of a;, there seems to be no direc
way of carrying out a bifurcation analysis of the branch of trivial solution
{(a,, u(0), 0): a, > x,(d,, 0)}. However, the next theorem indicates that the non
trivial solutions whose existence is established in Theorem 4.2 bifurcate from thi
branch.

THEOREM 4.3. Suppose a,<<A{(d,, 0). Then (u(0), Q) is a stable solution of (3.1
when a, is sufficiently close to A,(d,, 0) but (u(0), 0) is an unstable solution of (3.1
when a, is sufficiently large.

Proof. The principle of linearized stability holds for (3.1} (sec Henry [6]). Thus
if we define the linear operator L: C3"(D) x C3**(D) — C*(D)x C*(D) by

9 (”) _ ( —d, Au—a,u+2b,u(0)u +c1u(0)v)
v —dy Av—av—cu(0)v !

where CZ (D) ={ue C**(D): u(x)=0 for x €3D}, we have that (u(0),0) i
stable if the spectrum of L lies entirely in the right half-plane and (u(0), 0) i
unstable if L has negative eigenvalues.

First we examine the linear operator L,: C5**(DD) — C*(D) defined by L,(u)=
—d, Au—a,u+2bu(0)u. It is well known that the spectrum of L, consists entirel
of eigenvalues. Since

~d; Au(0)— a,u(0)+ bl[u(o)]z =0,
we have
—d, Au(0)—[a,— bu(0)]u(0)=0. 4.3

Since u(0) is positive, (4.3) shows that 0 is the principal eigenvalue of —d, A—a;
b,u(0) and so all the eigenvalues of —d, A—a;+2b,u(0) are positive. Thus, th
spectrum of L, lies entirely in the right half-plane.
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Suppose that A is an eigenvalue of L. Then
—d; Au—au+2bu(0u+ c,u(®v = Au,
—d; Av—a,v —cu(0)v = Ay, (4.4)
for u, v not both identically zero.
Suppose A =0. We shall show that, when a, is sufficiently close to A,(d;, 0), this

leads to a contradiction. Since the solution u{0) bifurcates from zero solution
when a; =A.(d;, 0), we can make the sup norm of u(0) as small as we please by

. making a, sufficiently close to A,(d,, 0). Since a, <A,(d,, 0), all the eigenvalues of

* -d,A—a, are positive. Hence, when a; is sufficiently close to A,(d,, 0), all the
“eigenvalues of —d, A—a, —c,u(0) are positive. Thus, for a, close to A,(d, 0), the
second equation in (4.4) implies that v=0. Then, since all eigenvalues of
—d, A—a,+2bu(0) are positive, the first equation in (4.4) implies that u =0
which is a contradiction. Hence for a, sufficiently close to A,(d,, 0), all eigen-
values of (4.4) are positive and so (u(0), 0) is stable.

Since b1 (a1 —Ad)d; =u(0)=b1'ay, it follows as in the proof of Theorem 3.4
that the least eigenvalue of —d, A—a,—~c,u(0) goes 1o ~% as q, — . Hence, for
a, sufficiently large, the least eigenvalue A, (say) of —d, A—a,~ c,u(0) is nega-
tive; let vy denote the corresponding eigenfunction. Then, since the spectrum of
—d; A—a;+2b,u(0) lies in the right half-plane, the equation

—d; Au—a,u+2bu(0)u — Agu = —cru(0)v,

has a solution. Hence, A, is an eigenvalue of (4.4), and, since A,<<0, (1(0), 0) is an
unstable solution of (3.1).

The fact demonstrated in Theorems 4.1, 4.2 and 4.3 that prey and predator can
co-exist provided the prey birth-rate is sufficiently high agrees with what is
suggested by the ecological considerations that the high birth-rate enables the
prey and hence the predator to survive.

5. Systems of competing species

We now consider the system which arises when u and correspond to
competing species, viz,

~d; Au=a,u—bu*—cuv in D; u=0onaD,

~dy Av = ayv— by — cuuv in D; =0 on aD, (5.1)

where by, ¢y, by, c,>>0. As in the previous section, the equations can be
decoupled; this leads to the functions u(v), respectively v(u), the maximal
non-negative solutions of the first and second equations of (5.1) for fixed v,
respectively fixed u. We shall fix a, and treat a. as a bifurcation parameter.
Arguments similar to those used in the proof of Theorem 3.2 lead to the following
result which describes the situation where a, is smail.

. THEOREM 5.1. Suppose a,;=A,(d,,0). Then,
(1) (0,0) is the only non-negative solution of (5.1} if a,=A,(dy, 0).
(i) (0,0) and (0, v(0)) are the only non-negative solutions of (5.1) if ay> A (d,, 0).



32 J. Blat and K. J. Brown

In fact, the curve of solutions § of the form (a,, 0, v(0)) bifurcates from t
curve corresponding to the zero solution at a, = A,(d», 0); bifurcation is to the
right and {a: (a, 0, v{0)) e §} =[A,{d;, 0), =). ‘

Now suppose that a, > A,(d;, 0). Then, for all values of a,, we have the solutiof
(u(0), 0) of (5.1) and we can investigate bifurcation from this branch by consider;
ing the equation

—dy Av=a,v—b,v?>—c,u(vyvin D; v=0o0nsD. (5.2’,

Bifurcation occurs when a, = A,(d,, c,u(0)). As in Section 3, it can be shown that
there exists a continuum S* of solutions (a,, v} of (5.2) such that v>0 for all
veS" and S intersects with the curve corresponding to the zero solution only
when a, = A,(d,, c,u(0)).

On multiplying (5.2) by v and integrating by parts, we obtain that a,> A,(d,, 0)
for all a, such that (a,, v)e $*. Also, a maximum principle argument similar to
that used in the proof of Theorem 3.3 (ii) shows that v <<a,/b, for all such v such
that (a,, v)e 8™ and so, by bootstrapping arguments, for all a,, there exists
M(a,}>>0 such that ||v||= M(a,) whenever (a,, v) € S™ where || || denotes the no
in C'(D). Since S* connects (A,(d,, cou(0)), 0) with « in C(ID), it follows that
{az: (ay, ) €SI 2(A1(ds, cu(0)), ). _

A theorem analogous to Theorem 3.4 again holds for this case, i.e. there exist
K >0 such that, if a,> K, then all solutions (&, v) of (5.1) have at least one
component identically equal to zero. The only change required in the proof is that
A, and ¢4, the least eigenvalue and principal eigenfunction of the Laplacian, must
be replaced by the least eigenvalue and principal eigenfunction of

~dy A+ cou(0}p=Ad inD; ¢=00noD,

in order to obtain a subsolution which gives a lower bound for v in terms of a..
Thus, as in the predator-prey case, the continuum of solutions {{a,, u(v), v):
veS™} which emanates from the continuum of trivial solutions of the form
(az, u(0), 0} must join up with the continuum of trivial solutions of the fo
(as, 0, v{(0)).

The above results can be summarized as follows.

THEOREM 5.2. Suppose a,>A(d,, 0). There exist numbers (i, ma, 5 Such th,a
Ayldy, OY<p = p,<ps and
(1) whenever = a,=u,, system (5.1) has at least one solution (u, v) which is
positive in both components;
(i) whenever a,> s, every non-negative solution (u,v) of system (5.1) has at
least one component identically equal to zero.

We do not know the direction of the bifurcation of the branch of non-trivial
solutions from the trivial branches where at least one component is identically.
zero. This direction will depend in general on the relative sizes of by, b,, ¢; and c,.
However, we have obtained the ecologically reasonable result that in order for the
competing species to co-exist then the birth-rates must satisfy a,> A,(d,, 0) and
a,>A(d,, 0), i.e. the birth-rates of the species must be greater than the birth-
rates required for the existence of either species in the absence of the other but, if
the birth-rate of one species is too big relative to the birth-rate of the other
species, then co-existence is impossible.
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Finally, in this section, we discuss an example where it is possible to give a
reasonably precise description of the continuum of solutions where neither
component is identically zero. Consider the following special system

—Au=(ag;,—bu—cv)uin D; u=0onaD,

) (5.3)
—Av=(a,—cvo—bu)v in D; v=0o0naD.

If a, = a; = a, then system (5.3) has a solution of the form v = au provided that u
satisfies the single equation

—Au={(a—(b+eac))uin D; u=0onsD. 5.4)

For any fixed a, 0<a <=, equation (5.4) has a unique positive solution u(c)
provided that a>A; where A, denotes the least eigenvalue of —A with zero
boundary conditions on D. When a =0, we obtain the solution u(0) (using the
same notation as earlier in the section). Since u{a)=a/(b+ ac), it follows that
lim u(a)=0. Arguments similar to those used in Lemma 3.1 show that a — u(a)

is a continuous mapping from R to CY(D).
Now suppose that (&, v) is any solution of (5.3) such that u and v are positive
on D. Then u satisfies

[-A+qg(x)Ju=a,uon D; u=0o0n48D
and v satisfies
[-A+g(x)loe=a,vy on D; v=0o0naD,

where g(x) = bu(x)+ cv(x). Since u and v are eigenfunctions of —A+ gq(x) which
do not change sign on D, they must both be eigenfunctions which correspond to
the least eigenvalue of —A+g(x) and so a, = a,. Moreover, as the least eigenvalue
of —A+g{x) is simple, it foliows that v = au for some number a > 0.

Now fix a; >A; and consider the bifurcation diagram in the a,—(u, v) plane.
Solutions which are not identially zero in either component can exist only when
a, =a, and so the continuum of non-trivial solutions joining the branch of trivial
solutions of the form (a., u(0), 0) with the branch of trivial solutions of the form
(az, 0, v(0)) is {(a,, u{a), aul(a)): a>0}.

6. Neumann boundary conditions

Finally, we show that the results of the previous section are very easy to
establish when the Dirichlet boundary condition is replaced by a Neumann
boundary condition as it is then possible to discuss positive spatially homogeneous
solutions by very elementary methods.

First consider the case where u and v are competing species, i.e. the following
system of equations is satisfied:

—d, Au=a,u—bu*—c,uv in D; j—:= 0 on oD,
(6.1)

) ov
—d; Av = av — bv*— couv in D; §;=0 on 4D,
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Spatially homogeneous solutions of (6.1) are given by solutions of the algebra
equations

(ay—byu—c,v)u=0, 62
(a,—bv—cu)v=0. )

Note that the least eigenvalue of the linear problem

o
—d, A¢p=A¢ in D, a—qb—*() on oD

H

is 0; thus we would expect bifurcations at A,(d,, 0) and A,(d,, 0) for the Dirichle
problem to be replaced by bifurcations at O for the Neumann problem.

Consider a,>0 as fixed and let a, increase from —e to «. If a,<0, then (6.2
has only the non-negative solutions (0, 0) and (a,/b4, 0). If a,>0, we also hav
the solution (0, a,/c;) and a solution (u*, v*) given by the intersection of the line
byu+cyv=a,; and b,v+cu=a,. It is easy to show algebraically or graphicall
that u*>0 and v*>0 if and only if a, lies between a,b./c; and a,c,/b,. Thus w
obtain a bifurcation diagram like that suggested by Theorem 5.2.

Similar considerations for the predator-prey case give rise to bifurcatio
diagrams like those suggested by the theorems in Sections 3 and 4.

Note. After this paper was submitted for publication, there came to o
attention two interesting preprints containing results intersecting those above bu
obtained by completely different methods, viz. C. Cosner and A. Lazer “Stabl
co-existence states in the Volterra—Lotka competition model with diffusion” an
E. N. Dancer “On positive solutions of some pairs of differential equations”.
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