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Example 1.18 Cindy shuffles a deck of playing cards. Is it likely that she is the first

person in history to achieve this particular ordering of the cards?

This is another of those problems that defies intuition. Of all of the people in history,

almost surely someone must have attained the same shuffle as Cindy. By the multipli-

cation rule, there are

52!= 80658175170943878571660636856403766975289505440883277824000000000000

different shufflings. Yikes! Perhaps Cindy’s shuffle is likely unique after all. To address

the likelihood of her shuffle being unique, some back-of-the-envelope calculations are

required. The world population is about seven billion people. Approximately half of

the people that have ever lived are currently alive, so assume that 14 billion people have

lived through the ages. Now assume that everyone lives 100 years on average (dubious),

and shuffles a deck of cards ten times a day on average (even more dubious), then there

have been a total of a mere

14000000000 ·100 ·365 ·10 = 5110000000000000

total shuffles. Hence Cindy’s shuffle is almost certainly unique. Every shuffle of a deck

of cards is almost always making playing-card history.

Although simple to state and use, the multiplication rule is a surprisingly versatile tool for ad-

dressing counting (combinatorics) problems. There is a special case of the multiplication rule that

arises so often that it gets special treatment here. The object of interest is known as a permutation.

Permutations

The notion of whether a sample is taken with or without replacement is a critical notion in

combinatorics and probability. When a sample of size r, for example, is selected at random and

with replacement from a set of n distinct objects, there are nr different ordered samples that can be

taken. On the other hand, when the items are selected without replacement, the ordered items that

are selected are a permutation.

Definition 1.1 A permutation is an ordered arrangement of r objects selected from a set of n

objects without replacement.

One key question to be addressed in a counting problem is whether the ordering of the objects is

relevant. If the ordering is relevant, then using permutations might be appropriate.

Example 1.19 List the permutations from the set {a, b, c} selected 2 at a time.

Applying Definition 1.1 with n = 3 and r = 2 yields the 6 ordered pairs:

(a, b) (b, a)
(a, c) (c, a)
(b, c) (c, b).

The second column of permutations is the same as the first column in reverse order.

Theorem 1.2 The number of permutations of n distinct objects selected r at a time without re-

placement is

n · (n−1) · (n−2) · . . . · (n− r+1) =
n!

(n− r)!

for r = 0, 1, 2, . . . , n and n is a positive integer, and 0! = 1.
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We close this section with one final unifying example that stresses the importance of the fol-

lowing two questions associated with a counting problem. (a) Is the sampling performed with

replacement or without replacement? (b) Is the sample considered ordered or unordered?

Example 1.42 How many ways are there to select 4 billiard balls from a bag containing

the 15 balls numbered 1, 2, . . . , 15?

The question as stated is (deliberately) vague. It has not been specified whether

• the billiard balls are replaced (that is, returned to the bag) after being sampled, and

• the order that the balls are being drawn from the bag is important.

So there are really 2×2 = 4 different questions being asked here. The answers to these

questions are given in the 2×2 matrix below.

Without replacement With replacement

Ordered sample 15 ·14 ·13 ·12 15 ·15 ·15 ·15

Unordered sample
(

15
4

) (

18
4

)

These simplify to

Without replacement With replacement

Ordered sample 32,760 50,625

Unordered sample 1365 3060

There are several observations that can be made on the numbers in this 2× 2 matrix.

First of all, the entries in column 2 are always greater than the corresponding entries in

column 1. This is because sampling with replacement allows for more possible draws

due to the fact that the size of the population from which a draw is made remains con-

stant rather than diminishing. Secondly, the entries in row 1 are always greater than

the corresponding entries in row 2. This is because the count of ordered draws (permu-

tations) will always exceed the corresponding number of unordered draws (combina-

tions).

A further explanation of the lower-right entry of the matrix might be needed. Con-

sider 15 bins and 4 balls, where © denotes a billiard ball. One draw of 4 balls is

depicted below.

© © © ·· · ©
1 2 3 4 5 · · · 14 15

This arrangement of bins and markers corresponds to the unordered draw 2, 2, 4, 15

taken with replacement from the bag. We need to count the number of arrangements

of 14 dividers plus 4 balls, or a total of 18 objects. Since the ©’s are indistinguishable,

there are
(

18

4

)

different orderings (the outer walls are ignored).

The previous example has highlighted two important issues that arise in combinatorial problems:

order and replacement. These concerns lead to a generic class of problems known as “urn models”

in which objects are drawn sequentially from an urn.

This has been an unusually long section, so it ends with an outline of the topics considered, and

their associated formulas.
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coins, the rolling of dice, and the random sampling of items from an urn or bag. These settings are

used to allow for exact results in the case of the analytic solution of the simple problems presented

here.

Example 2.12 Three men and two women sit in a row of chairs in a random order. Let

the event A be that men and women alternate (that is, MWMWM). Find P(A).

Using the multiplication rule, there are 5! = 120 equally likely outcomes to the random

ordering, and, again by the multiplication rule, there are 12 orderings that correspond

to men and women alternating (see Examples 1.14 and 1.15). Therefore,

P(A) =
3 ·2 ·2 ·1 ·1

5 ·4 ·3 ·2 ·1
=

12

120
=

1

10
.

This analytic solution is exact and correct. It can be checked by Monte Carlo simulation.

The R function sample can be used to generate a random ordering of the five people,

who will be numbered 1, 2, 3, 4, 5 (the women are even and the men are odd, an

agreeable convention for the women). The event A associated with men and women

alternating is equivalent to chairs 1, 3, and 5 being occupied by the men, so the product

of their indices will be 15. Increasing the number of replications from 1000 (in the

coin flipping experiment in Example 2.7) to 100,000, the R code for the Monte Carlo

simulation experiment is shown below.

nrep = 100000

count = 0

for (i in 1:nrep) {

x = sample(5)

if (x[1] * x[3] * x[5] == 15) count = count + 1

}

print(count / nrep)

Using indices 1, 3, and 5 to denote both the chairs and the men is coincidental. We could

have used 1, 2, and 3, for example, to denote the men. After a call to set.seed(3) to

initialize the random number seed, the code segment is run five times yielding

0.09948 0.10076 0.10100 0.10105 0.09859.

The fact that the five probability estimates are closer to the analytic value than in the

previous Monte Carlo simulation experiment is due to the larger number of replications.

Two of these estimates of the probability that men and women alternate are less than

the true value (1/10) and three of these estimates are greater than the true value, so the

analytic solution is considered “verified.” Although we will use the terms like verified

and confirmed when Monte Carlo simulation results hover around the analytic value,

these terms are a bit misleading. The Monte Carlo simulation results provide supporting

evidence, but they do not provide a mathematical verification of an analytic solution.

Monte Carlo can be helpful to see when an analytic solution is incorrect, however,

because the estimates will not hover around the analytic solution.

Example 2.13 A hatcheck girl collects n hats and returns them at random. Let the

event A be the proper return of the hats to their owners. Find P(A).

By the multiplication rule, the hats can be returned in n! different orders. Of these

orders, only one of the orders is correct. Thus the probability of returning all hats to the

correct owners is

P(A) =
1 ·1 · . . . ·1

n · (n−1) · . . . ·1
=

1

n!
.
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Example 3.40 Let n be a positive integer. A cube is comprised of n3 smaller cubes, as

illustrated in Figure 3.28 for n = 4. If one of the n3 smaller cubes is selected at random,

give an expression for the expected number of exposed faces. (Hint: an interior smaller

cube has no exposed faces; a corner smaller cube has three exposed faces, etc.)

Figure 3.28: A 4×4×4 array of cubes.

Solution 1 (brute force). Table 3.2 classifies the number of smaller cubes of various

types for n > 1. The sum of the elements in the second column of this table is n3

as expected. If the random variable X models the number of exposed faces in a cube

selected at random, then the probability mass function of X is
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8
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Thus an expression for the expected number of exposed faces is:

E[X ] = 0 ·
(n−2)3

n3
+1 ·

6(n−2)2

n3
+2 ·

12(n−2)

n3
+3 ·

8

n3
=

6

n

for n = 1, 2, . . . . As n becomes large, limn→∞ E[X ] = 0 because of the overwhelming

number of interior smaller cubes with no exposed faces.

Type of smaller cube Number of smaller cubes Number of exposed faces

Interior (n−2)3 0

Face 6(n−2)2 1

Edge 12(n−2) 2

Corner 8 3

Table 3.2: Classifying the cubes.

Solution 2 (finesse). The total number of faces on the smaller cubes is 6n3. The total

number of exposed faces on the smaller cubes is 6n2. If a face of a smaller cube is

selected at random, the probability that the face is exposed is

6n2

6n3
=

1

n

which is also the expected number of exposed faces. Since there are six faces on a

smaller cube selected at random, the expected number of exposed faces is

6

n
.
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Using similar methodology, the population variance of a binomial(n, p) random variable is

σ2 = np(1− p)

and the population skewness and kurtosis are

E

[

(

X −µ

σ

)3
]

=
1−2p

√

np(1− p)
and E

[

(

X −µ

σ

)4
]

= 3+
1−6p(1− p)

np(1− p)
.

The population skewness and kurtosis converge to 0 and 3, respectively, in the limit as n → ∞.

Finally, the moment generating function for a binomial(n, p) random variable is

M(t) =
(

1− p+ pe t
)n

−∞ < t < ∞.

The shape of the probability mass function for a binomial(n, p) random variable typically follows

a bell shape. Consider the following three binomial random variables.

• The number of fours in 60 rolls of a fair die: X ∼ binomial(60, 1/6).

• The number of even numbers in 60 rolls of a fair die: X ∼ binomial(60, 1/2).

• The number of non-fours in 60 rolls of a fair die: X ∼ binomial(60, 5/6).

Plots of the bell-shaped probability mass functions are shown in Figure 4.1, with identical vertical

scales on the three probability mass functions. The left-hand probability mass function is centered

around µ = 60 · 1
6
= 10 and is skewed to the right; the middle probability mass function is centered

around µ= 60 · 1
2
= 30 and is symmetric; the right-hand probability mass function is centered around

µ = 60 · 5
6
= 50 and is skewed to the left. The R commands that create these plots are given below.

par(mfrow = c(1, 3))

x = 0:60

plot(x, dbinom(x, 60, 1 / 6), type = "h")

plot(x, dbinom(x, 60, 1 / 2), type = "h")

plot(x, dbinom(x, 60, 5 / 6), type = "h")

The mfrow argument in par indicates that a 1× 3 array of plots is to be displayed. The dbinom

function returns the probability mass function for the binomial distribution.

The binomial distribution is one of the pillars in applied probability because it arises so often

in applications. Applications of the distribution are now considered in the following sequence of

examples.
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xxx

f (x)f (x)f (x)

Figure 4.1: Three binomial probability mass functions.
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6.4 Bivariate Normal Distribution

Just as the normal distribution plays a central role as a univariate distribution, the bivariate normal

distribution is the fundamental bivariate distribution. This distribution has several mathematically

and geometrically elegant properties and also proves to be quite useful in applications. Some of the

early development associated with a distribution like the bivariate normal was done by Sir Francis

Galton in the late 19th century concerning data pairs (X , Y ) consisting of the average heights of

parents, adjusted for gender differences, X , versus the adult heights of their offspring, adjusted for

gender differences, Y .

Definition 6.10 The continuous random variables X and Y with joint probability density function

f (x, y) =
1

2πσX σY

√

1−ρ2
e
− 1

2(1−ρ2)

[

(

x−µX
σX

)2
−2ρ

(

x−µX
σX

)(

y−µY
σY

)

+
(

y−µY
σY

)2
]

,

which is defined on the support A = {(x, y) | −∞ < x < ∞,−∞ < y < ∞} with the associated

parameter space

Ω = {(µX , µY , σX , σY , ρ) | −∞ < µX < ∞,−∞ < µY < ∞, σX > 0, σY > 0,−1 < ρ < 1}

are bivariate normal random variables with parameters µX , µY , σX , σY , and ρ.

The choice of symbols used for the five parameters will come as no surprise in that they also

happen to be the following expected values:

E[X ] = µX E[Y ] = µY V [X ] = σ2
X V [Y ] = σ2

Y

and ρ is the population correlation. A plot of the joint probability density function for one particular

choice of the five parameters is shown in Figure 6.18. Although the support for X and Y covers all

of R 2, only a square region is shown in the figure. For all values of the parameters, the bivariate

normal probability density function is unimodal with the mode at (µX , µY ). The height of the joint

probability density function at the mode is

f (µX , µY ) =
1

2πσX σY

√

1−ρ2
.

It is hard to distinguish one bivariate normal distribution from another based on three-dimensional

graphs of the joint probability density function like the one in Figure 6.18. They all look like

mountains. Level surfaces of the joint probability density function tend to be more visually distinct.

x
y

f (x, y)

Figure 6.18: The joint probability density function of a bivariate normal distribution.
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The rather complicated joint probability density function f (x, y) has level surfaces that are con-

centric ellipses. Level surfaces are also known as contours and they are the set of points at which

f (x, y) assumes a constant value. Consider first the simple case when µX = µY = ρ = 0. In this case,

equating the joint probability density function to a constant and performing some algebra gives the

usual form of an ellipse

x2

σ2
X

+
y2

σ2
Y

= c

for some constant c. In a more general case where ρ is nonzero, but the population means continue

to be 0, the equation for the ellipse becomes a bit more complicated:

x2

σ2
X

−
2ρxy

σX σY

+
y2

σ2
Y

= c

for some constant c. Finally, in the most general case, the ellipse has the form

(x−µX )
2

σ2
X

−
2ρ(x−µX )(y−µY )

σX σY

+
(y−µY )

2

σ2
Y

= c

for some constant c. One particular ellipse gets its own name. The population concentration ellipse

is the level surface containing the ordered pairs

(µX −σX , µY −σY ), (µX −σX , µY +σY ), (µX +σX , µY −σY ), (µX +σX , µY +σY ).

Figure 6.19 displays four population concentration ellipses for four different sets of parameters for

the bivariate normal distribution. The ellipse in the upper-left plot is a circle (a special case of an

ellipse), so one can conclude that the variances are equal, that is σ2
X = σ2

Y , and ρ = 0. The ellipse

xx

xx
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yy

Figure 6.19: Level surfaces of the joint probability density function.


