
Chapter 9

Topics in Time Series Analysis

This chapter presents several topics in time series analysis. These include several of the popular time

series models which are special cases of the ARMA(p, q), including the software required for fitting

these models. The first section surveys the probability models and statistical methods associated with

autoregressive models, more specifically the AR(1), AR(2), and AR(p) models. The second section

surveys the probability models and statistical methods associated with autoregressive models, more

specifically the MA(1), MA(2), and MA(q) models. It is important to know the properties of these

special cases of the ARMA(p, q) model in order to successfully fit such a model to a realization

of a time series. This will allow us to build an inventory of population autocorrelation and partial

autocorrelation functions for these models that can be matched to their statistical counterparts for

building a time series model. Time series analysts tend to use the smallest possible p and q values

that adequately describe a time series. For this reason, separate subsections are devoted to the AR(1),

AR(2), MA(1), and MA(2) time series models.

9.1 Autoregressive Models

Autoregressive models for a time series {Xt} will be considered in this section. An autoregressive

model of order p is a special case of an ARMA(p, q) model with no moving average terms (that is,

q = 0), specified as

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt ,

where φ1, φ2, . . . , φp are real-valued parameters and {Zt} is a time series of white noise with pop-

ulation mean zero and population variance σ2
Z . The formulation of the AR(p) time series model

looks quite similar to that of a multiple linear regression model with p independent variables. These

independent variables are also known as predictors, regressors, or covariates in regression analysis.

That is the genesis of the term autoregressive to describe this model. The prefix auto means self,

indicating that this model has the current value of the time series {Xt} written as a linear function

of the p previous versions of itself plus a white noise term Zt . The white noise term is critical to the

model because without it, there would be no randomness in the model.

Rather than diving right into an AR(p) model, we first introduce the AR(1) and AR(2) models

in separate sections because the mathematics are somewhat easier than the general case and some

important geometry and intuition can be developed in these restricted models. In addition, an AR(1)

or AR(2) model is often an adequate time series model in a particular setting. We always want a



Section 9.1. Autoregressive Models 493

model with the fewest possible number of parameters that adequately approximates the underlying

time series probability model. In the sections that follow, we will

• define the time series model for {Xt},

• determine the values of the parameters associated with a stationary model,

• derive the population autocorrelation and partial autocorrelation functions,

• develop algorithms for simulating observations from the time series,

• inspect simulated realizations to establish patterns,

• estimate the parameters from a time series realization {xt},

• assess the adequacy of the time series model, and

• forecast future values of the time series using both point and interval estimates.

The purpose of deriving the population autocorrelation and partial autocorrelation functions is to

build an inventory of shapes and patterns for these functions that can be used to identify tentative

time series models from their sample counterparts by making a visual comparison between popula-

tion and sample versions. This inventory of shapes and patterns plays an analogous role to knowing

the shapes of various probability density functions (for example, the bell-shaped normal probability

density function or the rectangular-shaped uniform distribution) in the analysis of univariate data

in which the shape of the histogram is visually compared to the inventory of probability density

function shapes.

In each section that follows, a single example of a time series will be carried through the various

statistical procedures given in the list above. Stationarity plays a critical role in time series analysis

because we are not able to forecast future values of the time series without knowing that the prob-

ability model is stable over time. This is why the visual assessment of a plot of the time series is

always a critical first step in the analysis of a time series.

9.1.1 The AR(1) Model

The autoregressive model of order 1 is defined next. It has a closed-form expression for the popula-

tion autocorrelation function and is frequently used in applications.

Definition 9.1 A first-order autoregressive time series model, denoted by AR(1), for the time

series {Xt} is defined by

Xt = φXt−1 +Zt ,

where φ is a real-valued parameter and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

No subscript is necessary on the φ parameter because there is only one φ parameter in the AR(1)

model. So there are two parameters that define an AR(1) model: the coefficient φ and the population

variance of the white noise σ2
Z .

The current value in the time series, Xt , is given by the parameter φ multiplied by the previous

observed value in the time series, φXt−1, plus the current white noise term Zt . This model has the
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form of a simple linear regression model forced through the origin in which Xt is being predicted by

the previous value of the time series Xt−1. The parameter φ plays the role of the slope of the regres-

sion line. Thinking about an AR(1) model as a simple linear regression model suggests a statistical

graphic that can be helpful in determining whether it is an appropriate model for a particular time

series. A plot of xt on the vertical axis against xt−1 on the horizontal axis should be approximately

linear if the AR(1) model is appropriate. The slope of the regression line on this plot corresponds to

φ, and the magnitude of the variability of the points about the regression line is determined by the

population variance of the white noise σ2
Z .

Some authors prefer to parameterize the AR(1) model as

Xt = φ1Xt−1 +φ0Zt ,

where φ0 and φ1 are real-valued parameters. We avoid this parameterization because the φ0 param-

eter is redundant in the sense that the population variance of the white noise σ2
Z is absorbed into the

φ0 parameter. Also, some authors use a − rather than a + between the terms on the right-hand side

of the model.

To illustrate the thinking behind the AR(1) model in a specific context, let Xt represent the

closing price of a particular stock on day t. The AR(1) model indicates that today’s closing price,

denoted by Xt , equals φ multiplied by yesterday’s closing price (φXt−1), plus today’s random white

noise term Zt .

Stationarity

One initial important question concerning the AR(1) model is whether or not the model is sta-

tionary. Consider a thought experiment that determines whether an AR(1) model is stationary for

specific values of φ. For one particular instance, consider φ = 0. In this case the AR(1) time series

model reduces to

Xt = Zt ,

which is a time series model consisting solely of white noise. We know from Example 7.15 that a

time series model of white noise terms is stationary. Now consider another instance, φ = 1. In this

case the AR(1) time series model reduces to

Xt = Xt−1 +Zt ,

which indicates that each value in the time series is the previous value plus the current white noise.

In this case the population variance of the process is increasing with time because the number of

white noise terms accumulate over time (see Example 7.8), so the AR(1) model with φ = 1 violates

one of the stationarity conditions given in Definition 7.6. The AR(1) model with φ = 1 can be

recognized as a random walk model from Example 7.4, and it was determined to be nonstationary

in Example 7.17. So we have established that the AR(1) time series model is stationary for φ = 0

and nonstationary for φ = 1. We now try to determine general restrictions on φ associated with a

stationary AR(1) time series model. We take four different approaches to establishing the values of

the coefficient φ that lead to a stationary model. The four approaches provide a review of several

concepts defined previously.

Approach 1: Causality. In the derivations concerning the AR(1) time series model that follow,

it will be beneficial to write the time series value Xt as a linear combination of the current and

previous white noise values. This will allow us to use the definition of causality in Definition 8.2 to

determine the values of φ associated with a stationary AR(1) model. To begin, recall that the AR(1)

model given by

Xt = φXt−1 +Zt
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can be shifted in time and is equally valid for other t values, for example,

Xt−1 = φXt−2 +Zt−1

Xt−2 = φXt−3 +Zt−2

...

Using successive substitutions into the AR(1) model results in

Xt = φXt−1 +Zt

= φ(φXt−2 +Zt−1)+Zt

= φ2Xt−2 +φZt−1 +Zt

= φ2 (φXt−3 +Zt−2)+φZt−1 +Zt

= φ3Xt−3 +φ2Zt−2 +φZt−1 +Zt

...

= Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · · .

This can be recognized as an MA(∞) time series model. Representing an AR(1) model as an MA(∞)

model is known as duality. We now determine the constraints on the parameter φ which are required

for stationarity. This is the form that is required for causality from Definition 8.2. The coefficients

ψ1, ψ2, . . . for the AR(1) model from Definition 8.2 are

ψ1 = φ, ψ2 = φ2, ψ3 = φ3, . . . ,

or in general, ψ j = φ j, for j = 1, 2, . . . . Definition 8.2 requires that

∞

∑
j=1

ψ2
j =

∞

∑
j=1

φ2 j = φ2 +φ4 +φ6 + · · ·< ∞

for the time series model to be written in causal form. This summation is a geometric series that

converges when |φ| < 1, or equivalently, when −1 < φ < 1, so these are the values of φ for which

the AR(1) model is causal, which also implies that the model is stationary. Expressing the AR(1)

model as an MA(∞) model will also be helpful in the subsequent derivation of the population auto-

covariance and autocorrelation functions.

Approach 2: Backshift operator. Although the purely algebraic derivation of the causal form

of the AR(1) time series model using standard algebra techniques from Approach 1 works fine for

establishing stationarity, there is an alternative approach which is slightly more elegant that exploits

the backshift operator B. The AR(1) model

Xt = φXt−1 +Zt

can be rewritten as

Xt −φXt−1 = Zt ,

which can be expressed using the backshift operator as

(1−φB)Xt = Zt .
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The first-order polynomial φ(B) = 1−φB generalizes to a polynomial in B of order p for an AR(p)

model. Dividing both sides of this equation by 1−φB gives

Xt =
Zt

1−φB
.

For values of φ satisfying −1 < φ < 1, this can be recognized as a geometric series in B:

Xt =
(
1+φB+φ2B2 +φ3B3 + · · ·

)
Zt .

Executing the B operator converts this to the form

Xt = Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · · ,
which is the same form that we encountered using the successive substitutions in the causality ap-

proach.

Approach 3: Unit roots analysis. Theorem 8.3 indicates that all AR(1) models are invertible

and they are stationary when the root of

φ(B) = 1−φB = 0

lies outside of the unit circle in the complex plane. The solution to this equation is

B =
1

φ
.

This root falls on the real axis in the complex plane and lies outside of the unit circle when

−1 < φ < 1,

which is consistent with Approaches 1 and 2.

Approach 4: Definition of stationarity. We can also return to first principles to establish the

values of φ associated with a stationary AR(1) model. This approach also results in the derivation

of the population autocorrelation function. Recall from Definition 7.6 that a time series model is

stationary if (a) the expected value of Xt is constant for all t, and (b) the population covariance

between Xs and Xt depends only on the lag |t − s|. Using the causal formula for the AR(1) time

series model expressed as an MA(∞) time series model from Approach 1, the expected value of Xt

is

E [Xt ] = E
[
Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · ·

]

= E [Zt ]+φE [φZt−1]+φ2E [Zt−2]+φ3E [Zt−3]+ · · ·
= 0

for all values of the parameters φ and σ2
Z , and all values of t. Again using the causal formula for the

AR(1) time series model expressed as an MA(∞) time series model,

γ(s, t) = Cov(Xs, Xt)

= Cov
(
Zs +φZs−1 +φ2Zs−2 + · · · , Zt +φZt−1 +φ2Zt−2 + · · ·

)

= Cov
(
Zs, φ|t−s|Zs

)
+Cov

(
φZs−1, φ|t−s|+1Zs−1

)
+Cov

(
φ2Zs−2, φ|t−s|+2Zs−2

)
+ · · ·

= φ|t−s|σ2
Z +φ|t−s|+2σ2

Z +φ|t−s|+4σ2
Z + · · ·

=
(
φ|t−s|+φ|t−s|+2 +φ|t−s|+4 + · · ·

)
σ2

Z

= φ|t−s|
(

1

1−φ2

)

σ2
Z |t− s|= 0, 1, 2, . . .
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for −1 < φ < 1. Since E [Xt ] = 0 for all values of t and the population autocovariance function

depends only on the lag |t− s|, we conclude that the AR(1) process is stationary when −1 < φ < 1.

So the population autocovariance function can be expressed in terms of the lag k as

γ(k) =

(
φk

1−φ2

)

σ2
Z k = 0, 1, 2, . . . .

Dividing by the population autocovariance function by

γ(0) =

(
1

1−φ2

)

σ2
Z

gives the population autocorrelation function

ρ(k) =
γ(k)

γ(0)
= φk k = 0, 1, 2, . . . .

Based on the four approaches, we now know beyond a shadow of doubt that an AR(1) model is

stationary for values of the parameter φ satisfying −1 < φ < 1. This derivation constitutes a proof

of the following result, which will be stated for just the nonnegative lags. Many authors list the lags

as k = ±1,±2, . . . , but we appeal to Theorem 7.1 to cover the negative lags and only report the

nonnegative lags in all of the population autocorrelation functions given in this chapter.

Theorem 9.1 The AR(1) time series model for {Xt} is stationary for values of the parameter φ
satisfying −1 < φ < 1 and σ2

Z satisfying σ2
Z > 0 with population autocorrelation function

ρ(k) = φk k = 0, 1, 2, . . . .

The derivation of ρ(k) = φk for k = 0, 1, 2, . . . provides still further evidence of the restriction

that −1 < φ < 1. If φ were equal to a value outside of this range, say φ = 2, this would result in

population correlation values outside of the range −1≤ ρ(k)≤ 1.

For all admissible values of φ on the interval−1 < φ < 1, we see from the formula ρ(k) = φk for

k = 0, 1, 2, . . . that there will be a geometric decline in the magnitude of the values in the population

autocorrelation function as the lag k increases. There are two distinct cases for φ, however, which

will result in population autocorrelation functions with distinctly different shapes. The first case is

0 < φ < 1, which gives positive population autocorrelation values at all lags. This is associated with

a time series that lingers on one side of the mean. How long it lingers depends on the magnitude of

φ. Larger values of φ indicate that nearby observations will tend to be more likely to be on the same

side of the mean, and therefore the time series will tend to linger longer on one side of the mean. The

second case is −1 < φ < 0, which gives population autocorrelation function values which alternate

in sign and is associated with a time series that is likely to jump from one side of the mean to the

other for adjacent observations. These two cases are illustrated in Figure 9.1 for the first 8 lags of

the population autocorrelation function for φ = 0.8 and φ =−0.8.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(1) model. By Def-

inition 7.4, the population lag 0 partial autocorrelation value is ρ∗(0) = 1. The population lag 1
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Figure 9.1: AR(1) population autocorrelation functions for φ = 0.8 (left) and φ =−0.8 (right).

partial autocorrelation value is ρ∗(1) = ρ(1) = φ. The population lag 2 partial autocorrelation is
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∣
∣
∣
∣

1 ρ(1)
ρ(1) ρ(2)

∣
∣
∣
∣

∣
∣
∣
∣

1 ρ(1)
ρ(1) 1

∣
∣
∣
∣

=

∣
∣
∣
∣

1 φ
φ φ2

∣
∣
∣
∣

∣
∣
∣
∣

1 φ
φ 1

∣
∣
∣
∣

= 0.

This is consistent with the result from Example 7.22 from first principles. Notice that the second

column of the matrix in the numerator is a multiple of the first column of the matrix in the numerator.

This is why the determinant of the numerator is zero. The population lag 3 partial autocorrelation is

ρ∗(3) =

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣
∣
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∣
∣
∣
∣
∣
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∣
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=
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∣
∣
∣
∣
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φ2 φ φ3
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∣
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∣
∣
∣
∣
∣

1 φ φ2

φ 1 φ
φ2 φ 1

∣
∣
∣
∣
∣
∣

= 0.

Again, the determinant in the numerator is zero because the third column is a multiple of the first

column. This pattern continues for the lag k population partial autocorrelation function, which has a

first column of the numerator matrix
[
1, φ, φ2, . . . , φk−1

]′
and last column

[
φ, φ2, φ3, . . . , φk

]′
. Since

the last column of the numerator matrix is a multiple of the first column of the numerator matrix,

the determinant of the numerator matrix is zero. This constitutes a proof of the following result.

Theorem 9.2 The population partial autocorrelation function for a stationary AR(1) process is

ρ∗(k) =







1 k = 0

φ k = 1

0 k = 2, 3, . . . .

Figure 9.2 shows the first 8 lags of the population partial autocorrelation function for φ= 0.8 and

φ=−0.8. These are the same parameter settings as in Figure 9.1. Unlike the population autocorrela-
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Figure 9.2: Population partial autocorrelation functions for φ = 0.8 (left) and φ =−0.8 (right).

tion function which tails off in magnitude for increasing lags, the population partial autocorrelation

cuts off after lag 1. When plotting the corresponding sample analogs, it is typically easier to visu-

ally assess a function cutting off rather than tailing off, particularly if there is significant random

sampling variability in the observed time series.

The Shifted AR(1) Model

The population mean function for the AR(1) model is E [Xt ] = 0. This model is not of much

use in practice because most real-world time series are not centered around zero. Adding a third

parameter µ overcomes this shortcoming. Since population variance and covariance are unaffected

by a shift, the associated population autocorrelation and partial autocorrelation functions remain the

same as those given in Theorems 9.1 and 9.2. Likewise, the condition for stationarity is unchanged.

Theorem 9.3 A shifted first-order autoregressive model for the time series {Xt} is defined by

Xt −µ = φ(Xt−1−µ)+Zt ,

where φ, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise. This

model is stationary when −1 < φ < 1. The expected value of Xt is E [Xt ] = µ. The population

autocorrelation function is

ρ(k) = φk k = 0, 1, 2, . . .

and the population partial autocorrelation function is

ρ∗(k) =







1 k = 0

φ k = 1

0 k = 2, 3, . . . .

Simulation

An AR(1) time series can be simulated by appealing to the defining formula for the AR(1) model.
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Iteratively applying the defining formula for an AR(1) model

Xt = φXt−1 +Zt

results in the simulated values X1, X2, . . . , Xn. The difficult aspect of this algorithm is how to gen-

erate the first value X1 because there is no X0 available. For simplicity, assume that the white noise

terms are Gaussian white noise. Since the expected value of Xt is E [Xt ] = 0, the population variance

of Xt is

V [Xt ] = γ(0) =

(
1

1−φ2

)

σ2
Z ,

and linear combinations of mutually independent normally distributed random variables are normal,

then the first simulated observation

X1 ∼ N

(

0,

(
1

1−φ2

)

σ2
Z

)

.

The algorithm given as pseudocode below generates an initial time series observation X1 as indicated

above, and then uses an additional n− 1 Gaussian white noise terms Z2, Z3, . . . , Zn to generate the

remaining time series values X2, X3, . . . , Xn using the AR(1) defining formula from Definition 9.1.

Indentation denotes nesting in the algorithm.

t← 1

generate Xt ∼ N
(

0,
(

1
1−φ2

)

σ2
Z

)

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φXt−1 +Zt

The three-parameter shifted AR(1) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.1 Generate a realization of n = 100 observations from an AR(1) time series

model with φ = 0.8 and Gaussian white noise error terms with σ2
Z = 9.

Since φ= 0.8 lies in the interval−1< φ< 1, this is a stationary AR(1) time series model

via Theorem 9.1. The first (optional) statement in the R code below uses the set.seed

function to establish the random number seed. The second statement sets the AR(1)

coefficient to φ = 0.8. The third statement sets the standard deviation of the Gaussian

white noise to σZ = 3. The fourth statement sets the number of simulated values to n =
100. The fifth statement defines the vector x of length n= 100 to hold the simulated time

series values. The sixth statement generates the first simulated time series observation

X1 with a call the rnorm function. Finally, the for loop iterates through the defining

formula for the AR(1) model generating the remaining observations X2, X3, . . . , X100.

set.seed(3)

phi = 0.8

sigz = 3

n = 100

x = numeric(n)

x[1] = rnorm(1, 0, sigz / sqrt(1 - phi ^ 2))

for (t in 2:n) x[t] = phi * x[t - 1] + rnorm(1, 0, sigz)
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Using the plot.ts function to make a plot of the time series contained in x, the acf

function to plot the associated correlogram, the pacf function to plot the associated

sample partial autocorrelation function, and the layout function to arrange the graphs

as in Example 7.24, the resulting trio of graphs are displayed in Figure 9.3. The points

that have been added to the time series plot can be helpful in identifying patterns. Con-

sistent with an AR(1) model with φ= 0.8 the time series plot shows that the observations

tend to have runs of observations that linger above and below the population mean of

0, which is indicated by a horizontal line. The associated sample autocorrelation func-

tion tails off as expected from Figure 9.1. The associated sample partial autocorrelation

function has a statistically significant spike at lag 1 with r∗1 = 0.8187, and then cuts

off after lag 1 as expected from Figure 9.2. The spike at lag 1 on both autocorrelation

graphs is approximately φ = 0.8, as expected. The 95% confidence intervals indicated

by the dashed lines show that the values of the sample partial autocorrelation function

do not significantly differ from zero at lags beyond lag 1.

We recommend running the simulation code from the previous example several dozen times in a
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Figure 9.3: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(1) model.
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loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. A call to the R function

Sys.sleep between the displays of the trio of plots can be used to include an artificial time delay

to allow you to inspect the plots. This will allow you to see how various realizations of a simulated

AR(1) time series model vary from one realization to the next. So when you then view a single

realization of a real-life time series, you will have a better sense of how far these plots might deviate

from their expected patterns.

There is a second way to simulate observations from an AR(1) time series. This second technique

starts the time series at an initial arbitrary value, and then allows the time series to “warm up” or

“burn in” for several time periods before producing the first observation X1. A reasonable initial

arbitrary value for the standard AR(1) model is 0; a reasonable initial arbitrary value for the shifted

AR(1) model is µ. This is the approach taken by the built-in R function named arima.sim (for

autoregressive moving average simulation), which simulates a realization of a time series. Using

the arima.sim function saves a few keystrokes over the approach taken in the previous example, as

illustrated next.

Example 9.2 Generate a realization of n = 100 observations from a shifted AR(1) time

series model with φ = −0.8, Gaussian white noise error terms with σ2
Z = 9, and mean

value µ = 10.

Since there is now a nonzero population mean value, the shifted AR(1) model is

Xt −µ = φ(Xt−1−µ)+Zt ,

where µ = 10, φ = −0.8, and σZ = 3. Since φ = −0.8 lies in the interval −1 < φ < 1,

this is a stationary AR(1) time series model. The model argument in the arima.sim

function is a list containing the value of φ. Although the default probability distribution

for the white noise is normal (that is, Gaussian white noise) with population variance

σ2
Z , the function allows for other distributions. The second argument to arima.sim is

n, the number of time series observations to be generated. The sd argument defines

the standard deviation of the white noise. The n.start argument gives the number

of observations in the warm-up period, which we specify here as 50. The R code to

generate n = 100 values from the shifted AR(1) model is given below.

set.seed(10)

x = 10 + arima.sim(model = list(ar = -0.8), n = 100, sd = 3, n.start = 50)

Figure 9.4 shows the three plots associated with the simulated values using the plot.ts,

acf, and pacf functions. The time series plot shows a radically different pattern than

the time series in the previous example in two manners. First, this simulated time series

is centered around µ = 10 (indicated by a horizontal line) rather than µ = 0. Second, ad-

jacent observations in the time series tend to jump from one side of the population mean

to other side of the population mean, which is consistent with the population autocor-

relation function from the right-hand plot in Figure 9.1. Consistent with the time series

plot, the values in the sample autocorrelation function alternate in sign and decrease

in magnitude. The sample partial autocorrelation function has a statistically significant

spike at lag 1 of r∗1 = −0.8330, and nonsignificant spikes thereafter. This is consistent

with the right-hand plot in Figure 9.2. Type

getAnywhere(arima.sim)
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Figure 9.4: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(1) model.

in order to view the R source code associated with the arima.sim function. This func-

tion can simulate a realization of any ARMA(p, q) time series model, and we will use

it for simulations subsequently.

The remaining topics associated with the AR(1) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. A sample time series that

will be revisited throughout these topics will be introduced next.

Example 9.3 The temperature in degrees Celsius of a beaver (Castor canadensis) in

Wisconsin was taken every ten minutes by telemetry on November 3–4, 1990. The re-

sulting time series of n = 100 observations is contained in the built-in data frame named

beaver2 in R. The data frame includes columns that contain the temperatures recorded

in degrees Celsius (beaver2$temp) and an indicator variable (beaver2$activ) that

reports whether or not the beaver was active outside of its lodge at the associated ob-

servation time. The data frame can be viewed by typing beaver2. More information

about the data set can be viewed by typing help(beaver2). The R statement
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plot.ts(beaver2$temp)

generates the time series plot of the temperature readings given in Figure 9.5. A vertical

dashed line has been added between x38 and x39 to signify when the beaver transitioned

from an inactive state to an active state. It is clear that a stationary time series model

is not appropriate for the entire time series because the population mean appears to

increase significantly between the inactive and active periods. So we limit our modeling

effort to just the temperatures that were recorded while the beaver was in the active state.

The n = 62 beaver temperatures during the active period, ordered row-wise, are given

in Table 9.1.

37.98 38.02 38.00 38.24 38.10 38.24 38.11 38.02 38.11

38.01 37.91 37.96 38.03 38.17 38.19 38.18 38.15 38.04

37.96 37.84 37.83 37.84 37.74 37.76 37.76 37.64 37.63

38.06 38.19 38.35 38.25 37.86 37.95 37.95 37.76 37.60

37.89 37.86 37.71 37.78 37.82 37.76 37.81 37.84 38.01

38.10 38.15 37.92 37.64 37.70 37.46 37.41 37.46 37.56

37.55 37.75 37.76 37.73 37.77 38.01 38.04 38.07

Table 9.1: Beaver temperatures at ten-minute intervals in the active state.

The question posed in this example is whether an AR(1) model is appropriate time

series model for the 62 temperatures taken during the active period.

The time series of temperatures of the beaver in the active state, the sample autocorre-

lation function, and the sample partial autocorrelation function can be graphed with the

R statements

x = beaver2$temp[beaver2$activ == 1]

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

1 100

36.5

37.0

37.5

38.0

38.5

t

xt

inactive

active

Figure 9.5: Wisconsin beaver temperatures recorded at 10-minute intervals.
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plot.ts(x)

abline(h = mean(x))

acf(x)

pacf(x)

The trio of graphs is displayed in Figure 9.6. A horizontal line has been added to the

time series plot at x̄ = 37.9. A visual assessment of the n = 62 observations from the

time series indicates that the mean value does not appear to be systematically increas-

ing or decreasing over the time period. From the documentation of the time series, one

can see that the active period for the beaver began at 3:50 PM on November 3, 1990

and ended at 2:00 AM on November 4, 1990. The ambient temperature might have an

effect on the beaver’s temperature, but this will not be pursued further. For now, we

will assume that there is no systematic, secular trend in the mean value. The variance

of the observations in the time series also seems to be stable over time. Based on this

cursory analysis, it appears plausible that the beaver’s temperature during the active pe-

riod could have been drawn from a stationarity time series model. Now we turn to the
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Figure 9.6: Time series plot, rk, and r∗k for n = 62 temperatures of an active beaver.
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interpretation of the sample autocorrelation function and the sample partial autocorrela-

tion function. The sample autocorrelation function has three initial positive statistically

significant spikes which decrease in magnitude. The correlogram tails off. This is con-

sistent with an AR(1) model. We discount the barely significant spikes at lags k = 14

and k = 15, although we could pursue other studies concerning beaver temperatures

over time to see if there might be a cyclic variation component present. Furthermore,

the partial autocorrelation function has a positive statistically significant spike at lag 1,

then cuts off after lag 1. This is also consistent with an AR(1) model. The fact that

r1 = r∗1 = 0.79 is positive is consistent with the time series plot of the beaver’s tem-

perature, which tends to linger above and below the sample mean value x̄ = 37.9 for

significant periods of time. So far, the evidence points to the AR(1) time series model

being a reasonable model for the beaver’s temperature during its active period.

The AR(1) model gives us a secondary manner to visually assess whether or not it is

an appropriate time series model for the beaver temperatures. Since the shifted AR(1)

model is

Xt −µ = φ(Xt−1−µ)+Zt ,

the aforementioned interpretation of this time series model as a simple linear regression

model means that a plot of xt−1− x̄ versus xt − x̄ (or xt−1 versus xt ) should be approxi-

mately linear. The plot displayed in Figure 9.7 contains the n− 1 = 62− 1 = 61 pairs

(xt−1, xt) of adjacent points on a set of axes, which is generated by the R statements

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

plot(x[2:n], x[1:(n - 1)])

37.4 37.6 37.8 38.0 38.2 38.4

37.4

37.6

37.8

38.0

38.2

38.4

xt−1

xt

Figure 9.7: Scatterplot of adjacent pairs of temperatures of an active beaver.
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abline(lm(x[2:n] ~ x[1:(n - 1)]))

The paucity of points in the upper-left and lower-right portions of the scatterplot and

the approximately linear relationship between the adjacent observations lends further

evidence that the AR(1) model might be an appropriate time series model. The lm

function fits a linear model to the data pairs and the abline function plots the associated

regression line. The additional R statement

summary(lm(x[2:n] ~ x[1:(n - 1)]))

indicates that the slope of the regression line differs statistically from 0 with p-value

2 ·10−14, indicating a strong linear relationship between adjacent observations.

In conclusion, a preliminary graphical analysis of the n = 62 temperatures of the beaver

in the active state indicates that an AR(1) time series model should be on the short list of

potential time series models. The next step is to estimate the parameters in the model.

Parameter Estimation

There are two parameters, φ and σ2
Z , to estimate in the standard AR(1) model

Xt = φXt−1 +Zt .

There are three parameters, µ, φ, and σ2
Z , to estimate in the shifted AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt .

The three parameter estimation techniques outlined in Section 8.2.1 are applied to the shifted AR(1)

time series model next.

Approach 1: Method of moments. In the case of the shifted AR(1) model, we match the popu-

lation and sample (a) first-order moments, (b) second-order moments, and (c) lag 1 autocorrelation.

Placing the population moments on the left-hand side of the equation and the associated sample

moments on the right-hand side of the equation results in three equations in three unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

or

µ = X̄

V [Xt ]+E [Xt ]
2 = γ(0)+µ2 =

(
1

1−φ2

)

σ2
Z +µ2 =

1

n

n

∑
t=1

X2
t

φ = r1.

These equations can be solved in closed form for the three unknown parameters µ, φ, and σ2
Z yielding

the method of moments estimators

µ̂ = X̄ , φ̂ = r1, σ̂2
Z =

(
1− φ̂2

)

(

1

n

n

∑
t=1

X2
t − µ̂ 2

)

=
(
1− r2

1

)

(

1

n

n

∑
t=1

X2
t − X̄2

)

.
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This constitutes a proof of the following result.

Theorem 9.4 The method of moments estimators of the parameters in a shifted AR(1) model are

µ̂ = X̄ φ̂ = r1 σ̂2
Z =

(
1− r2

1

)

(

1

n

n

∑
t=1

X2
t − X̄2

)

.

These point estimators are random variables and have been written as a function of the ran-

dom time series values X1, X2, . . . , Xn. For observed time series values x1, x2, . . . , xn, the lowercase

versions of the formulas will be used.

Example 9.4 For the time series of n = 62 temperature observations of the beaver in

the active state, find the method of moments estimators of µ, φ, and σ2
Z for the AR(1)

model.

The R code below calculates and prints the point estimates of the µ, φ, and σ2
Z parame-

ters.

x = beaver2$temp[beaver2$activ == 1]

muhat = mean(x)

phihat = acf(x, plot = FALSE)$acf[2]

sig2hat = (1 - phihat ^ 2) * (mean(x ^ 2) - muhat ^ 2)

print(c(muhat, phihat, sig2hat))

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.90 φ̂ = 0.7894 σ̂2
Z = 0.01734.

These point estimates are reported to four digits because the data values were given to

four-digit accuracy. The positive value for φ̂ is consistent with the fact that the beaver’s

temperature lingers above and below the sample mean in the time series plot in Fig-

ure 9.6. The estimated standard deviation of the white noise error terms,

σ̂Z =
√

0.01734∼= 0.1317,

reflects the dispersion of the observations in Figure 9.7 about the regression line.

Approach 2: Least squares. Consider the shifted stationary AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ and φ and use calculus to find the least squares estimators of µ and φ. This will result in a slight

difference between the usual pattern of using the sample mean x̄ to estimate the population mean

µ. Once these least squares estimators have been determined, the population variance of the white

noise σ2
Z will be estimated.

The sum of squared errors is

S =
n

∑
t=2

Z2
t =

n

∑
t=2

[Xt −µ−φ(Xt−1−µ)]2 .
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The partial derivatives of S with respect to µ and φ are

∂S

∂µ
=

n

∑
t=2

2 [Xt −µ−φ(Xt−1−µ)] (−1+φ)

and
∂S

∂φ
=

n

∑
t=2

−2 [Xt −µ−φ(Xt−1−µ)] (Xt−1−µ) .

Equating the first of the partial derivatives to zero yields

n

∑
t=2

[Xt −µ−φ(Xt−1−µ)] = 0

or
n

∑
t=2

Xt −φ
n

∑
t=2

Xt−1− (n−1)µ(1−φ) = 0

or

X̄2−φX̄1−µ(1−φ) = 0

or

µ̂ =
X̄2− φ̂X̄1

1− φ̂
,

where

X̄1 =
1

n−1

n−1

∑
t=1

Xt and X̄2 =
1

n−1

n

∑
t=2

Xt .

Equating the second of the partial derivatives to zero yields

n

∑
t=2

(Xt −µ)(Xt−1−µ)−φ
n

∑
t=2

(Xt−1−µ)2 = 0

or

φ̂ =
∑n

t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

.

So the ordinary least squares estimators for µ and φ can be determined by numerically solving the

simultaneous equations

µ̂ =
X̄2− φ̂X̄1

1− φ̂
and φ̂ =

∑n
t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

for µ̂ and φ̂.

The last parameter to estimate is σ2
Z . Since

γ(0) =

(
1

1−φ2

)

σ2
Z

for an AR(1) time series model, the population variance of the white noise can be expressed as

σ2
Z =

(
1−φ2

)
γ(0).
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Replacing φ by the estimator r1 because ρ(1) = φ, and replacing γ(0) = V [Xt ] by the estimator

c0 =
1
n ∑n

t=1 (Xt − X̄)
2

gives the point estimator

σ̂2
Z =

(
1− r2

1

)
c0,

which matches the method of moments estimator from Theorem 9.4. This derivation constitutes a

proof of the following result.

Theorem 9.5 The least squares estimators of the parameters in a shifted AR(1) model are the µ̂

and φ̂ values that satisfy

µ̂ =
X̄2− φ̂X̄1

1− φ̂
and φ̂ =

∑n
t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

,

where X̄1 =
1

n−1 ∑
n−1
t=1 Xt and X̄2 =

1
n−1 ∑n

t=2 Xt . The least squares estimator of σ2
Z is

σ̂2
Z =

(
1− r2

1

)
c0.

We now apply these techniques to the beaver temperature data set from Example 9.3.

Example 9.5 Find the least squares estimators of µ, φ, and σ2
Z for the time series of

n = 62 beaver temperatures from Example 9.3.

The code below contains a function s which calculates the sum of squares, and then

uses the R optim function to minimize the sum of squares using the method of moments

estimates as initial estimates. The optim function minimizes the objective function by

default.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

s = function(parameters) {

mu = parameters[1]

phi = parameters[2]

sum((x[2:n] - mu - phi * (x[1:(n - 1)] - mu)) ^ 2)

}

optim(c(37.90, 0.7894), s)

r1 = acf(x, plot = FALSE)$acf[2]

sig2hat = (1 - r1 ^ 2) * mean((x - mean(x)) ^ 2)

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.91 φ̂ = 0.7972 σ̂2
Z = 0.01762.

Figure 9.8 shows the sum of squares for fixed µ̂ = 37.91 as a function of φ. The sum

of squares is minimized at φ̂ = 0.7972. The least squares parameter estimates are very

close to the method of moments parameter estimators. We now consider why the two

estimators are so close to one another.
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Figure 9.8: Sum of squares as a function of φ.

Since

X̄1 =
1

n−1

n−1

∑
t=1

Xt and X̄2 =
1

n−1

n

∑
t=2

Xt

contain the n−2 common values X2, X3, . . . , Xn−1, one approximation that can be applied to the least

squares estimates is to assume that X̄1
∼= X̄2

∼= X̄ for large values of n, which allows for closed-form

approximate least squares estimators:

µ̂ = X̄ and φ̂ =
∑n

t=2 (Xt − X̄)(Xt−1− X̄)

∑n
t=2 (Xt−1− X̄)

2
.

As a secondary additional approximation, the denominator of φ̂ with the first approximation in place,

n

∑
t=2

(Xt−1− X̄)
2
,

is approximately equal to
n

∑
t=1

(Xt − X̄)
2

for large values of n. With this additional assumption, the least squares estimate for φ reduces to the

approximate least squares estimate

φ̂ =
c1

c0
= r1,

which is the method of moments estimator of φ because ρ(1) = φ for an AR(1) model. With both ap-

proximations in place, the least squares estimators exactly match the method of moments estimators.

This is why the estimates from the two techniques are so close.

Approach 3: Maximum likelihood estimation. The likelihood function is the joint probability

density function of the observed values in the time series x1, x2, . . . , xn in a shifted AR(1) model is

L
(
µ, φ, σ2

Z

)
= f (x1, x2, . . . , xn),
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where the x1, x2, . . . , xn arguments on L and the µ, φ, and σ2
Z arguments on f have been dropped

for brevity. It is not possible to simply multiply the marginal probability density functions because

the values in the AR(1) time series model are correlated. In order to use maximum likelihood

estimation, we make the additional assumption that the white noise terms Z1, Z2, . . . , Zn are in fact

Gaussian white noise terms:

fZt (zt) =
1

√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞

for t = 1, 2, . . . , n, which is the probability density function of a N
(
0, σ2

Z

)
random variable. Ignor-

ing Z1 temporarily, the joint probability density function of the mutually independent white noise

random variables Z2, Z3, . . . , Zn is

fZ2,Z3, ...,Zn (z2, z3, . . . , zn) =
(
2πσ2

Z

)−(n−1)/2
e−∑n

t=2 z2
t /(2σ2

Z)

for (z2, z3, . . . , zn) ∈ R n−1. The shifted AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt

applies for all values of t, so

X2−µ = φ(X1−µ)+Z2

X3−µ = φ(X2−µ)+Z3

...

Xn−µ = φ(Xn−1−µ)+Zn.

Solving these equations for X2, X3, . . . , Xn, consider the transformation of the Z2, Z3, . . . , Zn values

X2 = µ+φ(X1−µ)+Z2

X3 = µ+φ(X2−µ)+Z3

...

Xn = µ+φ(Xn−1−µ)+Zn

conditioned on X1 = x1, which is a one-to-one transformation from R n−1 to R n−1 with inverse

transformation

Z2 = X2−µ−φ(X1−µ)

Z3 = X3−µ−φ(X2−µ)

...

Zn = Xn−µ−φ(Xn−1−µ)

and Jacobian

J =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −φ 0 · · · 0 0

0 1 −φ · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −φ
0 0 0 · · · 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1.
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By the transformation technique, the joint probability density function of X2, X3, . . . , Xn conditioned

on X1 = x1 is

fX2,X3, ...,Xn |X1
(x2, x3, . . . , xn |X1 = x1) =

(
2πσ2

Z

)−(n−1)/2
e−∑n

t=2[xt−µ−φ(xt−1−µ)]2/(2σ2
Z)

for (x2, x3, . . . , xn) ∈ R n−1 and x1 ∈ R . The final step in the derivation of the likelihood function

involves determining the marginal distribution of X1. Since

X1 ∼ N

(

µ,
σ2

Z

1−φ2

)

,

the probability density function of X1 is

fX1
(x1) =

√

1−φ2

2πσ2
Z

e−(1−φ2)(x1−µ)2/(2σ2
Z) −∞ < x1 < ∞.

The joint probability density function of X1, X2, . . . , Xn is the product of the conditional probability

density function and the marginal probability density function:

fX1,X2, ...,Xn(x1, x2, . . . , xn) = fX2,X3, ...,Xn |X1
(x2, x3, . . . , xn |X1 = x1) fX1

(x1)

for (x1, x2, . . . , xn) ∈ R n. So the likelihood function is

L
(
µ, φ, σ2

Z

)
=
(
2πσ2

Z

)−n/2
√

1−φ2 e−S(µ,φ)/(2σ2
Z),

where the unconditional sum of squares is

S (µ, φ) =
(
1−φ2

)
(x1−µ)2 +

n

∑
t=2

[(xt −µ)−φ(xt−1−µ)]2 .

The associated log likelihood function is

ln L
(
µ, φ, σ2

Z

)
=−n

2
ln
(
2πσ2

Z

)
+

1

2
ln
(
1−φ2

)
− S (µ, φ)

2σ2
Z

.

The maximum likelihood estimators µ̂ , φ̂, and σ̂2
Z satisfy

∂ ln L
(
µ, φ, σ2

Z

)

∂µ
=

(
1−φ2

)
(x1−µ)+(1−φ)∑n

t=2 [(xt −µ)−φ(xt−1−µ)]

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂φ
=− φ

1−φ2
+

φ(x1−µ)2 +∑n
t=2 [(xt −µ)−φ(xt−1−µ)] (xt−1−µ)

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
S (µ, φ)

2σ4
Z

= 0.

Although the third equation satisfies

σ̂2
Z =

S
(
µ̂ , φ̂

)

n
,

numerical methods are required to solve the equations.
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Theorem 9.6 The maximum likelihood estimators of the parameters in a shifted AR(1) model

with Gaussian white noise are the µ̂ , φ̂, and σ̂2
Z values that satisfy

∂ ln L
(
µ, φ, σ2

Z

)

∂µ
=

(
1−φ2

)
(x1−µ)+(1−φ)∑n

t=2 [(xt −µ)−φ(xt−1−µ)]

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂φ
=− φ

1−φ2
+

φ(x1−µ)2 +∑n
t=2 [(xt −µ)−φ(xt−1−µ)] (xt−1−µ)

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
S (µ, φ)

2σ4
Z

= 0.

Maximum likelihood estimation will be illustrated in the next example.

Example 9.6 Find the maximum likelihood estimators of µ, φ, and σ2
Z for the time

series of n = 62 beaver temperatures from Example 9.3.

The R code below again uses the optim function to maximize the likelihood function.

Since the default for optim is to minimize, the likelihood function is negated within the

L function. The method of moments estimators are used as initial estimates. The optim

function uses the Nelder–Mead method by default to maximize the likelihood function.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

L = function(parameters) {

mu = parameters[1]

phi = parameters[2]

sig2 = parameters[3]

-(2 * pi * sig2) ^ (- n / 2) * (1 - phi ^ 2) ^ (1 / 2) *

exp(-((1 - phi ^ 2) * (x[1] - mu) ^ 2 +

sum(((x[2:n] - mu) - phi * (x[1:(n - 1)] - mu)) ^ 2) / (2 * sig2)))

}

optim(c(37.90, 0.7894, 0.01734), L)

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.91 φ̂ = 0.7850 σ̂2
Z = 0.01697.

Table 9.2 summarizes the point estimators that have been calculated in the previous three exam-

ples for the n = 62 beaver temperatures. The point estimators associated with the three methods are

quite close for this particular time series.

Method µ̂ φ̂ σ̂2
Z

Method of moments 37.90 0.7894 0.01734

Ordinary least squares 37.91 0.7972 0.01762

Maximum likelihood estimation 37.91 0.7850 0.01697

Table 9.2: Point estimators for the AR(1) parameters for the n = 62 beaver temperatures.
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The R function ar fits autoregressive models. The parameter estimates from the three previous

examples could have been calculated with the following four R statements.

x = beaver2$temp[beaver2$activ == 1]

ar(x, order.max = 1, aic = FALSE, method = "yule-walker")

ar(x, order.max = 1, aic = FALSE, method = "ols")

ar(x, order.max = 1, aic = FALSE, method = "mle")

Table 9.3 contains the point estimates returned by the ar function. The tiny differences between

some of the entries in Tables 9.2 and 9.3 might be due to slightly different approximations and/or

roundoff in the optimization routines.

Method µ̂ φ̂ σ̂2
Z

Method of moments (Yule–Walker) 37.90 0.7894 0.01792

Ordinary least squares 37.90 0.7972 0.01724

Maximum likelihood estimation 37.90 0.7865 0.01699

Table 9.3: Point estimators for the n = 62 beaver temperatures via the ar function.

We have now derived and illustrated the three point estimation techniques, the method of mo-

ments, least squares, and maximum likelihood estimation, for the parameters in an AR(1) model

from a realization of a time series consisting of n observations. Which of these techniques provides

the best point estimators? This is not an easy question to answer because there are a large number

of factors, such as the sample size n, the values of the parameters in the model, and the fact that

there are three parameters to estimate. There will not necessarily be one universal answer to the

question. We do a focused evaluation on the point estimator for φ because it typically differs for the

three methods of point estimation. The mean square error associated with the point estimate for φ is

E
[(

φ̂−φ
)2
]

.

The following R code conducts a Monte Carlo simulation experiment which estimates the mean

square error of the three point estimators for φ for 40,000 replications. We selected the time series

model with µ = 38, φ = 0.8, σZ = 0.13, and n = 62, which are parameters that are near the estimated

parameters in the last three examples involving the time series of beaver temperatures.

nrep = 40000

mse.mom = 0

mse.ols = 0

mse.mle = 0

for (i in 1:nrep) {

x = 38 + arima.sim(model = list(ar = 0.8, sd = 0.13), n = 62, n.start = 10)

mse.mom = mse.mom + (ar(x, order.max = 1, method = "yw")$ar[1] - 0.8) ^ 2

mse.ols = mse.ols + (ar(x, order.max = 1, method = "ols")$ar[1] - 0.8) ^ 2

mse.mle = mse.mle + (ar(x, order.max = 1, method = "mle")$ar[1] - 0.8) ^ 2

}

print(c(mse.mom, mse.ols, mse.mle) / nrep)

After a call to set.seed(4) to establish the random number stream, three runs of this simulation

yielded the following estimated mean squared error values:

Method of moments : 0.0135 Least squares : 0.0117 Maximum likelihood : 0.0113.
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Furthermore, confidence intervals for the three methods do not overlap. Since small values of the

mean square error are preferred, we conclude that the maximum likelihood estimator is the preferred

estimator for these parameter settings, followed by the least squares estimator, followed by the

method of moments estimator in a distant third place.

The focus on estimation thus far has been on point estimation techniques. We also want to report

some indication of the precision associated with these point estimators. In the previous example, the

sampling distributions of µ̂ , φ̂, and σ̂2
Z in the AR(1) model are too complicated to derive analytically.

As an illustration of a confidence interval for one of the parameters, we use the asymptotic normality

of the maximum likelihood estimator of φ in the result:

φ̂
D→ N

(

φ,
1−φ2

n

)

.

This result leads to an asymptotically exact two-sided 100(1−α)% confidence interval for φ.

Theorem 9.7 For a stationary AR(1) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φ is given by

φ̂− zα/2

√

1− φ̂2

n
< φ < φ̂+ zα/2

√

1− φ̂2

n
,

where φ̂ is the maximum likelihood estimator of φ and zα/2 is the 1−α/2 fractile of the standard

normal distribution.

This asymptotically exact confidence interval will now be illustrated with the time series of

active beaver temperatures from the three previous examples.

Example 9.7 Find an approximate 95% confidence interval for φ for the AR(1) model

associated with the n = 62 beaver temperature time series values from Example 9.3.

Recall from Table 9.3 that the maximum likelihood estimator returned by the ar func-

tion is φ̂ = 0.7865. The following R code calculates a 95% confidence interval for φ.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

mle = ar(x, order.max = 1, aic = FALSE, method = "mle")$ar

alpha = 0.05

crit = qnorm(1 - alpha / 2)

lo = mle - crit * sqrt((1 - mle ^ 2) / n)

hi = mle + crit * sqrt((1 - mle ^ 2) / n)

print(c(lo, hi))

This code returns the approximate 95% confidence interval

0.6328 < φ < 0.9402

which does not contain φ = 0, giving further evidence that the AR(1) model is justified.

An AR(1) model with φ = 0 reduces to just white noise, and the beaver temperature

time series is clearly not comprised of mutually independent observations.
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Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(1) model have

been established, we are interested in assessing the adequacy of the AR(1) time series model. This

will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined by

[residual] = [observed value]− [predicted value]

or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(1) model with parameter estimates µ̂

and φ̂, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂(xt−1− µ̂ )

]

for t = 2, 3, . . . , n via Example 8.12. The next example shows the steps associated with assessing

the adequacy of the AR(1) model for the active beaver temperature time series.

Example 9.8 Fit the AR(1) model to the active beaver temperatures from Example 9.3

using the sample mean to estimate µ and the maximum likelihood estimators for φ and

σ2. Assess the fitted AR(1) model by the following five methods.

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−1 = 61 residuals and plot them as a

time series, along with the associated sample autocorrelation function and sample

partial autocorrelation function.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

m = 40

muhat = mean(x)

phihat = ar(x, order.max = 1, aic = FALSE, method = "mle")$ar

zhat = x[2:n] - (muhat + phihat * (x[1:(n - 1)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)
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The results are displayed in Figure 9.9. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There is just one sample autocorrelation function value that falls outside of the lim-

its ±1.96/
√

n (at lag 15) in the plot in Figure 9.9 of the first 40 sample autocorre-

lation function values associated with the residuals. Since we expect 40 ·0.05 = 2

values to fall outside of these limits in the case of a good fit, we fail to reject H0 in

this case. The adequacy of the fit of the AR(1) model is not rejected by this test.

(c) The additional R code below calculates the Box–Pierce and Ljung–Box test statis-

tics and the associated p-values.

n = length(zhat)

r = acf(zhat, lag.max = m, plot = FALSE)$acf[2:(m + 1)]

boxpierce = n * sum(r ^ 2)

1 - pchisq(boxpierce, m - 2)

ljungbox = n * (n + 2) * sum(r ^ 2 / seq(n - 1, n - m))

1 - pchisq(ljungbox, m - 2)

1 61
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Ẑ t

kk

rk r∗k

Figure 9.9: Time series plot, rk, and r∗k for n−1 = 61 residuals from AR(1) fitted model.
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The Box–Pierce test statistic is 27.9 and the associated p-value is p = 0.89. The

Ljung–Box test statistic is 41.8 and the associated p-value is p = 0.31. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 2 = 38

degrees of freedom. Some keystrokes can be saved by using the built-in Box.test

function in R as shown below.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 2)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 2)

The Box.test function delivers identical test statistics and p-values. The ade-

quacy of the fit of the AR(1) model is not rejected by these tests.

(d) The following additional R statements calculate the test statistic and the p-value

for the turning point test applied to the time series consisting of the n− 1 = 61

residual values for the AR(1) fit to the beaver temperatures in the active state.

n = n - 1

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic s is−0.83 and the p-value is p = 0.41. We

again fail to reject the null hypothesis in this case. The adequacy of the fit of the

AR(1) model is not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

par(mfrow = c(1, 2))

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.10. The histogram shows that all standardized

residuals fall between −3 and 3 and exhibit a bell-shaped probability distribu-

tion. The horizontal axis on the histogram is the standardized residual and the

vertical axis is the frequency. The QQ plot is approximately linear, indicating a

reasonable approximation to normality based on the n−1 = 61 residuals plotted.

The horizontal axis on the QQ plot is the standardized theoretical quantile and the

vertical axis is the associated normal data quantile. Although a formal statistical

goodness-of-fit test should be conducted, it appears that the assumption of Gaus-

sian white noise is appropriate for the AR(1) time series model based on these two

plots.
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Figure 9.10: Histogram (left) and QQ plot (right) of the fitted AR(1) standardized residuals.

We have seen a number of indicators that the AR(1) time series model is an adequate model for

the active beaver temperatures. But how do we know that there is not a better model with more terms

lurking below the surface that might provide a better fit? The next subsection considers the process

of model selection.

Model Selection

One way of eliminating the possibility of a better time series model is to overfit the tentative

AR(1) time series model with ARMA(p, q) models of higher order. We have not yet surveyed the

techniques for estimating the parameters in these models with additional terms, so for now we will

let the arima function in R estimate their parameters and compare them via their AIC (Akaike’s

Information Criterion) statistics. The AIC statistic was introduced in Section 8.2.4.

Example 9.9 For the n = 62 temperatures of an active beaver given in Example 9.3,

find the ARMA(p, q) model that minimizes the AIC.

The R code below creates a 4× 4 matrix a that will be populated with the AIC statis-

tics for the ARMA(p, q) time series models, for p = 0, 1, 2, 3 and q = 0, 1, 2, 3 using

nested for loops. The arima function is used to fit the models via maximum likelihood

estimation, whose AIC values are placed in the matrix a.

a = matrix(0, 4, 4)

x = beaver2$temp[beaver2$activ == 1]

for (p in 0:3)

for (q in 0:3)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

The results of this code are given in Table 9.4. The smallest AIC value (barely!) is set in

boldface type and corresponds to the AR(1) model. This provides further evidence that

the AR(1) model is adequate, and a more complex model is probably not warranted.

Although the AR(2) and ARMA(1, 1) models have nearly identical AIC values, the

additional parameter did not overcome the penalty inflicted by AIC for its inclusion in

the time series model.
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q = 0 q = 1 q = 2 q = 3

p = 0 −10.9 −51.1 −60.9 −64.4
p = 1 −69.7 −69.6 −67.6 −67.0
p = 2 −69.6 −67.6 −65.6 −66.4
p = 3 −67.7 −65.7 −65.1 −64.7

Table 9.4: AIC statistics for ARMA(p, q) models for the n = 62 beaver temperatures.

The $ extractor with the aic argument was used to extract the AIC statistics from the

results of the call to arima. If the coef and sigma2 components are extracted from the

list returned by the call to arima, our final model is the AR(1) model with maximum

likelihood estimates for the parameters given by

µ̂ = 37.9, φ̂ = 0.787, σ̂2
Z = 0.017.

The final model is therefore

Xt −37.9 = 0.787(Xt−1−37.9)+Zt ,

where Zt is a time series of Gaussian white noise values with σ2
Z = 0.017, as established

by the histogram and QQ plot in Example 9.8.

In some applications, just describing the time series model for the beaver temperatures in the

active state with the fitted AR(1) model is adequate. In other applications, simulating the values in

the fitted AR(1) model is the goal. But in many application areas, particularly economics, there is

often an interest in forecasting future values of a time series from a realization. In our setting, we

might be interested in this particular beaver’s future temperature based on the n = 62 temperature

values collected. The next subsection considers forecasting for the AR(1) model.

Forecasting

We now pivot to the development of a procedure to forecast future values of a time series that

is governed by an AR(1) model. To review the notation for forecasting, the observed time series

values are x1, x2, . . . , xn. The forecast is being made at time t = n. The random future value of the

time series that is h time units in the future is denoted by Xn+h. The associated forecasted value is

denoted by X̂ n+h, and is the conditional expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to calculate this forecasted value and an associated prediction interval for the AR(1)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

Recall from Example 8.12 that the forecasted value for one time unit into the future for a shifted

AR(1) model is

X̂ n+1 = µ+φ(xn−µ) .

We would like to generalize this so as to find the forecasted value h time units into the future. In

other words, we want to find X̂ n+h. The shifted AR(1) model is

Xt −µ = φ(Xt−1−µ)+Zt .
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Replacing t by n+h, which is the time value of interest, gives

Xn+h−µ = φ(Xn+h−1−µ)+Zn+h.

Taking the conditional expected value of each side of this equation results in

X̂ n+h = µ+φ
(
X̂ n+h−1−µ

)
.

Iterating on this equation for time values that are sequentially one time unit closer to the present

time t = n yields

X̂ n+h = µ+φ
(
X̂ n+h−1−µ

)

= µ+φ
[
µ+φ

(
X̂ n+h−2−µ

)
−µ
]

= µ+φ2
(
X̂ n+h−2−µ

)

...

= µ+φh−1
(
X̂ n+1−µ

)

= µ+φh−1 [µ+φ(xn−µ)−µ]

= µ+φh (xn−µ) .

Notice that the forecasted value is a function of xn, but not a function of x1, x2, . . . , xn−1. This is a

sensible forecast in the sense that for a long time horizon h into the future and a stationary shifted

AR(1) model with −1 < φ < 1,

lim
h→∞

X̂ n+h = µ.

If you were asked to forecast your temperature one year from now, you would probably say 98.6◦

Fahrenheit (or whatever your average temperature might be), regardless of whether you are healthy

or have a fever right now. Long-term forecasts for stationary time series models always tend to the

population mean.

As is typically the case in statistics, we would like to pair our point estimator X̂ n+h with an

interval estimator, which is a prediction interval in this setting. The prediction interval gives us

an indication of the precision of the forecast. In order to derive an exact two-sided 100(1−α)%
prediction interval for Xn+h, it is helpful to write the shifted AR(1) model as a shifted MA(∞) model.

Using successive substitutions, each one time unit prior to the previous substitution,

Xt −µ = φ(Xt−1−µ)+Zt

= φ [φ(Xt−2−µ)+Zt−1]+Zt

= φ2 (Xt−2−µ)+Zt +φZt−1

= φ2 [(φXt−3−µ)+Zt−2]+Zt +φZt−1

= φ3 (Xt−3−µ)+Zt +φZt−1 +φ2Zt−2

...

For −1 < φ < 1 corresponding to a stationary shifted AR(1) model, the limiting expression for Xt is

Xt = µ+Zt +φZt−1 +φ2Zt−2 + · · · ,
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which is a shifted MA(∞) model. Replacing t with n+h results in

Xn+h = µ+Zn+h +φZn+h−1 +φ2Zn+h−2 + · · · ,

Taking the conditional variance of both sides of this equation yields

V [Xn+h | X1 = x1, X2 = x2, . . . , Xn = xn]

=V
[
µ+Zn+h +φZn+h−1 +φ2Zn+h−2 + · · · |X1 = x1, X2 = x2, . . . , Xn = xn

]

= σ2
Z +φ2σ2

Z +φ4σ2
Z + · · ·+φ2h−2σ2

Z

=
(
1+φ2 +φ4 + · · ·+φ2h−2

)
σ2

Z

=
1−φ2h

1−φ2
σ2

Z

because the error terms at time n and prior are observed and can therefore be treated as constants.

Assuming Gaussian white noise terms, an exact two-sided 100(1−α)% prediction interval for Xn+h

is

X̂ n+h− zα/2

√

1−φ2h

1−φ2
σZ < Xn+h < X̂ n+h + zα/2

√

1−φ2h

1−φ2
σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1−α)% prediction interval.

Theorem 9.8 For a stationary shifted AR(1) time series model, the forecasted value of Xn+h is

X̂ n+h = µ̂ + φ̂h (xn− µ̂ ) .

and an approximate two-sided 100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√

1− φ̂2h

1− φ̂2
σ̂Z < Xn+h < X̂ n+h + zα/2

√

1− φ̂2h

1− φ̂2
σ̂Z .

Example 9.10 For the beaver temperature time series values x1, x2, . . . , x62 from Ex-

ample 9.3, forecast the next six values in the time series and give approximate 95%

prediction intervals for the forecasted values, assuming that the time series arises from

a shifted AR(1) model fitted by maximum likelihood estimation.

The R code below calculates the forecasted values and associated approximate 95%

prediction interval limits. The forecasts are stored in the vector pred, the lower and

upper prediction limits are stored in the vectors lo and hi, respectively.

x = beaver2$temp[beaver2$activ == 1]

model = ar(x, order.max = 1, aic = FALSE, method = "mle")

phihat = model$ar

muhat = model$x.mean

sighat = sqrt(model$var.pred)

n = length(x)

hmax = 6
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alpha = 0.05

crit = qnorm(1 - alpha / 2)

pred = numeric(hmax)

lo = numeric(hmax)

hi = numeric(hmax)

for (h in 1:hmax) {

pred[h] = muhat + phihat ^ h * (x[n] - muhat)

stderr = sqrt((1 - phihat ^ (2 * h)) / (1 - phihat ^ 2)) * sighat

lo[h] = pred[h] - crit * stderr

hi[h] = pred[h] + crit * stderr

}

cat(lo, "\n", pred, "\n", hi, "\n")

Some keystrokes can be saved by using the R built-in generic predict function to

compute the forecasts and the associated standard errors.

x = beaver2$temp[beaver2$activ == 1]

model = ar(x, order.max = 1, aic = FALSE, method = "mle")

predict(model, n.ahead = 6)

The two code segments produce identical results, which are summarized in Table 9.5.

Notice that the forecasts trend monotonically toward x̄ = 37.90 and the standard errors

increase as the time horizon h increases. The increasing standard error is consistent

with having less precision in the forecast as the time horizon h increases.

Time t = 63 t = 64 t = 65 t = 66 t = 67 t = 68

Forecast 38.04 38.01 37.99 37.97 37.96 37.95

Standard error 0.130 0.166 0.184 0.195 0.201 0.205

Lower prediction bound 37.78 37.69 37.63 37.59 37.57 37.55

Upper prediction bound 38.29 38.34 38.35 38.36 38.36 38.35

Table 9.5: Forecasts and 95% prediction intervals for the beaver temperatures.

Figure 9.11 shows (a) the original time series x1, x2, . . . , x62 as points (•) connected by

lines, (b) the first 12 forecasted temperatures X̂ 63, X̂ 64, . . . , X̂ 74 as open circles (◦), and

(c) the 95% prediction intervals as a shaded region. There are three key observations

concerning this figure.

• Even though the last five observations in the time series x58, x59, . . . , x62 show an

increasing trend, the forecasts, which are a function only of xn = x62 = 38.07,

monotonically approach µ̂ = x̄ = 37.90.

• The widths of the prediction intervals increase as the time horizon h increases.

These widths do not increase indefinitely, but rather approach a limit as h→ ∞.

• The random sampling variability which is evident in the observed time series val-

ues x1, x2, . . . , x62 is not apparent in the forecasted values X̂ 63, X̂ 64, . . . , X̂ 74. Ob-

served time series values tend to exhibit the typical random sampling variability;

forecasted values for a shifted AR(1) model with 0 < φ < 1 tend to be smooth.
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Figure 9.11: Wisconsin beaver forecasted temperatures and 95% prediction intervals.

This subsection has introduced the AR(1) time series model. The key results for an AR(1) model

are listed below.

• The standard AR(1) model can be written algebraically and with the backshift operator B as

Xt = φXt−1 +Zt and (1−φB)Xt = Zt ,

where Zt ∼WN
(
0, σ2

Z

)
and σ2

Z > 0.

• The shifted AR(1) model can be written algebraically and with the backshift operator B as

Xt −µ = φ(Xt−1−µ)+Zt and (1−φB)(Xt −µ) = Zt .

• The AR(1) model is always invertible; the AR(1) model is stationary for −1 < φ < 1.

• The stationary shifted AR(1) model can be written as an MA(∞) model for −1 < φ < 1 as

Xt = µ+Zt +φZt−1 +φ2Zt−2 + · · · .

• The AR(1) population autocorrelation function is ρ(k) = φk for −1 < φ < 1 and k = 1, 2, . . . .

• The AR(1) population partial autocorrelation function at lag one is ρ∗(1) = φ for −1 < φ < 1

and ρ∗(k) = 0 for k = 2, 3, . . . .

• The three parameters in the shifted AR(1) model, µ, φ, and σ2
Z , can be estimated from a real-

ization of a time series x1, x2, . . . , xn by the method of moments, least squares, and maximum

likelihood. The point estimators for µ, φ, and σ2
Z are denoted by µ̂ , φ̂, and σ̂2

Z , and are typically

paired with asymptotically exact two-sided 100(1−α)% confidence intervals.

• The forecast value X̂ n+h = µ̂ + φ̂h (xn− µ̂ ) for an AR(1) model approaches µ̂ = x̄ as h→ ∞.

The associated prediction intervals have widths that increase as h increases and approach a

limit as the time horizon h→ ∞.
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If the time series of interest is the daily high temperatures in July in Tuscaloosa, then an AR(1)

model would be appropriate if tomorrow’s daily high temperature (Xt ) can be modeled as a linear

function of

• today’s high temperature (Xt−1), and

• a random shock (Zt ).

But what if weather had more of a memory than just one day? What if tomorrow’s daily high

temperature (Xt ) is better modeled as a linear function of

• today’s high temperature (Xt−1),

• yesterday’s high temperature (Xt−2), and

• a random shock (Zt ).

This is an example of the thinking that lies behind the AR(2) model, which is introduced in the next

section.

9.1.2 The AR(2) Model

The second-order autoregressive model, denoted by AR(2), can be used for modeling a stationary

time series in instances in which the current value of the time series is a linear combination of the

two previous values plus a random shock. The mathematics associated with the AR(2) model is

somewhat more difficult than that associated with the AR(1) model.

Definition 9.2 A second-order autoregressive time series model, denoted by AR(2), for the time

series {Xt} is defined by

Xt = φ1Xt−1 +φ2Xt−2 +Zt ,

where φ1 and φ2 are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

There are three parameters that define an AR(2) model: the real-valued coefficients φ1 and φ2,

and the population variance of the white noise σ2
Z . The AR(2) model can be written more compactly

in terms of the backshift operator B as

φ(B)Xt = Zt ,

where φ(B) is the second-order polynomial

φ(B) = 1−φ1B−φ2B2.

The AR(2) model has the form of a multiple linear regression model with two independent

variables and no intercept term. The current value Xt is modeled as a linear combination of the two

previous values of the time series, Xt−1 and Xt−2, plus a white noise term. The parameters φ1 and φ2

control the inclination of the regression plane in three-dimensional space. The parameter σ2
Z reflects

the magnitude of the dispersion of the time series values from the regression plane.

To illustrate the thinking behind the AR(2) model in a specific context, let Xt represent the annual

return of a particular stock market index in year t. The AR(2) model indicates that the annual return

in year t equals φ1 multiplied by the previous year’s annual return (φ1Xt−1), plus φ2 multiplied by

the annual return two years prior (φ2Xt−2), plus the year t random white noise term Zt .
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Stationarity

Theorem 8.3 indicates that all AR(2) models are invertible, but are stationary when the roots of

φ(B) = 1−φ1B−φ2B2

lie outside of the unit circle in the complex plane. Let B1 and B2 denote these two roots. Using the

quadratic equation, the two roots are

B1 =
φ1−

√

φ2
1 +4φ2

−2φ2
and B2 =

φ1 +
√

φ2
1 +4φ2

−2φ2
.

Since φ(B1) = φ(B2) = 0, the quadratic function φ(B) can also be written in factored form as

φ(B) =
(
1−B−1

1 B
)(

1−B−1
2 B

)
.

Equating the two versions of φ(B) above and matching coefficients results in

φ1 = B−1
1 +B−1

2 and φ2 =−(B1B2)
−1.

These two equations define the mapping from the complex plane, which contains the roots B1 and

B2, to the plane that contains the AR(2) parameters φ1 and φ2. To find the stationary region, we must

find the mapping of the part of the complex plane outside of the unit circle to the (φ1, φ2) plane. The

mapping yields a triangular-shaped stationary region, as specified in the following result.

Theorem 9.9 The AR(2) time series model is stationary when φ1 and φ2 satisfy

φ1 +φ2 < 1, φ2−φ1 < 1, and φ2 >−1.

Proof The three cases considered below are based on whether the discriminant in the

roots of φ(B) = 0 is zero (two identical real roots), positive (two distinct real roots), or

negative (two complex roots).

Case 1: Two identical real roots (φ2
1 + 4φ2 = 0). This is a concave-down parabola

through the origin in the (φ1, φ2) plane. The single real root is

B1 = B2 =−
φ1

2φ2
=

φ1

φ2
1/2

=
2

φ1
.

Since this single real root must lie outside of the unit circle for a stationary model,

∣
∣
∣
∣

2

φ1

∣
∣
∣
∣
> 1 ⇒ −2 < φ1 < 2.

This portion of the parabola is the leftmost graph in Figure 9.12.

Case 2: Two distinct real roots (φ2
1 + 4φ2 > 0). This is the region above the parabola

φ2
1 + 4φ2 = 0 in the (φ1, φ2) plane. Since B1 and B2 are real-valued, the conditions

for stationarity |B1| > 1 and |B2| > 1 that correspond to having both B1 and B2 falling

outside of the unit circle are equivalent to

−1 <
1

B1
< 1 and −1 <

1

B2
< 1.
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Figure 9.12: Partitioning the stationary region for the AR(2) time series model.

The reciprocals of the roots of φ(B) = 0 are

1

B1
=




−2φ2

φ1−
√

φ2
1 +4φ2



 ·




φ1 +

√

φ2
1 +4φ2

φ1 +
√

φ2
1 +4φ2



=
φ1 +

√

φ2
1 +4φ2

2

and

1

B2
=




−2φ2

φ1 +
√

φ2
1 +4φ2



 ·




φ1−

√

φ2
1 +4φ2

φ1−
√

φ2
1 +4φ2



=
φ1−

√

φ2
1 +4φ2

2
.

Since B1 and B2 are real and distinct, stationarity is achieved when

−1 <
1

B2
<

1

B1
< 1

or

−1 <
φ1−

√

φ2
1 +4φ2

2
<

φ1 +
√

φ2
1 +4φ2

2
< 1.

Writing the leftmost inequality as
√

φ2
1 +4φ2 < φ1 + 2, squaring both sides of this in-

equality, and simplifying gives

φ2−φ1 < 1.

Applying a similar approach to the rightmost inequality gives

φ1 +φ2 < 1.

So for the AR(2) model in the case of φ(B) having two distinct real roots, the model is

stationary when the three inequalities

φ2
1 +4φ2 > 0, φ2−φ1 < 1, and φ1 +φ2 < 1

are satisfied. This region is shaded in the middle graph in Figure 9.12.
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Case 3: Two complex conjugate roots (φ2
1 + 4φ2 < 0). This is the region below the

parabola φ2
1 + 4φ2 = 0 in the (φ1, φ2) plane. For the model to be stationary, B1 and B2

must lie outside of the unit circle in the complex plane. Since the roots are complex

conjugates, |B1|= |B2|, which is calculated as

|B1|=

√
√
√
√
√

(
φ1

−2φ2

)2

+





√

−φ2
1−4φ2

−2φ2





2

=

√

−4φ2

4φ2
2

=

√

− 1

φ2
,

which is greater than 1 for −1 < φ2 < 0. (The imaginary part of the discriminant was

negated to avoid taking the square root of a negative number because the discriminant

is negative in Case 3.) The region associated with the inequalities

φ2
1 +4φ2 < 0 and φ2 >−1

is the shaded region in the rightmost graph in Figure 9.12.

The union of these three regions is the interior of the triangular region described by the

three inequalities in Theorem 9.9, which proves the result. �

Population Autocorrelation Function

Now that the stationary region for an AR(2) time series model has been established, we turn to

the derivation of the population autocorrelation function. Assuming that the parameters φ1 and φ2

fall in the stationary region, the AR(2) model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

can be multiplied by Xt−k to give

XtXt−k = φ1Xt−1Xt−k +φ2Xt−2Xt−k +ZtXt−k.

Taking the expected value of both sides of this equation results in the recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)

for k = 1, 2, . . . because Zt has expected value zero and is independent of Xt−k. Dividing both sides

of this equation by γ(0) =V [Xt ] gives the recursive equation

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)

for k = 1, 2, . . . . These linear equations, whether written in terms of γ(k) or ρ(k), are known in

time series analysis as the Yule–Walker equations after British statisticians George Udny Yule and

Sir Gilbert Walker. Once the first two values of γ(k) or ρ(k) are known, these recursive equations

can be used to calculate subsequent values. The next two paragraphs focus on determining the first

two values of γ(k) and ρ(k), respectively.

For a stationary AR(2) time series model, we derive expressions for γ(0) and γ(1). The AR(2)

model is

Xt = φ1Xt−1 +φ2Xt−2 +Zt .

Squaring both sides of this equation and taking the expected value of both sides gives

γ(0) = φ2
1γ(0)+φ2

2γ(0)+σ2
Z +2φ1φ2γ(1).
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Using the symmetry of the population autocovariance function, the Yule–Walker equation with k = 1

is

γ(1) = φ1γ(0)+φ2γ(1) ⇒ γ(1) =
φ1γ(0)

1−φ2
.

Replacing this expression for γ(1) in the previous equation gives

γ(0) = φ2
1γ(0)+φ2

2γ(0)+σ2
Z +2φ1φ2

φ1γ(0)

1−φ2
.

Moving all terms involving γ(0) to the left-hand side of this equation gives

γ(0)

[

1−φ2
1−φ2

2−2φ2
1φ2

1

1−φ2

]

= σ2
Z .

Solving this equation for γ(0),

γ(0) =
(1−φ2)σ

2
Z

(1−φ2)− (1−φ2)φ
2
1− (1−φ2)φ

2
2−2φ2

1φ2

=
(1−φ2)σ

2
Z

1−φ2−φ2
1 +φ2

1φ2−φ2
2 +φ3

2−2φ2
1φ2

=
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

An expression for γ(1) is

γ(1) =
φ1γ(0)

1−φ2
=

φ1σ2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

These two values can be used as arguments in the Yule–Walker equations to obtain subsequent values

for γ(k).
We now turn to the problem of finding ρ(1) and ρ(2). The first two Yule–Walker equations in

terms of ρ(k) are

ρ(1) = φ1ρ(0)+φ2ρ(−1)

ρ(2) = φ1ρ(1)+φ2ρ(0).

Since ρ(0) = 1 and ρ(−k) = ρ(k) via Theorem 7.1, these equations reduce to

ρ(1) = φ1 +φ2ρ(1)

ρ(2) = φ1ρ(1)+φ2,

which are easily solved for ρ(1) and ρ(2):

ρ(1) =
φ1

1−φ2
and ρ(2) =

φ2
1

1−φ2
+φ2.

A general formula for ρ(k) exists, but it can involve complex numbers and is unwieldy. An exercise

concerning its calculation is given at the end of the chapter. These results are summarized in the

following theorem.
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Theorem 9.10 The population autocovariance function for a stationary AR(2) time series model

is calculated by

γ(k) = φ1γ(k−1)+φ2γ(k−2)

for k = 1, 2, . . . , where

γ(0) =
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
and γ(1) =

φ1σ2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

The population autocorrelation function for a stationary AR(2) time series model is calculated by

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)

for k = 1, 2, . . . , where

ρ(1) =
φ1

1−φ2
and ρ(2) =

φ2
1

1−φ2
+φ2.

We now focus in on the values of ρ(1) and ρ(2). We can solve for φ1 and φ2 in terms of ρ(1)
and ρ(2) as

φ1 =
ρ(1)

(
1−ρ(2)

)

1−ρ(1)2
and φ2 =

ρ(2)−ρ(1)2

1−ρ(1)2
.

These equations can be helpful in the three settings described below.

1. These equations bear some practical use in that the first two sample autocorrelation function

values, r1 and r2, can be calculated from a time series and used as approximations for ρ(1)
and ρ(2), yielding estimates for φ1 and φ2. These can in turn be used as initial estimates for

finding point estimates for φ1 and φ2 by, for example, least squares or maximum likelihood

estimation, should numerical methods be required.

2. Level surfaces (that is, contours) in the triangular-shaped stationary region from Theorem 9.9

can be determined by fixing values of ρ(1) and ρ(2). As an illustration, consider ρ(1) = 0. In

this case, φ1 = 0 and φ2 = ρ(2), which is a line segment in the stationary region. Continuing in

this fashion for several fixed values of ρ(1) [with varying values of ρ(2)] and then for several

fixed values of ρ(2) [with varying values of ρ(1)] results in the graph of the stationary region

with the level surfaces included shown in Figure 9.13. The level surfaces associated with fixed

values of ρ(1) are lines; the level surfaces associated with fixed values of ρ(2) are curves.

3. Since ρ(1) and ρ(2) are population correlations, the obvious constraints on their values for an

AR(2) time series model are −1 < ρ(1)< 1 and −1 < ρ(2)< 1. Additionally, since φ2 >−1

in order to fall into the triangular-shaped stationary region defined in Theorem 9.9 for the

AR(2) time series model,

φ2 >−1 ⇒ ρ(2)−ρ(1)2

1−ρ(1)2
>−1 ⇒ ρ(2)> 2ρ(1)2−1.

The boundary of this third constraint is a parabola in the
(
ρ(1), ρ(2)

)
plane. The shaded re-

gion in Figure 9.14 shows the ρ(1) and ρ(2) values that are associated with stationary AR(2)

time series models. Unlike the AR(1) population autocorrelation function, it is possible to
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Figure 9.14: Values of ρ(1) and ρ(2) associated with a stationary AR(2) model.
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achieve a stationary model with |ρ(2)|> |ρ(1)|. The AR(2) population autocorrelation func-

tion values are not necessarily monotonically decreasing in magnitude as they were in the

AR(1) model.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(2) model. Using

Definition 7.4, the population lag 0 partial autocorrelation is ρ∗(0) = 1. The population lag 1 partial

autocorrelation is ρ∗(1) = ρ(1) = φ1/(1−φ2). After evaluating the determinants and simplifying,

the population lag 2 partial autocorrelation is

ρ∗(2) =

∣
∣
∣
∣

1 ρ(1)
ρ(1) ρ(2)

∣
∣
∣
∣

∣
∣
∣
∣

1 ρ(1)
ρ(1) 1

∣
∣
∣
∣

=

∣
∣
∣
∣

1 φ1/(1−φ2)
φ1/(1−φ2) (φ2

1−φ2
2 +φ2)/(1−φ2)

∣
∣
∣
∣

∣
∣
∣
∣

1 φ1/(1−φ2)
φ1/(1−φ2) 1

∣
∣
∣
∣

= φ2.

Appealing to the Yule–Walker equations from Theorem 9.10 to define the third column of the deter-

minant of the numerator, the population lag 3 partial autocorrelation is

ρ∗(3) =

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1 ρ(1) φ1 +φ2ρ(1)
ρ(1) 1 φ1ρ(1)+φ2

ρ(2) ρ(1) φ1ρ(2)+φ2ρ(1)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣
∣
∣
∣
∣
∣

= 0.

The determinant in the numerator is zero because the third column is a linear combination of the first

two columns. This pattern continues for the higher lags. When computing ρ∗(k) for k = 3, 4, . . . ,
the first, second, and last columns of the matrix in the numerator are










1

ρ(1)
ρ(2)

...

ρ(k−1)










,










ρ(1)
1

ρ(1)
...

ρ(k−2)










, and










φ1 +φ2ρ(1)
φ1ρ(1)+φ2

φ1ρ(2)+φ2ρ(1)
...

φ1ρ(k−1)+φ2ρ(k−2)










.

The last column of the matrix in the numerator is a linear combination of the first two columns. The

matrix in the numerator of the calculation of ρ∗(k) is singular, which means that its determinant is

zero. This constitutes a proof of the following result.

Theorem 9.11 The population partial autocorrelation function for a stationary AR(2) time series

model is

ρ∗(k) =







1 k = 0

φ1/(1−φ2) k = 1

φ2 k = 2

0 k = 3, 4, . . . .

The population partial autocorrelation function for the AR(2) model cuts off after lag 2. A

graph of the sample partial autocorrelation function (that is, a graph of r∗k for the first few values
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of k), should also cut off after lag 2 if the AR(2) model is appropriate. This sample partial auto-

correlation function shape is easier to recognize than the associated sample autocorrelation function

shape because cutting off is easier to recognize than tailing off in the presence of random sampling

variability.

A careful inspection of Theorem 9.11 reveals that the signs of φ1 and φ2 match the signs of ρ∗(1)
and ρ∗(2), respectively:

sgn(φ1) = sgn
(
ρ∗(1)

)
and sgn(φ2) = sgn

(
ρ∗(2)

)

for φ1 and φ2 falling in the triangular-shaped stationary region. Figure 9.15 shows the stationary

region from Theorem 9.9, along with plots of the representative population autocorrelation function

and population partial autocorrelation function. There are four points, one in each quadrant, that are

plotted. The population autocorrelation function and the population partial autocorrelation function

associated with those four points are plotted in each of the quadrants. As expected, the signs of the

values of φ1 and ρ∗(1) match and the signs of the values of φ2 and ρ∗(2) match. The quadrant in the

stationary region determines the signs of ρ∗(1) and ρ∗(2), as illustrated by the four representative

population partial autocorrelation functions graphed in Figure 9.15. As you can see by inspecting

the shapes of ρ(k) and ρ∗(k) from Figure 9.15, the addition of the parameter φ2 in the transition

from the AR(1) model to the AR(2) model results in significant additional modeling capability. The

following observations can be gleaned from Figure 9.15.

• As expected, all population partial autocorrelation functions cut off after lag two.

• When φ(B) has real roots, the population autocorrelation function consists of mixtures of

damped exponentials.

−2 −1 0 1 2
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complex

ρ(k)ρ(k)

ρ(k)ρ(k)

ρ∗(k)ρ∗(k)

ρ∗(k)ρ∗(k)

Quadrant IQuadrant II

Quadrant III Quadrant IV

Figure 9.15: Stationary AR(2) time series model signature ρ(k) and ρ∗(k) shapes.
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• When φ(B) has complex roots, the population autocorrelation function has a damped sinu-

soidal shape.

The population autocorrelations on the tiny inset plots of ρ(k) and ρ∗(k) in Figure 9.15 can be

calculated using the recursive relationships from Theorem 9.10 [for ρ(k)] and Theorem 9.11 [for

ρ∗(k)]. They can also be calculated using the R ARMAacf function. Consider the two inset plots

in the fourth quadrant of the graph in Figure 9.15, for example, that correspond to φ1 = 1.5 and

φ2 =−0.7. The graph of the first 20 lags of ρ(k) can be plotted with the R command

plot(ARMAacf(ar = c(1.5, -0.7), ma = 0, lag.max = 20), type = "h")

Likewise, the graph of the first 20 lags of ρ∗(k) can be plotted with

plot(ARMAacf(ar = c(1.5, -0.7), ma = 0, lag.max = 20, pacf = TRUE), type = "h")

The ar argument defines the φ1 and φ2 parameters of the AR(2) model, the ma argument is set to

zero to indicate that there are no moving average terms in the AR(2) model, the lag.max argument

is set to 20 to return the first 20 autocorrelations, and the type argument in the call to plot is set to

"h" in order to graph the autocorrelations as spikes rather than points.

As was the case with the AR(1) time series model, the AR(2) time series can be written as

an MA(∞) time series model. This alternative representation can be useful for deriving certain

quantities associated with the AR(2) model, in particular, standard errors of forecasted values. The

first form of a general linear model, which is equivalent to an MA(∞) model, is

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · · .

Our goal is to determine the values of θ1, θ2, . . . that correspond to fixed parameters φ1 and φ2. Since

the MA(∞) model is valid at time t, it is also valid at times t−1 and t−2:

Xt−1 = Zt−1 +θ1Zt−2 +θ2Zt−3 + · · ·

and

Xt−2 = Zt−2 +θ1Zt−3 +θ2Zt−4 + · · · .
So the AR(2) time series model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

as established in Definition 9.2, can be rewritten as

Zt +θ1Zt−1 +θ2Zt−2 + · · ·= φ1 (Zt−1 +θ1Zt−2 +θ2Zt−3 + · · ·)+φ2 (Zt−2 +θ1Zt−3 +θ2Zt−4 + · · ·)+Zt .

Equating the coefficients of Zt−1 gives

θ1 = φ1.

Equating the coefficients of Zt−2 gives

θ2 = φ1θ1 +φ2 = φ2
1 +φ2.

Equating the coefficients of Zt−k gives the recursive equation

θk = φ1θk−1 +φ2θk−2

for k = 3, 4, . . . .



536 Chapter 9. Topics in Time Series Analysis

Theorem 9.12 A stationary AR(2) model with parameters φ1 and φ2 can be written as an MA(∞)

model

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · · ,
where θ1 = φ1, θ2 = φ2

1 +φ2, and

θk = φ1θk−1 +φ2θk−2

for k = 3, 4, . . . .

An exercise at the end of the chapter highlights other methods for calculating the coefficients θ1,

θ2, . . . in the MA(∞) model which is equivalent to the stationary AR(2) model.

Example 9.11 Calculate the first six coefficients of an MA(∞) model associated with

the stationary AR(2) model with φ1 = 1 and φ2 =−1/2.

The AR(2) model is stationary because the point (φ1, φ2) = (1,−1/2) falls in the

triangular-shaped stationary region defined by the inequalities in Theorem 9.9. Using

Theorem 9.12, the first six coefficients of the MA(∞) model are

θ1 = 1, θ2 =
1

2
, θ3 = 0, θ4 =−

1

4
, θ5 =−

1

4
, θ6 =−

1

8
.

These coefficients can also be calculated in R with the ARMAtoMA function. The state-

ment

ARMAtoMA(ar = c(1, -1 / 2), ma = 0, lag.max = 6)

returns the same coefficients calculated above. The ar argument defines the φ1 and φ2

parameters of the AR(2) model, the ma argument is set to zero to indicate that there are

no moving average terms in the AR(2) model, and the lag.max argument is set to 6 in

order to calculate the first six coefficients in the MA(∞) model and return these values

in a vector in R.

The Shifted AR(2) Model

For a stationary AR(2) model expressed as an MA(∞) model, it is clear that E [Xt ] = 0. This

model is not of much use in practice because most real-world time series are not centered around

zero. Adding a shift parameter µ overcomes this shortcoming. Since population variance and covari-

ance are unaffected by a shift, the associated population autocorrelation and partial autocorrelation

functions remain the same as those given in Theorems 9.10 and 9.11.

Theorem 9.13 A shifted second-order autoregressive model for the time series {Xt} is defined by

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where φ1, φ2, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise.

This model is stationary when φ1 and φ2 satisfy the three inequalities given in Theorem 9.9. The

expected value of Xt is E [Xt ] = µ. The population autocorrelation function can be calculated using

the recursive equations in Theorem 9.10. The population partial autocorrelation function is given

in Theorem 9.11.
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The shifted AR(2) model can be written in terms of the backshift operator B as

φ(B)(Xt −µ) = Zt ,

where φ(B) = 1−φ1B−φ2B2. The practical problem of fitting a shifted AR(2) model to an observed

time series of n values x1, x2, . . . , xn will be illustrated later in this subsection.

Simulation

An AR(2) time series can be simulated by appealing to the defining formula for the AR(2) model.

Iteratively applying the defining formula for a standard AR(2) model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

from Definition 9.2 results in the simulated values X1, X2, . . . , Xn. The primary difficult aspect of

devising a simulation algorithm is generating the first two values, X1 and X2. For simplicity, assume

that the white noise terms are Gaussian white noise terms. There are two approaches to overcome

this initialization problem. The first approach generates X1 and X2 from a bivariate normal distribu-

tion with population mean vector 0= (0, 0)′ and variance–covariance matrix

Σ =

[
γ(0) γ(1)
γ(1) γ(0)

]

=
σ2

Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)

[
1−φ2 φ1

φ1 1−φ2

]

via Theorem 9.10. Notice that in the special case of φ1 = φ2 = 0 this matrix reduces to the variance–

covariance matrix for Gaussian white noise, which is Iσ2
Z . The algorithm given as pseudocode

below generates initial time series observations X1 and X2 as indicated above, and then uses an

additional n− 2 Gaussian white noise terms Z3, Z4, . . . , Zn to generate the remaining time series

values X3, X4, . . . , Xn using the AR(2) defining formula from Definition 9.2. Indentation denotes

nesting in the algorithm.

generate (X1, X2)∼ BV N (0, Σ)
t← 2

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φ1Xt−1 +φ2Xt−2 +Zt

The four-parameter shifted AR(2) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.12 Generate a realization of n = 100 observations from an AR(2) time

series model with φ1 = 1.5, φ2 = −0.7, and Gaussian white noise error terms with

σ2
Z = 16.

Since (φ1, φ2) = (1.5,−0.7) lies in the triangular-shaped stationary region defined in

Theorem 9.9, the simulated values will be generated from a stationary time series

model. The population autocorrelation function ρ(k) and the population partial au-

tocorrelation function ρ∗(k) are displayed in the fourth quadrant of Figure 9.15, and

we expect similar shaped functions rk and r∗k from our simulated values. The optional

first statement in the R code below uses the set.seed function to establish the random

number seed. The second and third statements set the AR(2) coefficients to φ1 = 1.5 and



538 Chapter 9. Topics in Time Series Analysis

φ2 =−0.7. The fourth statement sets the standard deviation of the Gaussian white noise

to σZ = 4. The fifth statement places the variance–covariance matrix of X1 and X2 in the

2×2 matrix sigma. The sixth statement sets the number of simulated values to n= 100.

The seventh statement defines the vector x of length n = 100 to hold the simulated time

series values. The eighth statement uses the mvrnorm function from the MASS package

to generate the first two simulated time series observations X1 and X2 from the appro-

priate bivariate normal distribution. Finally, the for loop iterates through the defining

formula for the AR(2) model generating the remaining observations X3, X4, . . . , X100.

set.seed(3)

phi1 = 1.5

phi2 = -0.7

sigz = 4

sigma = matrix(c(1 - phi2, phi1, phi1, 1 - phi2), 2, 2) * sigz /

((1 + phi2) * (1 + phi1 - phi2) * (1 - phi1 - phi2))

n = 100

x = numeric(n)

x[1:2] = MASS::mvrnorm(1, mu = c(0, 0), Sigma = sigma)

for (t in 3:n) x[t] = phi1 * x[t - 1] + phi2 * x[t - 2] + rnorm(1, 0, sigz)

Using the plot.ts function to make a plot of the time series contained in x, the acf

function to plot the associated correlogram, the pacf function to plot the associated

sample partial autocorrelation function, and the layout function to arrange the graphs

as in Example 7.24, the resulting trio of graphs are displayed in Figure 9.16. The sample

partial autocorrelation function has statistically significant spikes at lags 1 and 2 with

r∗1 = 0.8036 and r∗2 =−0.6229, and then cuts off after lag 2 as expected from the popu-

lation counterparts in Figure 9.15. The approximate 95% confidence intervals indicated

by the dashed lines show that the values of the sample partial autocorrelation function

do not significantly differ from zero at lags beyond lag 2. The sample autocorrelation

function displays a damped sinusoidal shape as expected. The time series plot shows

that observations tend to linger on one side of the population mean (indicated by a

horizontal line), which is consistent with the two initial statistically significant positive

spikes in the sample autocorrelation function. However, the time that the observations

linger on one side of the mean is inhibited by the statistically significant negative spikes

at lags 4, 5, 6, and 7 in the sample autocorrelation function. There is thus some tug

exerted by the time series model to linger on one side of the mean for only a limited

amount of time.

We recommend running the simulation code from the previous example several dozen times in

a loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. This will allow you

to see how various realizations of a simulated AR(2) time series model vary from one realization to

the next. So when you then view a single realization of a real-life time series, you will have a sense

of how far these plots might deviate from their expected patterns.

There is a second way to overcome the initialization problem in simulating observations from

an AR(2) time series. This second technique starts the time series with two initial arbitrary values,

and then allows the time series to “warm up” or “burn in” for several time periods before producing

the first observation X1. Reasonable initial arbitrary values for the standard AR(2) model are 0;

reasonable initial arbitrary values for the shifted AR(2) model are µ. This is the approach taken by

the built-in R function named arima.sim, which simulates a realization of a time series. Using the
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Figure 9.16: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(2) model.

arima.sim function saves a few keystrokes over the approach taken in the previous example, as

illustrated next.

Example 9.13 Generate a realization of n = 100 observations from a shifted AR(2)

time series model with coefficients φ1 =−1.8 and φ2 =−0.88, population mean value

µ = 10, and Gaussian white noise error terms with σ2
Z = 16.

Since there is now a nonzero population mean value, the shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where µ = 10, φ1 = −1.8, φ2 = −0.88, and σZ = 4. Since (φ1, φ2) = (−1.8,−0.88)
lies in the triangular-shaped stationary region defined in Theorem 9.9, this is a stationary

AR(2) time series model. The ρ(k) and ρ∗(k) values for this model are plotted in the

third quadrant of Figure 9.15. The model argument in the arima.sim function is a list

containing the values of the coefficients φ1 and φ2. The second argument to arima.sim

is n, the number of time series observations to be generated. The sd argument defines
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the standard deviation of the white noise σZ . The n.start argument gives the number

of observations in the burn-in period, which we specify here as 50. The R code to

generate n = 100 values from the shifted AR(2) model is given below.

set.seed(9)

x = 10 + arima.sim(model = list(ar = c(-1.8, -0.88)),

n = 100, sd = 4, n.start = 50)

Figure 9.17 shows the three plots associated with the simulated values in the vector x

using the plot.ts, acf, and pacf functions. The time series plot shows a radically

different pattern than the time series in the previous example in several aspects. First,

this simulated time series is centered around µ = 10 (indicated by a horizontal line)

rather than µ= 0. Second, the time series jumps from one side of the population mean to

the other from one observation to the next. This is consistent with the highly statistically

significant negative lag 1 sample autocorrelation r1 =−0.9546. The signs of the initial

sample autocorrelation function values alternate, their magnitudes decrease, and sample
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Figure 9.17: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(2) model.
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autocorrelations at subsequent lags follow a damped sinusoidal pattern. In addition, the

lag 1 sample autocorrelation is so close to −1 that adjacent observations often tend to

be about the same distance away from µ. Third, the two statistically significant spikes

in the partial autocorrelation function, r∗1 =−0.9546 and r∗2 =−0.7834, have the same

signs as φ1 and φ2. As expected, the partial autocorrelation function cuts off after lag 2.

The remaining topics associated with the AR(2) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. A sample time series that

will be revisited throughout these topics is introduced next.

Example 9.14 The five Great Lakes that lie along the U.S.–Canada border are Huron,

Ontario, Michigan, Erie, and Superior. Their names are easily remembered with the

acronym HOMES. The built-in R time series LakeHuron consists of n = 98 monthly

mean levels (in feet) of the lake level of Lake Huron taken at the Harbor Beach, Michi-

gan water level gauge every July from 1875–1972. The measurements are essentially

the number of feet above sea level of Lake Huron over time. Plot the time series, sam-

ple autocorrelation function, and sample partial autocorrelation function, and suggest a

tentative time series model.

For simplicity, we define time t = 1 to be the year 1875 and t = 98 to be the year 1972.

The time series of levels, the sample autocorrelation function, and the sample partial

autocorrelation function can be graphed with the R statements

x = LakeHuron

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The trio of graphs is displayed in Figure 9.18. A horizontal line has been added to the

time series plot at x̄ = 579 feet. A visual assessment of the n = 98 observations from the

time series reveals that the population mean level might be systematically decreasing

relative to sea level over the time period. The tied observations in the years 1925–1926

(t = 51 and t = 52), the local minimum in year 1934 (t = 60), and the global minimum

in year 1964 (t = 90), along with nearby observations, provide a downward tug on the

mean value of the time series as time advances. Alternatively, the initial 15 or so levels

might be drawn from a non-representative population. The population variance of the

observations in the time series seems to be stable over time.

Now we turn to the sample autocorrelation function and sample partial autocorrelation

function. The sample autocorrelation function appears to be tailing out. The initial

positive spikes in the sample autocorrelation function are consistent with nearby ob-

servations in the time series lingering above and below the sample mean. The sample

partial autocorrelation function has a statistically significant positive spike at lag 1, and

a marginally significant negative spike at lag 2. The sample partial autocorrelation

function does not have any statistically significant spikes after lag 2. These two graphs

indicate that a shifted AR(2) model might be a reasonable tentative time series model.

The question concerning the possible downward trend of the level of Lake Huron in the

time series remains a stumbling block to an enthusiastic recommendation of the shifted



542 Chapter 9. Topics in Time Series Analysis

1 98

576

577

578

579

580

581

582

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

kk

rk r∗k

Figure 9.18: Time series plot, rk, and r∗k for n = 98 levels of Lake Huron (1875–1972).

AR(2) model. Perhaps a nonstationary model is appropriate. The list below provides

four ways to proceed.

• Eliminate the first 15 or so observations from the time series if we can find an

assignable cause that made the initial observations higher than the others. Here

are some examples of potential assignable causes. Was the measuring equipment,

location, procedure, or personnel changed at some point in the time series? There

were various bridge, power, and flow control projects conducted during the early

part of this time series. Some projects increased flow; others decreased flow.

Could these projects account for the increased early observations in the time se-

ries? The primary driver of the year-to-year variability in water levels is the re-

gional climate, which is influenced by global oceanic and atmospheric patterns.

Lake Huron thermodynamics can be influenced by above-average lake evapora-

tion rates. Might any of these factors account for the increased early observations

in the time series? Did the episodic dredging of Lake Huron’s outlet, the St. Clair

River, result in a lowering of the level of Lake Huron? In the case of the beaver
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temperature time series from Example 9.3, it was easy to find an assignable cause,

because the beaver’s temperature was clearly lower when in the lodge than when

outside of the lodge. Such an assignable cause might be more difficult to identify

in the case of the time series of Lake Huron levels.

• If an assignable cause cannot be found, fit a simple linear regression model to the

original time series and consider the time series consisting of the original time

series values minus the fitted values to be a stationary time series. Figure 9.19

shows the fitted regression line using the model

Y = β0 +β1X + ε,

where X is time (which is measured without error), Y is the random and continuous

lake level, β1 is the slope of the regression line, β0 is the intercept of the regression

line, and ε is an error term. The hypothesis test

H0 : β1 = 0

versus

H1 : β1 6= 0

results in a tiny p-value (p = 4 · 10−8), which confirms our visual assessment.

There does indeed appear to be a decrease in the level of the water in Lake Huron

over time. The estimated regression coefficients and p-values can be calculated in

R with the statement

summary(lm(LakeHuron ~ seq(1, 98)))

The estimated slope β̂1 =−0.024 indicates that the level of Lake Huron is decreas-

ing by an average of about a quarter of an inch annually over this time horizon.

Extrapolation of the simple linear regression model outside of the years 1875–

1972 is probably not warranted in this setting. The usual regression assumption

of independence is clearly violated in this setting because the observations in the

time series are autocorrelated.
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Figure 9.19: Lake Huron levels (1875–1972) with regression line.
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• Again assuming that an assignable cause cannot be identified in order to remove

the initial observations, the time series can be differenced (via xi+1− xi for i =
1, 2, . . . , n−1) in order to remove the possible linear trend. The n−1 = 97 obser-

vations in this differenced series can then be evaluated as a stationary time series.

This approach is analogous to the simple linear regression approach.

• Leave the time series alone, and assume that the early observations being larger

than the rest of the observations is due to random sampling variability.

This might seem like a lot of fuss to establish a stationary time series model, but this

crucial early detective work is common when trying to formulate a tentative time series

model. We take the fourth approach from the list above for now and fit a tentative

shifted AR(2) model to the n = 98 original observations in the time series. Fitting

this tentative model will illustrate all of the steps involved with fitting, evaluating, and

applying an AR(2) model: estimating the model parameters by the three techniques

(method of moments, least squares, and maximum likelihood estimation), constructing

confidence intervals for these point estimators, assessing the validity of the fitted model,

performing model selection procedures for the AR(2) model, and forecasting the level

of Lake Huron into the future. Later in the chapter, we will re-analyze this time series

using a nonstationary time series model.

In conclusion, a preliminary graphical analysis of the n = 98 Lake Huron levels sug-

gests a tentative AR(2) time series model should be on the short list. It is worthwhile

investigating the possibility of an assignable cause which artificially elevates the ini-

tial 15 observations. There is significant concern about nonstationarity, which will be

addressed later in the chapter. The next step is to estimate the parameters in the model.

Parameter Estimation

There are four parameters, µ, φ1, φ2, and σ2
Z , to estimate in the shifted AR(2) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

The three parameter estimation techniques outlined in Section 8.2.1, method of moments, least

squares, and maximum likelihood estimation, are applied to the shifted AR(2) time series model

next.

Approach 1: Method of moments. In the case of estimating the four parameters in the shifted

AR(2) model by the method of moments, we match the population and sample (a) first-order mo-

ments, (b) second-order moments, (c) lag 1 autocorrelation, and (d) lag 2 autocorrelation. Placing

the population moments on the left-hand side of the equation and the associated sample moments

on the right-hand side of the equation results in four equations in four unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2.
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The expected value of Xt is µ, the expected value of X2
t can be found by using the shortcut formula

for the population variance and by using the value of γ(0) = V [Xt ] from Theorem 9.10, and the

values of ρ(1) and ρ(2) are also obtained from Theorem 9.10. So the four equations become

µ =
1

n

n

∑
t=1

Xt

(1−φ2)σ
2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
+µ2 =

1

n

n

∑
t=1

X2
t

φ1

1−φ2
= r1

φ2
1

1−φ2
+φ2 = r2.

Solving these equations for the four unknown parameters µ, φ1, φ2 and σ2
Z yields closed-form solu-

tions for the method of moments estimators

µ̂ = X̄

φ̂1 =
r1(1− r2)

1− r2
1

φ̂2 =
r2− r2

1

1− r2
1

σ̂2
Z =

[

1

n

n

∑
t=1

X2
t − µ̂ 2

]

(1+ φ̂2)(1+ φ̂1− φ̂2)(1− φ̂1− φ̂2)

1− φ̂2

.

This constitutes a proof of the following result.

Theorem 9.14 The method of moments estimators of the parameters in a shifted AR(2) model are

µ̂ = X̄ , φ̂1 =
r1 (1− r2)

1− r2
1

, φ̂2 =
r2− r2

1

1− r2
1

,

σ̂2
Z =

[

1

n

n

∑
t=1

X2
t − µ̂ 2

] (
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)

1− φ̂2

.

These estimators are random variables and have been written as a function of the random time

series values X1, X2, . . . , Xn. For observed time series values x1, x2, . . . , xn, the lowercase versions of

the formulas will be used. These estimators are often known as the Yule–Walker estimators because

their derivation involved the Yule–Walker equations from Theorem 9.10.

Example 9.15 For the time series of n = 98 Lake Huron levels from Example 9.14,

find the method of moments estimators of µ, φ1, φ2, and σ2
Z for the AR(2) model.

The R code below calculates and prints the point estimates of the µ, φ1, φ2, and σ2
Z

parameters using the method of moments estimators given in Theorem 9.14.

x = LakeHuron



546 Chapter 9. Topics in Time Series Analysis

r1 = acf(x, plot = FALSE)$acf[2]

r2 = acf(x, plot = FALSE)$acf[3]

muhat = mean(x)

phi1hat = r1 * (1 - r2) / (1 - r1 ^ 2)

phi2hat = (r2 - r1 ^ 2) / (1 - r1 ^ 2)

sig2hat = (mean(x ^ 2) - muhat ^ 2) * (1 + phi2hat) *

(1 + phi1hat - phi2hat) * (1 - phi1hat - phi2hat) /

(1 - phi2hat)

print(c(muhat, phi1hat, phi2hat, sig2hat))

The point estimates for the unknown parameters computed by this code are

µ̂ = 579.00 φ̂1 = 1.0538 φ̂2 =−0.26675 σ̂2
Z = 0.49199.

These point estimates are reported to five digits because the data values were given to

five-digit accuracy. The positive value for φ̂1 and the negative value for φ̂2 are consistent

with the sample partial autocorrelation function in Figure 9.18. Figure 9.20 is analogous

to Figure 9.13 but contains just two of the level surfaces associated with the method of

moments match on the population and sample autocorrelations at lags 1 and 2: the line

associated with ρ(1)= r1 = 0.83191 and the curve associated with ρ(2)= r2 = 0.60994.

These two level surfaces intersect at the point
(
φ̂1, φ̂2

)
= (1.0538,−0.26675).
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−1

0

1

φ1

φ2

ρ(1) = 0.83ρ(2) = 0.61

(
φ̂1, φ̂2

)

Figure 9.20: Level surfaces for the Lake Huron time series in the stationary region.

Approach 2: Least squares. Consider the shifted stationary AR(2) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ, φ1, and φ2. This time, however, we forgo the calculus and leave the optimization to the R optim

function in order to find the least squares estimators of µ, φ1, and φ2. Once these least squares

estimators have been determined, the population variance of the white noise σ2
Z will be estimated.
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The sum of squared errors is

S =
n

∑
t=3

Z2
t =

n

∑
t=3

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)]2 .

If this derivation were being done by hand, we would now calculate the partial derivatives of S

with respect to the unknown parameters µ, φ1, and φ2, equate them to zero and solve. As was the

case with the AR(1) model, there is no closed-form solution, so numerical methods are required to

calculate the parameter estimates. In the example that follows, we will use the optim function in R

to determine the least squares parameter estimates that minimize S.

The last parameter to estimate is σ2
Z . Since

γ(0) =
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)

from Theorem 9.10 for an AR(2) time series model, the population variance of the white noise can

be expressed as

σ2
Z =

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)γ(0)

(1−φ2)
.

Replacing φ1 and φ2 by their least squares estimators φ̂1 and φ̂2, respectively, and replacing the lag

0 autocovariance γ(0) =V [Xt ] by its estimator c0 =
1
n ∑n

t=1 (Xt − X̄)
2

gives the estimator

σ̂2
Z =

(
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)
c0

(1− φ̂2)
.

This derivation constitutes a proof of the following result.

Theorem 9.15 The least squares estimators of the parameters in a shifted AR(2) model are the µ̂ ,

φ̂1, and φ̂2 values that minimize

S =
n

∑
t=3

Z2
t =

n

∑
t=3

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)]2

and the population variance of the white noise is estimated by

σ̂2
Z =

(
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)
c0

(1− φ̂2)
.

We now use numerical methods to find the least squares estimates for the unknown parameters

in the AR(2) time series model for the Lake Huron time series from Example 9.14.

Example 9.16 Find the least squares estimators of µ, φ1, φ2, and σ2
Z for the AR(2) time

series model associated with the n = 98 lake level observations from Example 9.14.

The R code that follows contains a function s which calculates the sum of squares, and

then uses the R optim function to minimize the sum of squares using the method of

moments estimates as initial estimates. The optim function minimizes the objective

function by default.
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x = LakeHuron

n = length(x)

s = function(parameters) {

mu = parameters[1]

phi1 = parameters[2]

phi2 = parameters[3]

sum((x[3:n] - mu - phi1 * (x[2:(n - 1)] - mu)

- phi2 * (x[1:(n - 2)] - mu)) ^ 2)

}

fit = optim(c(579, 1.0538, -0.26675), s)$par

muhat = fit[1]

phi1hat = fit[2]

phi2hat = fit[3]

sig2hat = (1 + phi2hat) * (1 + phi1hat - phi2hat) *

(1 - phi1hat - phi2hat) * mean((x - mean(x)) ^ 2) /

(1 - phi2hat)

The point estimates for the unknown parameters computed by this code are

µ̂ = 578.89 φ̂1 = 1.0217 φ̂2 =−0.23760 σ̂2
Z = 0.51680,

which corresponds to a sum of squares S = 43.58. The optimal sum of squares can be

extracted with the additional R command s(fit). These least squares point estimates

of the unknown parameters in the AR(2) time series model are close to the associated

method of moments point estimates. The left-hand graph in Figure 9.21 shows the

sum of squares as a function of φ1 for fixed values of the parameters µ̂ = 578.89 and

φ̂2 = −0.23760. The sum of squares is minimized at φ̂1 = 1.0217. The right-hand

graph in Figure 9.21 shows the sum of squares as a function of φ2 for fixed values

of the parameters µ̂ = 578.89 and φ̂1 = 1.0217. The sum of squares is minimized at

φ̂2 =−0.23760.
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Figure 9.21: Sum of squares as a function of φ1 and φ2 for an AR(2) model.

Approach 3: Maximum likelihood estimation. The procedure for determining the maximum

likelihood estimators for the unknown parameters in an AR(2) time series model follows along the

same lines as in the AR(1) time series model from the previous section. Once again, to use maximum
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likelihood estimation, we must assume that the random shocks from the white noise are Gaussian

white noise, with associated probability density function

fZt (zt) =
1

√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞,

for t = 1, 2, . . . , n. Determining the likelihood function, which is the joint probability density func-

tion of the observed values in the time series X1, X2, . . . , Xn, involves finding

L
(
µ, φ1, φ2, σ2

Z

)
= f (x1, x2, . . . , xn),

where the x1, x2, . . . , xn arguments on L and the µ, φ1, φ2, and σ2
Z arguments on f have been dropped

for brevity. As before, it is not possible to simply multiply the marginal probability density functions

because the values in the AR(2) time series model are correlated. As in the case of an AR(1) model,

we use the transformation technique to find the conditional joint probability density function of

X3, X4, . . . , Xn conditioned on X1 = x1 and X2 = x2, which is denoted by

fX3,X4, ...,Xn |X1,X2
(x3, x4, . . . , xn |X1 = x1, X2 = x2)

for (x3, x4, . . . , xn) ∈ R n−2. This conditional joint probability density function is multiplied by the

marginal joint probability density function of X1 and X2 (which has the bivariate normal distribution)

resulting in a joint probability density function of X1, X2, . . . , Xn:

fX1,X2, ...,Xn(x1, x2, . . . , xn) = fX3,X4, ...,Xn |X1,X2
(x3, x4, . . . , xn |X1 = x1, X2 = x2) fX1,X2

(x1, x2)

for (x1, x2, . . . , xn) ∈ R n. This function serves as the likelihood function, which should be max-

imized with respect to the unknown parameters µ, φ1, φ2, and σ2
Z . One can easily imagine how

complicated this expression is, based on the values of γ(0) and γ(1) from Theorem 9.10. So we

forgo the tedious mathematics and leave the calculations to the ar function in R when determining

the maximum likelihood estimates for the parameters in fitting the Lake Huron time series to the

shifted AR(2) time series model.

Example 9.17 Find the maximum likelihood estimators of µ, φ1, φ2, and σ2
Z for the

time series of n = 98 observations of the level of Lake Huron from Example 9.14 for a

shifted AR(2) time series model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where φ1, φ2, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of

Gaussian white noise.

The point estimates for the unknown parameters in the shifted AR(2) time series model

are computed by the single R command

ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

Unlike the procedure described above, the ar function first subtracts the sample mean

x̄ = 579 from each observation and then proceeds to fit the remaining parameters to the

standard AR(2) time series model. This function call returns the maximum likelihood

estimates for the parameters as

µ̂ = 579.00 φ̂1 = 1.0437 φ̂2 =−0.2496 σ̂2
Z = 0.4788.
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These parameter estimates are near the associated method of moments and least squares

estimates from the previous two examples. The fitted shifted AR(2) model by maximum

likelihood estimation is

Xt −579.00 = 1.0437(Xt−1−579.00)−0.2496(Xt−2−579.00)+Zt ,

where Zt ∼ N(0, 0.4788).

Table 9.6 summarizes the point estimators for the AR(2) model for the Lake Huron time series

calculated by the R commands

ar(LakeHuron, order.max = 2, aic = FALSE, method = "yule-walker")

ar(LakeHuron, order.max = 2, aic = FALSE, method = "ols")

ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

The point estimators associated with the three methods are quite close for this particular time series.

The R function ar fits autoregressive models. There are tiny differences between some of the en-

tries in Table 9.6 and those from Examples 9.15 and 9.16 which might be due to slightly different

approximations and/or roundoff in the optimization routines.

Method µ̂ φ̂1 φ̂2 σ̂2
Z

Method of moments (Yule–Walker) 579.0 1.0538 −0.2668 0.5075

Ordinary least squares 579.0 1.0217 −0.2376 0.4540

Maximum likelihood estimation 579.0 1.0437 −0.2496 0.4788

Table 9.6: AR(2) point estimators for the n = 98 Lake Huron levels via the ar function.

The focus on estimation thus far has been on point estimation techniques. We also want to report

some indication of the precision associated with these point estimators. The sampling distributions

of µ̂ , φ̂1, φ̂2, and σ̂2
Z in the AR(2) model are too complicated to derive analytically. As an illustration

of how to construct an approximate confidence interval for φ1 or φ2, we use the asymptotic normality

of the maximum likelihood estimator of φ1 and φ2 in the following result. The asymptotic variance–

covariance matrix associated with the parameters φ1 and φ2 is

1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

]

.

Using just the diagonal elements of this matrix results in the following asymptotically exact two-

sided 100(1−α)% confidence interval for φ1 and φ2.

Theorem 9.16 For a stationary AR(2) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φi is given by

φ̂i− zα/2

√

1− φ̂2
2

n
< φi < φ̂i + zα/2

√

1− φ̂2
2

n

for i = 1,2, where φ̂i is the maximum likelihood estimator of φi and zα/2 is the 1−α/2 fractile of

the standard normal distribution.

These asymptotically exact confidence intervals for φ1 and φ2 will now be illustrated for the lake

levels from the Lake Huron time series from the previous four examples.
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Example 9.18 Find an approximate 95% confidence interval for φ1 for the AR(2) time

series model associated with the n = 98 Lake Huron time series values from Exam-

ple 9.14 and assess its actual coverage.

Recall from Table 9.6 that the maximum likelihood estimators of φ1 and φ2 returned by

the ar function are φ̂1 = 1.0437 and φ̂2 = −0.2496. We seek an asymptotically exact

two-sided 95% confidence interval for φ1, which is given by

1.0437−1.96

√

1− (−0.2496)2

98
< φ1 < 1.0437+1.96

√

1− (−0.2496)2

98
or

0.8519 < φ1 < 1.2354.

This confidence interval does not contain φ1 = 0, which leads us to conclude that φ1 is

a statistically significant parameter in the AR(2) model. A similar procedure could be

used to find a confidence interval for φ2.

To assess the actual coverage of this 95% confidence interval for φ1 requires a Monte

Carlo simulation experiment. The code below uses population parameters that are near

the parameter estimates for the Lake Huron time series.

n = 98

mu = 579

phi1 = 1

phi2 = -1 / 4

sigz = sqrt(1 / 2)

crit = qnorm(0.975)

nrep = 40000

count = 0

for (i in 1:nrep) {

x = mu + arima.sim(model = list(ar = c(phi1, phi2), sd = sigz),

n = n, n.start = 50)

fit = arima(x, order = c(2, 0, 0), method = "ML")

phi1hat = fit$coef[1]

phi2hat = fit$coef[2]

std = sqrt((1 - phi2hat ^ 2) / n)

lo = phi1hat - crit * std

hi = phi1hat + crit * std

if (lo < phi1 && hi > phi1) count = count + 1

}

print(count / nrep)

After a call to set.seed(3) to establish the random number stream, five runs of this

simulation yield:

0.9376 0.9390 0.9366 0.9385 0.9395.

The conclusion that can be drawn from these simulations is that the actual coverage of

the approximate 95% confidence interval is about 93.8%. When this code is executed

for larger values of n, the anticipated asymptotic results are achieved, as displayed in

Figure 9.22. Keep in mind that these actual coverages are not for an AR(2) model in

general, but rather an AR(2) model with these particular parameter settings.
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Figure 9.22: Asymptotic 95% confidence interval for φ1 actual coverage.

Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(2) model have

been established, we are interested in assessing the adequacy of the AR(2) time series model. This

will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined by

[residual] = [observed value]− [predicted value]

or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

From Theorem 9.13, the shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt

or

Xt = µ+φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

Taking the conditional expected value of both sides of this equation gives

E [Xt |X1 = x1, X2 = x2, . . . ,Xt−1 = xt−1] = µ+φ1 (xt−1−µ)+φ2 (xt−2−µ) .

Replacing the parameters by their point estimators, the one-step-ahead forecast from the time origin

t−1 is

X̂t−1(1) = µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ ) .

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(2) model with parameter estimates µ̂ ,

φ̂1, and φ̂2, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )

]

for t = 3, 4, . . . , n. The next example shows the steps associated with assessing the adequacy of the

AR(2) model for the Lake Huron lake level time series.
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Example 9.19 Fit the AR(2) model to the Lake Huron levels from Example 9.14 using

the sample mean to estimate µ and the maximum likelihood estimators for φ1, φ2, and

σ2
Z .

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−2 = 96 residuals and plot them as a

time series, along with the associated sample autocorrelation function and sample

partial autocorrelation function.

x = LakeHuron

n = length(x)

m = 40

muhat = mean(x)

fit = ar(x, order.max = 2, aic = FALSE, method = "mle")

phi1hat = fit$ar[1]

phi2hat = fit$ar[2]

zhat = x[3:n] - (muhat + phi1hat * (x[2:(n - 1)] - muhat) +

phi2hat * (x[1:(n - 2)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)

The results are displayed in Figure 9.23. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There are no sample autocorrelation function values that fall outside of the limits

±1.96/
√

n in the plot in Figure 9.23 of the first 40 sample autocorrelation function

values associated with the residuals. Since we expect 40 · 0.05 = 2 values to fall

outside of these limits in the case of a good fit, we fail to reject H0 in this case.

The fit of the AR(2) model is not rejected by this test.

(c) The additional R code below calculates the Box–Pierce test statistic and the Ljung–

Box test statistic and the associated p-values using the built-in Box.test function.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 3)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 3)

The Box–Pierce test statistic is 18.7 and the associated p-value is p = 0.995. The

Ljung–Box test statistic is 24.9 and the associated p-value is p = 0.935. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 3 = 37

degrees of freedom. The fit of the AR(2) model is not rejected by these tests.
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Figure 9.23: Time series plot, rk, and r∗k for n−2 = 96 residuals from AR(2) fitted model.

(d) The following additional R code calculates the test statistic and the p-value for the

turning point test applied to the time series consisting of the n− 2 = 96 residual

values for the AR(2) fit to the Lake Huron time series.

n = n - 2

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic s is 0.0815 and the p-value is p= 0.94. The
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turning point test found that there were T = 63 turning points in the time series of

the residuals, and that is about the number that we expect to have if the residuals

from the fitted AR(2) model were mutually independent random variables. We

again fail to reject the null hypothesis in this case. The fit of the AR(2) model is

not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.24. The histogram shows that all standardized

residuals fall between −3 and 3 and exhibit a roughly bell-shaped probability

distribution. The horizontal axis on the histogram is the standardized residual and

the vertical axis is the frequency. The QQ plot is approximately linear, indicating

a reasonable approximation to normality based on the n−2= 96 residuals plotted.

The horizontal axis on the QQ plot is the standardized theoretical quantile and the

vertical axis is the associated normal data quantile. Although a formal statistical

goodness-of-fit test (such as the Shapiro–Wilk or the Kolmogorov–Smirnov test)

should be conducted, it appears that the assumption of Gaussian white noise is

appropriate for the AR(2) time series model based on these two plots.
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Figure 9.24: Histogram (left) and QQ plot (right) of the fitted AR(2) standardized residuals.

Model Selection

We have seen a number of indicators that the AR(2) time series model seems to be an adequate

model for the Lake Huron lake level time series, with the exception of a linear trend apparent by

viewing the time series in Figure 9.18. The model has not been rejected by any of the model ad-

equacy tests. We now overfit the tentative AR(2) time series model with ARMA(p, q) models of

higher order. We have not yet surveyed the techniques for estimating the parameters in these mod-

els with additional terms, so for now we will let the arima function in R estimate their parameters
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and compare them via their AIC (Akaike’s Information Criterion) statistics. The AIC statistic was

introduced in Section 8.2.4

Example 9.20 For the n = 98 levels of Lake Huron from Example 9.14, determine the

ARMA(p, q) model that minimizes the AIC.

The R code below creates a 4×4 matrix a which will be populated with the AIC statis-

tics for the ARMA(p, q) time series models, for p = 0, 1, 2, 3 and q = 0, 1, 2, 3 using

nested for loops. The arima function is used to fit the models via maximum likelihood

estimation, and the AIC values are placed in the matrix a.

a = matrix(0, 4, 4)

x = LakeHuron

for (p in 0:3)

for (q in 0:3)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

The results of this code are given in Table 9.7. The two smallest AIC values are set

in boldface type; they correspond to the AR(2) and ARMA(1, 1) models. These two

models seem to be close competitors for providing a probabilistic model for the time

series.

q = 0 q = 1 q = 2 q = 3

p = 0 335 255 231 222

p = 1 219 214 216 218

p = 2 215 216 218 220

p = 3 216 218 220 220

Table 9.7: AIC statistics for ARMA(p, q) models for the n = 98 lake water levels.

The $ extractor with the aic argument was used to extract the AIC statistics from the

list returned by the call to arima. If the coef and sigma2 components are extracted

from the list returned by the call to arima, our final model is the AR(2) model with

maximum likelihood estimates for the parameters given by

µ̂ = 579.05 φ̂1 = 1.0436 φ̂2 =−0.24949 σ̂2
Z = 0.47882,

which corresponds to the fitted AR(2) model

Xt −579.05 = 1.0436(Xt−1−579.05)−0.24949(Xt−2−579.05)+Zt ,

where Zt is a time series of Gaussian white noise values with σ2
Z = 0.47822, as estab-

lished by the histogram and QQ plot in Example 9.19.

The analysis here suggests that this tentative fitted shifted AR(2) time series model

should be compared with (a) a shifted ARMA(1, 1) model because of the lower value

for its AIC for an identical number of parameters, and (b) a time series model based

on removing the possible downward trend in the time series by using regression or

differencing as described in Example 9.14.
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Forecasting

We now consider forecasting future values of a time series that is governed by a shifted AR(2)

time series model. In the case of the Lake Huron time series, this corresponds to the one-step-ahead

forecast for 1973, the two-steps-ahead forecast for 1974, the three-steps-ahead forecast for 1975,

etc. To review forecasting notation, the observed time series values are x1, x2, . . . , xn. The forecast

is being made at time t = n. The random future value of the time series that is h time units in the

future is denoted by Xn+h. The associated forecasted value is denoted by X̂ n+h, and is the conditional

expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to find this forecasted value and an associated prediction interval for a shifted AR(2)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

We also assume that the parameters φ1 and φ2 correspond to a stationary shifted AR(2) time series

model.

The shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

Replacing t by n+1 and solving for Xn+1, this becomes

Xn+1 = µ+φ1 (Xn−µ)+φ2 (Xn−1−µ)+Zn+1.

Taking the conditional expected value of each side of this equation results in the one-step-ahead

forecast

X̂ n+1 = µ+φ1 (xn−µ)+φ2 (xn−1−µ)

because xn−1 and xn have already been observed in the time series x1, x2, . . . , xn. The forecasted

value at time n+1 is a function of the last two values in the time series. Applying this same process

to the predicted value at time n+2 results in the time series model

Xn+2 = µ+φ1 (Xn+1−µ)+φ2 (Xn−µ)+Zn+2.

This time, the value of Xn+1 has not been observed, so we replace it by its forecasted value when

taking the conditional expected value of both sides of the equation

X̂ n+2 = µ+φ1

(
X̂ n+1−µ

)
+φ2 (xn−µ) ,

because xn has already been observed. Continuing in this fashion, a recursive formula for the fore-

casted value of Xn+h is

X̂ n+h = µ+φ1

(
X̂ n+h−1−µ

)
+φ2

(
X̂ n+h−2−µ

)
.

Although we would prefer an explicit formula, the recursive formula is easy to implement for an

observed time series x1, x2, . . . , xn. As in the case of the AR(1) model, long-term forecasts for a

stationary AR(2) time series model tend to µ as the time horizon h→ ∞.

We would like to pair our point estimator X̂ n+h with an interval estimator, which is a prediction

interval in this setting. The prediction interval gives us an indication of the precision of the forecast.

In order to derive an exact two-sided 100(1−α)% prediction interval for Xn+h, it is helpful to write

the shifted AR(2) model as a shifted MA(∞) model. The coefficients θ1, θ2, . . . of a stationary

shifted AR(2) model written as an MA(∞) model

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·
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are given in terms of φ1 and φ2 in Theorem 9.12. Consider this model at time t = n+ 1. Since the

error terms Zn, Zn−1, Zn−2, . . . are unknown but fixed because they are associated with the observed

time series x1, x2, . . . , xn, the conditional population variance of Xn+1 is

V [Xn+1] =V [Zn+1] = σ2
Z

because the population variance of µ is zero and Zn+1 is the only random term in the model. The

error terms at time n and prior are observed even though unknown and can therefore be treated as

constants. Likewise, considering the MA(∞) model at time t = n+ 2, the conditional population

variance of Xn+2 is

V [Xn+2] =V [Zn+2 +θ1Zn+1] =
(
1+θ2

1

)
σ2

Z .

Similarly, the conditional population variance of Xn+3 is

V [Xn+3] =V [Zn+3 +θ1Zn+2 +θ2Zn+1] =
(
1+θ2

1 +θ2
2

)
σ2

Z .

Continuing in this fashion, the conditional population variance of Xn+h is

V [Xn+h] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

h−1

)
σ2

Z .

If we assume that the white noise terms in the MA(∞) representation of the AR(2) time series model

are Gaussian white noise terms, then Xn+h is also normally distributed because a linear combination

of mutually independent normal random variables is also normally distributed. So an exact two-

sided 100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√

1+θ2
1 +θ2

2 + · · ·+θ2
h−1 σZ < Xn+h < X̂ n+h + zα/2

√

1+θ2
1 +θ2

2 + · · ·+θ2
h−1 σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1−α)% prediction interval.

Theorem 9.17 For a stationary shifted AR(2) time series model, a forecasted value of Xn+h can

be found by the recursive equation

X̂ n+h = µ̂ + φ̂1

(
X̂ n+h−1− µ̂

)
+ φ̂2

(
X̂ n+h−2− µ̂

)
,

where X̂ n+1 = µ̂ + φ̂1 (xn− µ̂ )+ φ̂2 (xn−1− µ̂ ). An approximate two-sided 100(1−α)% prediction

interval for Xn+h is

X̂ n+h− zα/2

√

1+ θ̂2
1 + θ̂2

2 + · · ·+ θ̂2
h−1 σ̂Z < Xn+h < X̂ n+h + zα/2

√

1+ θ̂2
1 + θ̂2

2 + · · ·+ θ̂2
h−1 σ̂Z ,

where θ̂1, θ̂2, . . . are the estimated coefficients in the MA(∞) model associated with the estimated

AR(2) model.

Example 9.21 For the time series of Lake Huron levels x1, x2, . . . , x98 from Exam-

ple 9.14, forecast the next five values (for years 1973–1977) in the time series and give

approximate 95% prediction intervals for the forecasted values assuming that the time

series arises from a shifted AR(2) model with parameters estimated by maximum like-

lihood.
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The R code below uses the ar function to estimate the parameters in the shifted AR(2)

model via maximum likelihood estimation. The predict function implements Theo-

rem 9.17 to calculate the forecasted values and associated standard errors. These stan-

dard errors can be used to calculate approximate 95% prediction interval limits.

model = ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

predict(model, n.ahead = 5)

The results are summarized in Table 9.8. Notice that the forecasts trend monotonically

toward x̄ = 579 and the standard errors increase as the time horizon h increases. The

increasing standard error is consistent with having less precision in the forecast as the

time horizon h increases.

Time t = 99 t = 100 t = 101 t = 102 t = 103

Year 1973 1974 1975 1976 1977

Forecast 579.79 579.59 579.43 579.31 579.23

Standard error 0.692 1.000 1.157 1.233 1.269

Lower prediction bound 578.43 577.63 577.16 576.89 576.74

Upper prediction bound 581.15 581.55 581.70 581.73 581.71

Table 9.8: Forecasts and 95% prediction intervals for the Lake Huron time series.

Figure 9.25 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the first 10 forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦),
(c) the 95% prediction intervals as a shaded region, and (d) the next 10 actual average

lake level values in July for the years 1973–1982 taken from the NOAA Great Lakes

Experimental Research Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

1 98 108

576

577

578

579

580

581

582

t

xt

Figure 9.25: Lake Huron forecasts and 95% prediction intervals.
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as points (•) connected by lines. There are four key observations concerning Fig-

ure 9.25.

• Even though the last three observations in the Lake Huron water level time se-

ries, x96 = 579.31, x97 = 579.89, and x98 = 579.96, show an increasing trend, the

forecasts, which are a function only of xn−1 = x97 and xn = x98, monotonically

approach µ̂ = x̄ = 579. The reason that the forecasts approach µ̂ = x̄ = 579 in a

damped exponential fashion is that the maximum likelihood estimators φ̂1 and φ̂2

satisfy φ̂2
1 +4φ̂2 > 0, which indicates that the characteristic equation has two real

roots which fall outside of the unit circle in the complex plane (see the proof of

Theorem 9.9). Had the two roots been complex conjugates, the forecasted values

would likewise approach µ̂ = x̄ = 579, but in a damped sinusoidal fashion.

• The widths of the prediction intervals increase as the time horizon h increases.

These widths do not increase indefinitely, but rather approach a limit as h→ ∞.

• The random sampling variability which is evident in the observed time series val-

ues x1, x2, . . . , x98 is not apparent in the forecasted values X̂ 99, X̂ 100, . . . , X̂ 108.

Observed time series values tend to exhibit the typical random sampling variabil-

ity; forecasted values for a stationary shifted AR(2) time series model tend to be

smooth.

• The first actual value in the forecast region, x99 = 580.98 for the year 1973, nearly

falls outside of the associated 95% prediction interval. Even if the AR(2) model

is a good fit for this time series, there is still a probability of approximately 0.05

that a future observation will fall outside of the associated 95% prediction interval.

One value out of ten falling outside of the prediction intervals would not be shock-

ing to see, assuming that a reasonable time series model has been formulated.

This section has introduced the AR(2) time series model. The important results for an AR(2)

model are listed below.

• The standard AR(2) model can be written algebraically and with the backshift operator B as

Xt = φ1Xt−1 +φ2Xt−2 +Zt and φ(B)Xt = Zt ,

where φ(B) = 1−φ1B−φ2B2 is the characteristic polynomial and Zt ∼WN
(
0, σ2

Z

)
(Defini-

tion 9.2).

• The shifted AR(2) model can be written algebraically and with the backshift operator B as

(Theorem 9.13)

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt and φ(B)(Xt −µ) = Zt .

• The AR(2) model is always invertible; the AR(2) model is stationary when φ1 and φ2 fall

in a triangular-shaped region in the (φ1, φ2) plane defined by the constraints φ1 + φ2 < 1,

φ2−φ1 < 1, and φ2 >−1 (Theorem 9.9).

• The AR(2) population autocorrelation function is a mixture of damped exponential functions,

when φ(B) has real roots, or a damped sinusoidal function, when φ(B) has complex roots

(Theorem 9.10).
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• The AR(2) population partial autocorrelation function cuts off after lag 2 (Theorem 9.11),

making its shape easier to recognize than the population autocorrelation function for the sta-

tistical counterparts associated with a realization of a time series.

• The stationary shifted AR(2) model can be written as a shifted MA(∞) model (Theorem 9.12).

• The four parameters in the shifted AR(2) model, µ, φ1, φ2 and σ2
Z , can be estimated from

a realization of a time series x1, x2, . . . , xn by the method of moments (Theorem 9.14), least

squares (Theorem 9.15), and maximum likelihood using at least n= 60 or n= 70 observations.

The point estimators for µ, φ1, φ2, and σ2
Z are denoted by µ̂ , φ̂1, φ̂2, and σ̂2

Z , and are typically

paired with asymptotically exact two-sided 100(1−α)% confidence intervals (Theorem 9.16).

• The forecasted value X̂ n+h in an AR(2) model is a function of xn−1 and xn and can be calcu-

lated by a recursive formula. It approaches µ̂ = x̄ as the time horizon h→ ∞. The associated

prediction intervals have widths that increase as h increases and approach a limit as the time

horizon h→ ∞ (Theorem 9.17).

The AR(1) time series model expresses the current value in the time series Xt as a constant times

the previous value in the time series plus a random shock. The AR(2) time series model expresses

the current value in the time series Xt as a linear combination of the previous two values in the time

series plus a random shock. There is conceptually no difficulty extending this thinking to the AR(p)

time series model in which the current value in the time series Xt is expressed as a linear combination

of the previous p values in the time series plus a random shock. The AR(p) time series model is the

subject of the next section.

9.1.3 The AR(p) Model

The order p autoregressive model, denoted by AR(p), is a straightforward generalization of the

AR(2) model. The use of matrices in the derivations will be novel, along with the inability to easily

visualize the stationary region as a function of the parameters. The AR(p) model is appropriate

in instances in which the current value of the time series is a linear combination of the p previous

values in the time series plus a random shock.

Definition 9.3 An order p autoregressive time series model, denoted by AR(p), for the time series

{Xt} is defined by

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt ,

where φ1, φ2, . . . , φp are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

The p+1 parameters that define an AR(p) model are the real-valued coefficients φ1, φ2, . . . ,φp,

and the population variance of the white noise σ2
Z . The final coefficient, φp, must be nonzero. The

AR(p) model can be written more compactly in terms of the backshift operator B as

φ(B)Xt = Zt ,

where φ(B) is the order p characteristic polynomial

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp.
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The AR(p) model has the form of a multiple linear regression model with p independent vari-

ables and no intercept term. The current value Xt is being modeled as a linear combination of the p

previous values of the time series, Xt−1, Xt−2, . . . , Xt−p, plus a white noise term Zt that provides a

random shock to the model. The parameters φ1, φ2, . . . , φp control the inclination of the regression

line (p = 1), plane (p = 2), or hyperplane (p > 2). The σ2
Z parameter reflects the magnitude of the

dispersion of the time series values about the regression plane.

Stationarity

Theorem 8.3 indicates that all AR(p) models are invertible, but are stationary when all of the

roots of φ(B) lie outside of the unit circle in the complex plane. Let B1, B2, . . . , Bp denote the p

solutions of φ(B) = 0. For a stationary model, all of these roots will be real-valued or complex

conjugate pairs that lie outside of the unit circle in the complex plane. Since φ(B1) = φ(B2) = · · ·=
φ(Bp) = 0, the order p characteristic polynomial φ(B) can also be written in factored form as

φ(B) =
(
1−B−1

1 B
)(

1−B−1
2 B

)
. . .
(
1−B−1

p B
)
.

Unfortunately, except for the cases of p = 1 and p = 2, the region in the space of (φ1, φ2, . . . , φp)
corresponding to a stationary model cannot be expressed in a simple mathematical form. The fol-

lowing example illustrates how to determine whether an AR(4) model is stationary. This AR(4)

model will be used in the next five examples.

Example 9.22 Determine whether the AR(4) model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

is stationary.

The AR(4) model is stationary if all of the roots of φ(B) lie outside the unit circle in the

complex plane. The characteristic polynomial can be factored as

φ(B) =− 1

40
(4B−5)(3B+4)

(
B2−2B+2

)
.

Using the quadratic formula, the solutions of φ(B) = 0 are

B1 =
5

4
B2 =−

4

3
B3 = 1+ i B4 = 1− i.

The first two roots are real-valued, and the other two roots are complex-valued conju-

gates. The four roots are plotted in Figure 9.26. Since all four roots lie outside of the

unit circle in the complex plane, this AR(4) model is stationary.

Duality

As was the case with the AR(1) and AR(2) time series models, a stationary AR(p) time series

model can be written as an MA(∞) time series model. This alternative representation can be useful

for estimating standard errors of forecasted values. One way to frame the problem of writing an

AR(p) time series model as an MA(∞) time series model is to write the compact form of the AR(p)

model as

φ(B)Xt = Zt
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real

imaginary

unit circle

B1B2

B3

B4

Figure 9.26: Unit circle in the complex plane and the solutions of φ(B) = 0.

and divide both sides by φ(B), which results in

Xt =
Zt

φ(B)
.

Therefore, the conversion from the AR(p) form of the model to the MA(∞) form involves finding

the coefficients θ1, θ2, . . . such that

Xt =
Zt

φ(B)
=
(
1+θ1B+θ2B2 + · · ·

)
Zt .

The coefficients θ1, θ2, . . . essentially correspond to finding the inverse of the φ(B) characteristic

polynomial. Taking the expected value of both sides of this equation leads to the important result:

E [Xt ] = 0 for all values of t. As was the case of the AR(2) time series model, the coefficients for the

MA(∞) time series model are found by equating coefficients. This process will be illustrated in the

next example for the AR(4) model. Generalization to the AR(p) model is straightforward.

Example 9.23 Calculate the first six coefficients of the MA(∞) model associated with

the stationary AR(4) model from Example 9.22 with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4.

The MA(∞) model has the form

Xt = Zt +θ1Zt−1 +θ2Zt−2 +θ3Zt−3 +θ4Zt−4 + · · · .

The AR(4) model

Xt = φ1Xt−1 +φ2Xt−2 +φ3Xt−3 +φ4Xt−4 +Zt
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can be written in terms of θ1, θ2, . . . as

Zt +θ1Zt−1 +θ2Zt−2 +θ3Zt−3 +θ4Zt−4 + · · ·=
φ1 ( Zt−1 +θ1Zt−2 +θ2Zt−3 +θ3Zt−4 + · · · )+

φ2 ( Zt−2 +θ1Zt−3 +θ2Zt−4 + · · · )+
φ3 ( Zt−3 +θ1Zt−4 + · · · )+

φ4 ( Zt−4 + · · · )+Zt .

Equating the coefficients of Zt−1 gives

θ1 = φ1.

Equating the coefficients of Zt−2 gives

θ2 = φ1θ1 +φ2 = φ2
1 +φ2.

Equating the coefficients of Zt−3 and simplifying gives

θ3 = φ3
1 +2φ1φ2 +φ3.

Equating the coefficients of Zt−4 and simplifying gives

θ4 = φ4
1 +3φ2

1φ2 +φ2
2 +2φ1φ3 +φ4.

Equating the coefficients of Zt−k gives the recursive equation

θk = φ1θk−1 +φ2θk−2 +φ3θk−3 +φ4θk−4

for k = 5, 6, . . . . The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.

Using the equations derived here, the first six coefficients of the associated MA(∞)

model as exact fractions are

θ1 =
21

20
, θ2 =

461

400
, θ3 =

5501

8000
, θ4 =

76141

160000
, θ5 =

596381

3200000
, θ6 =

10870221

64000000
.

The ARMAtoMA function in R can also compute these coefficients as follows.

ARMAtoMA(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, lag.max = 6)

This R command returns the decimal approximations of the exact fractions:

θ1 = 1.05, θ2 = 1.1525, θ3 = 0.6876, θ4 = 0.4759, θ5 = 0.1864, θ6 = 0.1698.

Population Autocorrelation Function

We now pivot to the derivation of the population autocovariance and autocorrelation functions.

Assuming that the parameters φ1, φ2, . . . , φp are associated with a stationary model, the AR(p)

model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt



Section 9.1. Autoregressive Models 565

can be multiplied by Xt−k to give

XtXt−k = φ1Xt−1Xt−k +φ2Xt−2Xt−k + · · ·+φpXt−pXt−k +ZtXt−k.

Taking the expected value of both sides of this equation for k = 0 results in

γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z

and the recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)+ · · ·+φpγ(k− p)

for k = 1, 2, . . . because Zt has expected value zero and is independent of Xt−k. For k = 1, 2, . . . , p,

the recursive equation can be written as the system of linear equations

γ(1) = φ1γ(0)+φ2γ(1)+φ3γ(2)+ · · ·+φpγ(p−1)

γ(2) = φ1γ(1)+φ2γ(0)+φ3γ(1)+ · · ·+φpγ(p−2)

γ(3) = φ1γ(2)+φ2γ(1)+φ3γ(0)+ · · ·+φpγ(p−3)

... =
...

γ(p) = φ1γ(p−1)+φ2γ(p−2)+φ3γ(p−3)+ · · ·+φpγ(0),

which relies on the symmetry of the population autocovariance function: γ(−k) = γ(k). This linear

system of p equations in p+1 unknowns can be written in matrix form as

γ = Γφ,

where

γ =










γ(1)
γ(2)
γ(3)

...

γ(p)










, Γ =










γ(0) γ(1) γ(2) · · · γ(p−1)
γ(1) γ(0) γ(1) · · · γ(p−2)
γ(2) γ(1) γ(0) · · · γ(p−3)

...
...

...
. . .

...

γ(p−1) γ(p−2) γ(p−3) · · · γ(0)










, φ =










φ1

φ2

φ3

...

φp










.

Given the values of the parameters φ1, φ2, . . . , φp, and σ2
Z , this set of linear equations and

γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z ,

one can compute the first p+ 1 population autocovariances γ(0), γ(1), . . . , γ(p) by solving these

linear equations. The recursion relationship can be used to compute subsequent autocovariances.

Example 9.24 Calculate the initial values of the population autocovariance function

γ(0), γ(1), . . . , γ(6) associated with the stationary AR(4) model with characteristic poly-

nomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and white noise variance σ2
Z = 1.

The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.
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To find the initial population autocovariances, solve the 5×5 set of linear equations

γ(0) = φ1γ(1)+φ2γ(2)+φ3γ(3)+φ4γ(4)+σ2
Z

γ(1) = φ1γ(0)+φ2γ(1)+φ3γ(2)+φ4γ(3)

γ(2) = φ1γ(1)+φ2γ(0)+φ3γ(1)+φ4γ(2)

γ(3) = φ1γ(2)+φ2γ(1)+φ3γ(0)+φ4γ(1)

γ(4) = φ1γ(3)+φ2γ(2)+φ3γ(1)+φ4γ(0)

for γ(0), γ(1), γ(2), γ(3), γ(4). The recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)+φ3γ(k−3)+φ4γ(k−4)

can be used to calculate γ(k) values for k = 5, 6, . . . . The initial population autocovari-

ance values are

γ(0)=
3520

819
∼= 4.298, γ(1)=

2960

819
∼= 3.614, γ(2)=

2260

819
∼= 2.759, γ(3)=

1385

819
∼= 1.691,

γ(4) =
3685

3276
∼= 1.125, γ(5) =

10001

13104
∼= 0.763, γ(6) =

186881

262080
∼= 0.713.

These population autocovariances can be used to calculate the associated population

autocorrelations by dividing each of them by γ(0).

Dividing both sides of the recursive equation for calculating population autocovariance by γ(0)=
V [Xt ] gives the recursive equation

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)+ · · ·+φpρ(k− p)

for k = 1, 2, . . . . Exploiting the symmetry of the ρ(k) function, the first p of these equations are

ρ(1) = φ1ρ(0)+φ2ρ(1)+φ3ρ(2)+ · · ·+φpρ(p−1)

ρ(2) = φ1ρ(1)+φ2ρ(0)+φ3ρ(1)+ · · ·+φpρ(p−2)

ρ(3) = φ1ρ(2)+φ2ρ(1)+φ3ρ(0)+ · · ·+φpρ(p−3)

... =
...

ρ(p) = φ1ρ(p−1)+φ2ρ(p−2)+φ3ρ(p−3)+ · · ·+φpρ(0).

Since ρ(0) = 1, this linear system of p equations in the p unknowns ρ(1), ρ(2), . . . , ρ(p) can be

written in matrix form as

ρ = Pφ,

where

ρ =










ρ(1)
ρ(2)
ρ(3)

...

ρ(p)










, P =










1 ρ(1) ρ(2) · · · ρ(p−1)
ρ(1) 1 ρ(1) · · · ρ(p−2)
ρ(2) ρ(1) 1 · · · ρ(p−3)

...
...

...
. . .

...

ρ(p−1) ρ(p−2) ρ(p−3) · · · 1










, φ =










φ1

φ2

φ3

...

φp










.
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Given the values of the parameters φ1, φ2, . . . , φp, these linear equations can be solved for the initial

p population autocorrelation function values ρ(1), ρ(2), . . . , ρ(p), and the recursive function can be

used to calculate subsequent values of the population autocorrelation values.

As was the case with the AR(2) time series model, (a) the real roots of φ(B) correspond to

contributions to the population autocorrelation function which are mixtures of damped exponential

terms, and (b) the complex conjugate roots of φ(B) correspond to contributions to the population

autocorrelation function which are damped sinusoidal terms.

These equations bear some practical use in that the first p sample autocorrelation function val-

ues, r1, r2, . . . , rp, can be calculated from an observed time series and used as approximations for

ρ(1), ρ(2), . . . , ρ(p), yielding estimators for φ1, φ2, . . . , φp. These estimates are known as the Yule–

Walker estimators. These can in turn be used as initial estimates for finding point estimates for

φ1, φ2, . . . , φp by, for example, least squares or maximum likelihood estimation, should numerical

methods be required.

The results concerning the calculation of the population autocovariance function γ(k) and the

population autocorrelation function ρ(k) are summarized below.

Theorem 9.18 The population autocovariance function for a stationary AR(p) time series model

is calculated by

γ(k) = φ1γ(k−1)+φ2γ(k−2)+ · · ·+φpγ(k− p)

for k = 1, 2, . . . . The first p of these equations can be written in matrix form as

γ = Γφ.

The population variance of Xt is

V [Xt ] = γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z .

The population autocorrelation function for a stationary AR(p) time series model is calculated by

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)+ · · ·+φpρ(k− p)

for k = 1, 2, . . . . The first p of these equations can be written in matrix form as

ρ = Pφ.

The system of linear equations in Theorem 9.18, whether written in terms of γ(k) or ρ(k) as

γ = Γφ or ρ = Pφ, is known in time series analysis as the Yule–Walker equations.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(p) model. Using

Definition 7.4, the initial population partial autocorrelation values are

ρ∗(0) = 1, ρ∗(1) = ρ(1), ρ∗(2) =

∣
∣
∣
∣

1 ρ(1)
ρ(1) ρ(2)

∣
∣
∣
∣

∣
∣
∣
∣

1 ρ(1)
ρ(1) 1

∣
∣
∣
∣

, ρ∗(3) =

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣
∣
∣
∣
∣
∣

,
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etc. One distinctive characteristic of the AR(p) population partial autocorrelation function is that it

cuts off after lag p. To see why this is the case, consider the first p columns of the matrix in the

numerator of ρ∗(k) for k > p:









1

ρ(1)
ρ(2)

...

ρ(k−1)










,










ρ(1)
1

ρ(1)
...

ρ(k−2)










, . . . ,










ρ(p−1)
ρ(p−2)
ρ(p−3)

...

ρ(k− p)










.

Using Theorem 9.18, the last column of the matrix in the numerator of ρ∗(k) is









φ1 +φ2ρ(1)+φ3ρ(2)+ · · ·+φpρ(p−1)
φ1ρ(1)+φ2 +φ3ρ(1)+ · · ·+φpρ(p−2)
φ1ρ(2)+φ2ρ(1)+φ3 + · · ·+φpρ(p−3)

...

φ1ρ(k−1)+φ2ρ(k−2)+φ3ρ(k−3)+ · · ·+φpρ(k− p)










.

The last column of the matrix in the numerator of ρ∗(k) is a linear combination of the first p columns

with coefficients φ1, φ2, . . . , φp. Thus, the matrix in the numerator of the calculation of ρ∗(k) is

singular, which means that its determinant is zero. So ρ∗(k) = 0 for k = p+ 1, p+ 2, . . . for an

AR(p) time series model. This constitutes a proof of the following result.

Theorem 9.19 The population partial autocorrelation function for a stationary AR(p) time series

model cuts off after lag p.

A graph of the sample partial autocorrelation function r∗k for the first few values of k, should

also cut off after lag p if the AR(p) model is appropriate. This sample partial autocorrelation func-

tion shape is easier to recognize than the associated sample autocorrelation function shape because

cutting off is typically easier to recognize than tailing off in the presence of random sampling vari-

ability.

There is a second interpretation of the partial autocorrelation function that ties it more closely

to determining the order of the autoregressive portion of the model. The partial autocorrelation at

lag k is the value of the final coefficient φk in an autoregressive model of order k. This coefficient

measures the excess correlation at lag k which is not accounted for by an autoregressive model of

order k−1. It is for this reason that many authors use the notation φkk for the population lag k partial

autocorrelation.

The population autocorrelation function and the population partial autocorrelation functions can

be calculated using the formulas given here, but can also be calculated using the R ARMAacf function,

as illustrated in the next example.

Example 9.25 Calculate and plot the values of the population autocorrelation function

and the population partial autocorrelation function associated with the AR(4) model

with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4.

The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.
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The matrix equation ρ = Pφ from Theorem 9.18 could be solved for the initial values

of ρ(k). Alternatively, the values of γ(k) calculated in the previous example could be

divided by γ(0) to arrive at the population autocorrelation function values. The first two

such autocorrelation function values, for example, are

ρ(1) =
γ(1)

γ(0)
=

2960/819

3520/819
=

2960

3520
∼= 0.8409,

ρ(2) =
γ(2)

γ(0)
=

2260/819

3520/819
=

2260

3520
∼= 0.6420,

The R function ARMAacf can also be used to calculate the population autocorrelation

function values for the first 15 lags, as illustrated below. The ar argument is a vector

containing the coefficients φ1, φ2, φ3, and φ4, and the ma argument is set to zero because

there are no moving average terms.

ARMAacf(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, 15)

The population partial autocorrelation function values can be computed by taking the

ratios of the determinants from Definition 7.4. Alternatively, the pacf argument to the

ARMAacf function can be set to TRUE to compute the values of ρ∗(k) for the first 15

lags.

ARMAacf(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, 15, pacf = TRUE)

Table 9.9 contains the numeric values of the first seven values of ρ(k) and ρ∗(k). Fig-

ure 9.27 contains a plot of ρ(k) and ρ∗(k) for the first 15 lags. The population au-

tocorrelation function includes the effects of mixtures of damped exponential terms

(associated with the two real roots B1 = 5/4 and B2 = −4/3 of φ(B) = 0 computed

in Example 9.22) and damped sinusoidal terms (associated with the two complex roots

B3 = 1+ i and B4 = 1− i of φ(B) = 0 computed in Example 9.22). As expected, the

population partial autocorrelation function cuts off after lag 4.

k 1 2 3 4 5 6 7

ρ(k) 0.8409 0.6420 0.3935 0.2617 0.1776 0.1659 0.1506

ρ∗(k) 0.8409 −0.2222 −0.2857 0.3000 0 0 0

Table 9.9: The first seven values of ρ(k) and ρ∗(k) for an AR(4) time series model.

The Shifted AR(p) Model

The standard AR(p) model from Definition 9.3 is not of much practical use because most real-

world time series are not centered around zero. Adding a shift parameter µ overcomes this shortcom-

ing. Since population variance and covariance are unaffected by a shift, the associated population au-

tocorrelation and partial autocorrelation functions remain the same as those given in Theorems 9.18

and 9.19.
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Figure 9.27: The first 15 values of ρ(k) and ρ∗(k) for an AR(4) time series model.

Theorem 9.20 A shifted order p autoregressive model for the time series {Xt} is defined by

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt ,

where φ1, φ2, . . . , φp, µ, and σ2
Z > 0 are real-valued parameters, and {Zt} is a time series of white

noise. This model is stationary when all of the roots of the characteristic equation φ(B) = 0 fall

outside of the unit circle in the complex plane. The expected value of Xt is E [Xt ] = µ. The pop-

ulation autocorrelation function can be calculated using the recursive equations in Theorem 9.18.

The population partial autocorrelation function can be calculated using the defining formulas in

Definition 7.4.

The shifted AR(p) model can be written in terms of the backshift operator B as

φ(B)(Xt −µ) = Zt ,

where φ(B) = 1−φ1B−φ2B2−·· ·−φpBp. The practical problem of fitting a shifted AR(p) model

to an observed time series of n values x1, x2, . . . , xn will be illustrated later in this subsection.

Simulation

An AR(p) time series can be simulated by appealing to the defining formula for the AR(p)

model. Iteratively applying the defining formula for a standard AR(p) model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt

from Definition 9.3 results in the simulated values X1, X2, . . . , Xn. The difficult aspect of devising

a simulation algorithm is generating the first p simulated values, X1, X2, . . . , Xp. For simplicity,

assume that the white noise terms are Gaussian white noise terms. There are two approaches to

overcome this initialization problem. The first approach generates X1, X2, . . . , Xp from a multivariate

normal distribution with population mean p-vector 0= (0, 0, . . . , 0)′ and p× p variance–covariance
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matrix

Γ =










γ(0) γ(1) γ(2) · · · γ(p−1)
γ(1) γ(0) γ(1) · · · γ(p−2)
γ(2) γ(1) γ(0) · · · γ(p−3)

...
...

...
. . .

...

γ(p−1) γ(p−2) γ(p−3) · · · γ(0)










,

which was defined in Theorem 9.18. The algorithm given below generates initial time series obser-

vations X1, X2, . . . , Xp as indicated above, and then uses an additional n− p Gaussian white noise

terms Zp+1, Zp+2, . . . , Zn to generate the remaining time series values Xp+1, Xp+2, . . . , Xn using the

AR(p) defining formula from Definition 9.3. Indentation denotes nesting in the algorithm.

generate (X1, X2, . . . , Xp)∼ N (0, Γ)
t← p

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt

The (p+2)-parameter shifted AR(p) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.26 Generate a realization of n= 100 observations from the stationary AR(4)

time series model with

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10

and Gaussian white noise error terms with σ2
Z = 1.

This model is stationary (see Example 9.22). The population autocorrelation function

ρ(k) and the population partial autocorrelation function ρ∗(k) are displayed in Fig-

ure 9.27; we expect similar shaped functions rk and r∗k from our simulated values. The

first statement in the R code below uses the set.seed function to establish the random

number seed. The second statement sets p = 4, corresponding to an AR(4) model. The

third statement sets the vector phi to the AR(4) coefficients φ1 = 21/20, φ2 = 1/20,

φ3 = −23/40, and φ4 = 3/10. The fourth statement places the initial population au-

tocovariance values from Example 9.24, namely γ(0) = 3520/819, γ(1) = 2960/819,

γ(2) = 2260/819, and γ(3) = 1385/819, into the vector gam. The subsequent nested

for loops place these population autocovariance values in the 4×4 variance–covariance

matrix GAMMA. The next statement sets the standard deviation of the Gaussian white

noise to σZ = 1. The next statement sets the number of simulated values to n= 100. The

next statement defines the vector x of length n = 100 to hold the simulated time series

values. The next statement uses the mvrnorm function from the MASS package to gener-

ate the first four simulated time series observations X1, X2, X3, X4 from the appropriate

multivariate normal distribution. Finally, the for loop iterates through the defining

formula for the AR(4) model generating the remaining observations X5, X6, . . . , X100.

set.seed(9)

p = 4
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phi = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)

gam = c(3520 / 819, 2960 / 819, 2260 / 819, 1385 / 819)

GAMMA = matrix(0, p, p)

for (i in 1:p) for (j in 1:p) GAMMA[i, j] = gam[abs(i - j) + 1]

sigz = 1

n = 100

x = numeric(n)

x[1:p] = MASS::mvrnorm(1, mu = rep(0, p), Sigma = GAMMA)

for (t in (p + 1):n) x[t] = sum(phi * x[(t - 1):(t - p)]) +

rnorm(1, 0, sigz)

Using the plot.ts function to make a plot of the time series contained in x, the acf function to plot

the associated correlogram, the pacf function to plot the associated sample partial autocorrelation

function, and the layout function to arrange the graphs as in Example 7.24, the resulting trio of

graphs are displayed in Figure 9.28. The sample partial autocorrelation function has four statisti-

1 100
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0

2

4

0 5 10 15
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−0.5

0.0

0.5

1.0
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−1.0

−0.5

0.0
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1.0

t

xt

kk

rk r∗k

Figure 9.28: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(4) model.
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cally significant spikes at lags 1, 2, 3, and 4 which is consistent with an AR(4) model. The spikes cut

off after lag 4 as expected from the population counterparts in Figure 9.27. The approximate 95%

confidence intervals indicated by the dashed lines show that the values of the sample partial autocor-

relation function do not significantly differ from zero at lags beyond lag 4. The sample autocorrela-

tion function displays a mixture of damped exponential terms damped sinusoidal terms as expected,

with statistically significant autocorrelations at the first two lags: r∗1 = 0.7351 and r∗2 = 0.4417. The

time series plot shows that observations tend to linger on one side of the population mean (indicated

by a horizontal line at µ = 0), which is consistent with the two initial statistically significant positive

spikes in the sample autocorrelation function.

We recommend running the simulation code from the previous example several dozen times in

a loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. This will allow you to

see how various realizations of this simulated AR(4) time series model vary from one realization to

the next. So when you then view a single realization of a real-life time series, you will have a sense

of how far these plots might deviate from their expected patterns.

There is a second way to overcome the initialization problem in simulating observations from

an AR(p) time series. This second technique starts the time series with p initial arbitrary values,

and then allows the time series to “warm up” or “burn in” for several time periods before producing

the first observation X1. Reasonable p initial arbitrary values for the standard AR(p) model are

0; reasonable p initial arbitrary values for the shifted AR(p) model are µ. This approach can be

implemented in R with the filter function with "recursive" as the method argument. The code

below generates n = 100 values in the AR(4) time series model from the previous example using a

warm-up period of 50 observations.

phi = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)

z = rnorm(150)

x = filter(z, filter = phi, method = "recursive")

x = x[51:150]

This is also the approach taken by the built-in R function named arima.sim, which simulates a

realization of a time series. Using the arima.sim function means that n = 100 observations from

the AR(4) time series model from the previous example can be simulated using a single command,

using a warm-up period of 50 observations.

x = arima.sim(model = list(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)),

n = 100, sd = 1, n.start = 50)

The remaining topics associated with the AR(p) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. We begin with parameter

estimation.

Parameter Estimation

The p+2 parameters to estimate in a shifted AR(p) time series model are φ1, φ2, . . . , φp, µ, σ2
Z .

There are three techniques for estimating these parameters considered here: method of moments,

least squares, and maximum likelihood estimation. These techniques were introduced in Sec-

tion 8.2.1. These three techniques are outlined in the following paragraphs.

Approach 1: Method of moments. In the case of estimating the p+2 parameters in the shifted

AR(p) time series model by the method of moments, we match the population and sample first-order

moments, second-order moments, lag 1 autocorrelation, lag 2 autocorrelation, . . . , lag p autocorrela-

tion. Placing the population moments on the left-hand side of the equation and the associated sample
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moments on the right-hand side of the equation results in (p+2) equations in (p+2) unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2

... =
...

ρ(p) = rp.

Since E [Xt ] = µ for a stationary shifted AR(p) time series model, the first equation gives the method

of moments estimator µ̂ = X̄ . Recall from Theorem 9.18 that the relationship between φ1, φ2, . . . , φp

and ρ(1), ρ(2), . . . , ρ(p) is given by the matrix equation

ρ = Pφ,

where

ρ =










ρ(1)
ρ(2)
ρ(3)

...

ρ(p)










, P =










1 ρ(1) ρ(2) · · · ρ(p−1)
ρ(1) 1 ρ(1) · · · ρ(p−2)
ρ(2) ρ(1) 1 · · · ρ(p−3)

...
...

...
. . .

...

ρ(p−1) ρ(p−2) ρ(p−3) · · · 1










, φ =










φ1

φ2

φ3

...

φp










.

Satisfying the method of moments criteria, the lag k population autocorrelation ρ(k) can be replaced

with its statistical analog rk, for k = 1, 2, . . . , p. The resulting matrix equation is

r = Rφ,

where

r =










r1

r2

r3

...

rp










, R =










1 r1 r2 · · · rp−1

r1 1 r1 · · · rp−2

r2 r1 1 · · · rp−3

...
...

...
. . .

...

rp−1 rp−2 rp−3 · · · 1










, φ =










φ1

φ2

φ3

...

φp










.

This matrix equation can be solved for the method of moments estimators as

φ̂ = R−1r.

These are known as the Yule–Walker estimators because of their relationship to the Yule–Walker

equations. Finally, the remaining parameter to estimate is the population variance of the white noise

σ2
Z . From Theorem 9.18,

σ2
Z = γ(0)−φ1γ(1)−φ2γ(2)−·· ·−φpγ(p).
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Multiplying and dividing the right-hand side of this equation by γ(0) gives

σ2
Z = γ(0)

[
1−φ1ρ(1)−φ2ρ(2)−·· ·−φpρ(p)

]
.

Replacing these elements by their method of moments estimators gives

σ̂2
Z = c0

[
1− φ̂1r1− φ̂2r2−·· ·− φ̂prp

]
,

which can be expressed in matrix form as

σ̂2
Z = c0

(
1− r ′φ̂

)
.

Since the formula for these estimators does not require any iterative methods, the method of mo-

ments estimators are often used as initial parameter estimates for the least squares estimators and

the maximum likelihood estimators, which do require iterative methods. These point estimators for

the parameters in a shifted AR(p) model are summarized below.

Theorem 9.21 The method of moments estimators of the parameters in a shifted AR(p) model

are

µ̂ = X̄ φ̂ = R−1r σ̂2
Z = c0

(
1− r ′φ̂

)
.

Example 9.27 We now revisit the modeling of the built-in R time series LakeHuron

from Example 9.14 consisting of n = 98 monthly mean levels (in feet) of the lake level

of Lake Huron from 1875–1972. An AR(2) time series model was fit to this time series

using the method of moments in Example 9.15. The fitted AR(2) model was deemed to

be a reasonable fit via the goodness-of-fit tests in Example 9.19. Calculate the method

of moments parameter estimates for the overfitted AR(3) model.

Since estimating the parameters involves just a matrix inverse and a matrix multi-

plication, these estimators are easily computed in an R function. The user-written

YuleWalker function given below has the time series observations in the vector x and

the order of the AR(p) time series model p as arguments. It uses the built-in acf func-

tion to compute r1, r2, . . . , rp and the solve function to compute the inverse of the R

matrix. The R code below calculates and prints the point estimates of the parameters

µ, φ1, φ2, φ3, and σ2
Z parameters for the AR(3) time series model using the method of

moments estimators given in Theorem 9.21.

YuleWalker = function(x, p) {

muhat = mean(x)

r = acf(x, plot = FALSE, lag.max = p)$acf

R = matrix(1, p, p)

for (i in 1:p) for (j in 1:p) R[i, j] = r[abs(i - j) + 1]

r = r[2:(p + 1)]

phihat = solve(R) %*% r

sig2hat = mean((x - muhat) ^ 2) * (1 - sum(r * phihat))

c(muhat, phihat, sig2hat)

}

YuleWalker(LakeHuron, 3)
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The method of moments point estimates for the unknown parameters computed by this

code are

µ̂ = 579.00, φ̂1 = 1.0887, φ̂2 =−0.40454, φ̂3 = 0.13075, σ̂2
Z = 0.48358.

Alternatively, some keystrokes can be saved by using the built-in ar function to estimate

the parameters in the AR(3) time series model, as shown below. The results are identical

except the estimate of the population variance of the white noise differs slightly because

of differing assumptions made within the ar function.

fit = ar(LakeHuron, order.max = 3, aic = FALSE, method = "yw")

fit$x.mean

fit$ar

fit$var.pred

Approach 2: Least squares. Consider the shifted stationary AR(p) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ, φ1, φ2, . . . , φp. We leave the optimization to the R ar function in order to calculate the least

squares estimators of µ, φ1, φ2, . . . , φp. Once these least squares estimators have been determined,

the population variance of the white noise σ2
Z will be estimated.

The sum of squared errors is

S =
n

∑
t= p+1

Z2
t =

n

∑
t= p+1

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)−·· ·−φp (Xt−p−µ)]2 .

If this derivation were being done by hand, we would now calculate the partial derivatives of S with

respect to the unknown parameters µ, φ1, φ2, . . . , φp, equate them to zero and solve. As was the

case with the AR(1) and AR(2) models, there is no closed-form solution, so numerical methods

are required to calculate the parameter estimates. In the example that follows, we will use the ar

function in R to determine the least squares parameter estimates that minimize S.

The last parameter to estimate is the population variance of the white noise σ2
Z . The same

estimator as the method of moments will be used:

σ̂2
Z = c0

(
1− r ′φ̂

)
.

Least squares estimation for a shifted AR(p) time series model is summarized below.

Theorem 9.22 The least squares estimators of the parameters in a shifted AR(p) time series model

are the µ̂ , φ̂1, φ̂2, . . . , φ̂p values that minimize

S =
n

∑
t= p+1

Z2
t =

n

∑
t= p+1

[
Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)−·· ·−φp (Xt−p−µ)

]2

and the population variance of the white noise is estimated by

σ̂2
Z = c0

(
1− r ′φ̂

)
.

We now use numerical methods to find the least squares estimates for the unknown parameters

in the AR(p) time series model for the Lake Huron time series from Example 9.14.
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Example 9.28 Find the least squares estimates of µ, φ1, φ2, . . . , φp, and σ2
Z from the

AR(p) time series model for the time series of n = 98 Lake Huron lake level observa-

tions from Example 9.14, for p = 1, 2, 3, 4. Plot the sum of squares associated with the

least squares estimates as a function of p.

The R code below uses a for loop to iterate over the various values of p. It uses

the ar function with the method argument set to "ols" (for ordinary least squares) to

calculate the least squares estimates of the unknown parameters. It uses a nested for

loop to calculate the sum of squares at the values of the point estimates.

x = LakeHuron

n = length(x)

for (p in 1:4) {

fit = ar(x, order.max = p, aic = FALSE, method = "ols")

muhat = fit$x.mean

phihat = fit$ar

sig2hat = fit$var.pred

S = 0

for (t in (p + 1):n) {

S = S + (x[t] - muhat - sum(phihat * (x[(t - 1):(t - p)] - muhat))) ^ 2

}

print(c(muhat, phihat, sig2hat, S))

}

The point estimates for the unknown parameters and the sums of squares at the point

estimates that are computed by this code are given in Table 9.10. Notice that the least

squares point estimators for the AR(3) model are close to the method of moments point

estimators for the AR(3) model calculated in Example 9.27. The graph in Figure 9.29

shows the sum of squares as a function of the order of the autoregressive model p. The

sum of squares shows a “law of diminishing returns” as p increases. There is a large

decrease in the sum of squares on the transition from p= 1 term to p= 2 terms. Beyond

p = 2, however, the decreases are substantially smaller. This pattern is consistent with

the q = 0 column from Table 9.7 in Example 9.20, which indicated that the AIC statistic

was minimized for p = 2, which corresponds to a shifted AR(2) time series model.

p µ̂ φ̂1 φ̂2 φ̂3 φ̂4 σ̂2
Z S

1 579.00 0.8364 0.5090 49.38

2 579.00 1.0217 −0.2376 0.4540 43.64

3 579.00 1.0719 −0.3653 0.1088 0.4488 42.66

4 579.00 1.0738 −0.3739 0.0569 0.0625 0.4475 42.12

Table 9.10: Least squares parameter estimates and sums of squares for AR(p) models.

Approach 3: Maximum likelihood estimation. The procedure for determining the maximum

likelihood estimators for the unknown parameters in a shifted AR(p) time series model follows along

the same lines as in the AR(1) and AR(2) time series models from the previous subsections. Once

again, to use maximum likelihood estimation, we must assume that the random shocks from the
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Figure 9.29: Sum of squares as a function of p for AR(p) models.

white noise are Gaussian white noise, with associated probability density function

fZt (zt) =
1

√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞,

for t = 1, 2, . . . , n. Determining the likelihood function, which is the joint probability density func-

tion of the observed values in the time series X1, X2, . . . , Xn, involves finding

L
(
µ, φ1, φ2, . . . ,φp, σ2

Z

)
= f (x1, x2, . . . , xn),

where the x1, x2, . . . , xn arguments on L and the µ, φ1, φ2, . . . , φp, and σ2
Z arguments on f have

been dropped for brevity and n > p. As before, it is not possible to simply multiply the marginal

probability density functions because the values in the AR(p) time series model are correlated.

As in the case of the AR(1) and AR(2) models, we use the transformation technique to find the

conditional joint probability density function of Xp+1, Xp+2, . . . , Xn conditioned on X1 = x1, X2 = x2,

. . . , Xp = xp, which is denoted by

fXp+1,Xp+2, ...,Xn |X1,X2, ...,Xp
(xp+1, xp+2, . . . , xn |X1 = x1, X2 = x2, . . . , Xp = xp)

for (xp+1, xp+2, . . . , xn) ∈ R n−p. This conditional joint probability density function is multiplied

by the marginal joint probability density function of X1, X2, . . . , Xp (which has the p-dimensional

multivariate normal distribution) resulting in a joint probability density function of X1, X2, . . . , Xn:

fX1,X2, ...,Xn(x1, x2, . . . , xn) =

fXp+1,Xp+2, ...,Xn |X1,X2, ...,Xp
(xp+1, xp+2, . . . , xn |X1 = x1, X2 = x2, . . . ,Xp = xp)×

fX1,X2, ...,Xp(x1, x2, . . . , xp)

for (x1, x2, . . . , xn) ∈ R n. This function serves as the likelihood function, which should be maxi-

mized with respect to the unknown parameters µ, φ1, φ2, . . . , φp, and σ2
Z . We leave the maximization

to the ar and arima functions in R when determining the maximum likelihood estimates for the pa-

rameters for a particular time series to be fitted to the shifted AR(p) time series model.

In addition to point estimators for the parameters, we are also interested in confidence intervals

that capture the precision of the point estimators. The population variance of the vector of parameter

estimators φ̂ = (φ̂1, φ̂2, . . . , φ̂p)
′ is given by the variance–covariance matrix

V
[
φ̂
]
=

1

n

(
1−ρ′φ

)
P−1.
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Since the maximum likelihood estimators for φ1, φ2, . . . , φp are asymptotically unbiased and nor-

mally distributed under certain regularity conditions,

φ̂
D→ N

(

φ,
1

n

(
1−ρ′φ

)
P−1

)

.

For p = 1, this reduces to

φ̂1
D→ N

(

φ1,
1−φ2

1

n

)

.

For p = 2, this reduces to

[
φ̂1

φ̂2

]

D→ N

([
φ1

φ2

]

,
1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

])

.

These asymptotic results for p = 1 and p = 2 were used in the confidence intervals given in Theo-

rems 9.7 and 9.16. When the quantities in this expression are replaced by their statistical counter-

parts, the estimated variance–covariance matrix of the vector φ̂ is

V̂
[
φ̂
]
=

1

n

(
1− r ′φ̂

)
R−1.

Using the diagonal elements of this matrix and the asymptotic normality of maximum likelihood

estimators, an asymptotically exact 100(1−α)% confidence interval for φi is easily constructed.

Theorem 9.23 For a stationary AR(p) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φi is given by

φ̂i− zα/2

√[
1

n

(
1− r ′φ̂

)
R−1

]

i, i

< φi < φ̂i + zα/2

√[
1

n

(
1− r ′φ̂

)
R−1

]

i, i

for i = 1, 2, . . . , p, where φ̂i is the maximum likelihood estimator of φi and zα/2 is the 1−α/2

fractile of the standard normal distribution.

The maximum likelihood estimates and associated confidence intervals will be illustrated for an

economic time series in the next example.

Example 9.29 Table 9.11 contains the annual lynx (Lynx canadensis) pelt sales, read

row-wise, at the Hudson’s Bay Company in Canada from 1857 to 1911. Suggest a time

series model for the annual pelt sales.

23362 31642 33757 23226 15178 7272 4448 4926 5437 16498

35971 76556 68392 37447 45686 7942 5123 7106 11250 18774

30508 42834 27345 17834 15386 9443 7599 8061 27187 51511

74050 78773 33899 18886 11520 8352 8660 12902 20331 36853

56407 39437 26761 15185 4473 5781 9117 19267 36116 58850

61478 36300 9704 3410 3774

Table 9.11: Annual lynx pelt sales at the Hudson’s Bay Company, 1857–1911.
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Figure 9.30: Time series plot for n = 55 annual lynx pelt sales (1857–1911).

The time series is plotted in Figure 9.30. The annual sales figures vary widely, from

a minimum of 3410 pelts sold in 1910 to a maximum of 78,773 pelts sold in 1888. A

horizontal line is drawn at the average sales over this time horizon at 25,600 pelts. The

time series appears to have a periodic component that seems to cycle about every ten

years or so, although nothing about the sales of lynx pelts would seem to account for

an approximately decade-long periodicity. There are local maximums in the time series

associated with the years 1859, 1868, 1878, 1888, 1897, and 1907. Is consumer behav-

ior driving this periodicity? Are the prices of the pelts driving this periodic behavior?

Is the availability of the pelts driving this periodic behavior?

Some further analysis of the time series indicates that ecology can answer some of

the questions. Lynxes depend on the snowshoe rabbit (Lepus americanus) for food,

and lynxes starve when the rabbits near extinction periodically. This is an example of

one time series depending on another time series. We ignore the dependence on the

snoeshoe rabbit in our analysis because multivariate time series analysis is a topic for

a more advanced time series course. We consider an AR(p) model here and consider a

time series model with a periodic component subsequently.

Based on Figure 9.30, is a stationary time series model appropriate? There does not

appear to be any trend in the time series, but the population variance does not appear to

be stable. The first local maximum (in 1859) and the third local maximum (in 1878) are

not as pronounced as the others. One remedy to this nonconstant population variance is

to transform the time series. Taking the logarithm of the time series values, xt = ln yt ,

reduces the impact of the nonconstant variance. Figure 9.31 contains a time series plot

of the logarithm of the sales figures, along with the associated sample autocorrelation

and partial autocorrelation functions. For simplicity, we define time t = 1 to be the year

1857 and t = 55 to be the year 1911. The transformation has proven to be effective. As

expected, the first and third peaks are still the smallest local maximums of the group,

but they are less pronounced than those in the raw data. The original time series values

are denoted by yt , and the transformed time series values are denoted by xt = ln yt . The

sample autocorrelation function appears to have a damped sinusoidal shape, and the
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Figure 9.31: Time series plot, rk, and r∗k for n = 55 log annual lynx sales (1857–1911).

sample partial autocorrelation function cuts off after lag 4, although the spike at lag 4

is only marginally significant. The fact that the sample partial autocorrelation function

cuts off leads us to consider an autoregressive time series model. Based on these graphs,

we will attempt to fit tentative AR(3) and AR(4) models to the transformed time series

x1, x2, . . . , x55. The R code to produce the graphs in Figure 9.31 is given below.

y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

abline(h = mean(x))
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acf(x)

pacf(x)

We use the R arima function to estimate the parameters of the AR(p) time series models

for the transformed time series using maximum likelihood estimation and to compute

their associated standard errors. The additional R code below fits the AR(3) model

to the transformed time series. Setting the method argument to "ML" indicates that

the arima function should use maximum likelihood estimation. Various aspects of the

fitted model are extracted using the $ extractor.

fit = arima(x, order = c(3, 0, 0), include.mean = TRUE, method = "ML")

fit$coef

fit$var.coef

fit$sigma2

sqrt(fit$var.coef[1, 1])

sqrt(fit$var.coef[2, 2])

sqrt(fit$var.coef[3, 3])

sqrt(fit$var.coef[4, 4])

The resulting fitted AR(3) model is

Xt − µ̂ = φ̂1 (Xt−1− µ̂ )+ φ̂2 (Xt−2− µ̂ )+ φ̂3 (Xt−3− µ̂ )+Zt

or

Xt −9.809= 0.957(Xt−1−9.809)−0.126(Xt−2−9.809)−0.470(Xt−3−9.809)+ Zt ,
(0.074) (0.117) (0.176) (0.120)

where Zt is white noise with estimated population variance σ̂2
Z = 0.119. The numbers in

parentheses just below the parameter estimates are the estimated standard errors of the

associated parameter estimates. The associated approximate 95% confidence intervals

are

0.728 < φ1 < 1.186,

−0.471 < φ2 < 0.219,

−0.705 < φ3 < −0.235,

9.663 < µ < 9.955.

The fact that the confidence interval for φ2 contains zero should not deter us from con-

sidering the AR(3) model because the confidence interval for φ3 has bounds which do

not include zero.

When this same procedure is applied to the fitting of an AR(4) model, the fitted model

Xt − µ̂ = φ̂1 (Xt−1− µ̂ )+ φ̂2 (Xt−2− µ̂ )+ φ̂3 (Xt−3− µ̂ )+ φ̂4 (Xt−4− µ̂ )+Zt

is

Xt −9.807= 0.774(Xt−1−9.807)−0.151(Xt−2−9.807)−0.120(Xt−3−9.807)−0.378(Xt−4−9.807)+ Zt ,
(0.051) (0.125) (0.165) (0.163) (0.127)
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where Zt is white noise with estimated population variance σ̂2
Z = 0.102. The associated

approximate 95% confidence intervals are

0.529 < φ1 < 1.018,

−0.474 < φ2 < 0.172,

−0.439 < φ3 < 0.200,

−0.626 < φ4 <−0.130,

9.708 < µ < 9.907.

Again, the confidence intervals for φ2 and φ3 containing zero should not deter us from

considering the AR(4) model because the confidence interval for φ4 has bounds which

do not include zero.

So should the AR(3) or AR(4) model be considered the preferred stationary model? A

check of the solutions of φ̂(B) = 0 indicates that all of the solutions lie outside of the

unit circle in the complex plane for both the AR(3) and AR(4) models. Another way

to select between the two models is to calculate the AIC statistic for these models. The

additional R statement

for (p in 0:5) print(arima(x, order = c(p, 0, 0), method = "ML")$aic)

calculates the AIC statistic associated with the fitted AR(p) models, for p = 0, 1, . . . , 5.

The results are shown in Table 9.12.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

145.3 101.5 63.4 52.3 46.2 48.2

Table 9.12: AIC values for AR(p) models for the transformed annual lynx pelt sales.

The AIC statistic is minimized for p = 4, indicating that the AR(4) model is selected

over the AR(3) model. So to summarize, the tentative AR(p) time series model based

on (a) the time series plot, (b) the sample autocorrelation function, (c) the sample partial

autocorrelation function, and (d) the AIC statistic, is the fitted AR(4) model

ln Yt −9.807 = 0.774(ln Yt−1−9.807)−0.151(ln Yt−2−9.807)−

0.120(ln Yt−3−9.807)−0.378(ln Yt−4−9.807)+Zt ,

where Yt corresponds to the original time series consisting of annual lynx pelt sales at

the Hudson’s Bay Company, and Zt is white noise with estimated variance σ̂2
Z = 0.102.

Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(p) model have

been established, we are interested in assessing the adequacy of the fitted AR(p) time series model.

This will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined

by

[residual] = [observed]− [predicted]
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or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

From Theorem 9.20, the shifted AR(p) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt

or

Xt = µ+φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

Taking the conditional expected value of both sides of this equation gives

E [Xt |X1 = x1, X2 = x2, . . . ,Xt−1 = xt−1] = µ+φ1 (xt−1−µ)+φ2 (xt−2−µ)+ · · ·+φp (xt−p−µ) .

Replacing the parameters by their point estimators, the one-step-ahead forecast from the time origin

t−1 is

X̂t−1(1) = µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )+ · · ·+ φ̂p (xt−p− µ̂ ) .

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(p) model with parameter estimates µ̂ ,

φ̂1, φ̂2, . . . , φ̂p, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )+ · · ·+ φ̂p (xt−p− µ̂ )

]

for t = p+1, p+2, . . . , n. The next example shows the steps associated with assessing the adequacy

of the AR(4) model for the time series of annual lynx pelt sales.

Example 9.30 Fit the AR(4) time series model to the transformed annual lynx sales

from Example 9.29 via maximum likelihood estimation.

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−4 = 51 residuals of the transformed

time series and plot them as a time series, along with the associated sample auto-

correlation function and sample partial autocorrelation function.
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y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

n = length(x)

p = 4

m = 40

fit = arima(x, order = c(p, 0, 0), include.mean = TRUE, method = "ML")

phi1hat = fit$coef[1]

phi2hat = fit$coef[2]

phi3hat = fit$coef[3]

phi4hat = fit$coef[4]

muhat = fit$coef[5]

zhat = x[(p + 1):n] - (muhat + phi1hat * (x[4:(n - 1)] - muhat) +

phi2hat * (x[3:(n - 2)] - muhat) +

phi3hat * (x[2:(n - 3)] - muhat) +

phi4hat * (x[1:(n - 4)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)

The results are displayed in Figure 9.32. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There are no sample autocorrelation function values that fall outside of the limits

±1.96/
√

n in the plot in Figure 9.32 of the first 40 sample autocorrelation function

values associated with the residuals. Since we expect 40 · 0.05 = 2 values to fall

outside of these limits in the case of a good fit, we fail to reject H0 in this case.

The fit of the AR(4) model is not rejected by this test.

(c) The additional R statements below calculate the Box–Pierce test statistic and the

Ljung–Box test statistic and the associated p-values using the built-in Box.test

function.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 5)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 5)

The Box–Pierce test statistic is 19.6 and the associated p-value is p = 0.984. The

Ljung–Box test statistic is 36.1 and the associated p-value is p = 0.418. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 5 = 35

degrees of freedom. Since both p-values exceed 0.05, the fit of the AR(4) model

is not rejected by these tests.

(d) The following additional R statements calculate the test statistic and the p-value

for the turning point test applied to the time series consisting of the n− 4 = 51

residual values for the AR(4) fit to the transformed annual lynx pelt sales time

series.
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Figure 9.32: Time series plot, rk, and r∗k for n−4 = 51 residuals from AR(4) fitted model.

n = n - 4

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic is 0.1127 and the p-value is p = 0.91. The

turning point test detected 33 turning points in the time series of the 51 residuals,

and that is about the number that we expect to have if the residuals from the fitted

AR(4) time series model of the transformed annual lynx pelt sales were mutually
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independent random variables. We again fail to reject the null hypothesis in this

case. The fit of the AR(4) model is not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.33. The histogram shows that all standardized

residuals fall between−3 and 3, but deviate significantly from a bell-shaped prob-

ability distribution, particularly in the right-hand tail. The horizontal axis on the

histogram is the standardized residual and the vertical axis is the frequency. The

QQ plot shows considerable nonlinearity, indicating a possible departure from nor-

mality based on the n− 4 = 51 residuals plotted. The horizontal axis on the QQ

plot is the standardized theoretical quantile and the vertical axis is the associated

normal data quantile. These plots indicate that a formal statistical goodness-of-fit

test for normality should be conducted in order to assess whether Gaussian white

noise is appropriate for the residuals of the fitted AR(4) time series model based

on these two plots.

In summary, the model adequacy tests applied to the residuals on the AR(4) time series

model of the transformed observations of the annual lynx pelt sales have revealed that

the mutual independence of the residuals cannot be rejected by four statistical tests. The

histogram and QQ plot of the residuals appear to not support the assumption of normally

distributed residuals. We conclude that the AR(4) time series model is an adequate

model for the transformed annual lynx pelt sales at the Hudson’s Bay Company time

series, with the exception of non-Gaussian error terms apparent in Figure 9.33. Another

way to visually assess the adequacy of the time series model is to inspect time series

plots of simulations of the fitted model, which is left as an exercise.
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Figure 9.33: Histogram (left) and QQ plot (right) of the fitted AR(4) standardized residuals.
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Forecasting

We now consider the question of forecasting future values of a time series that is governed

by a shifted AR(p) time series model. In the case of the annual lynx pelt sales time series, this

corresponds to the one-step-ahead forecast for 1912, the two-steps-ahead forecast for 1913, the

three-steps-ahead forecast for 1914, etc. To review forecasting notation, the observed time series

values are x1, x2, . . . , xn. The forecast is being made at time t = n. The random future value of the

time series that is h time units in the future is denoted by Xn+h. The associated forecasted value is

denoted by X̂ n+h, and is the conditional expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to find this forecasted value and an associated prediction interval for a shifted AR(p)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

We also assume that the parameters φ1, φ2, . . . , φp correspond to a stationary shifted AR(p) time

series model and p < n.

The shifted AR(p) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

Replacing t by n+1 and solving for Xn+1, this becomes

Xn+1 = µ+φ1 (Xn−µ)+φ2 (Xn−1−µ)+ · · ·+φp (Xn−p+1−µ)+Zn+1.

Taking the conditional expected value of each side of this equation results in the one-step-ahead

forecast

X̂ n+1 = µ+φ1 (xn−µ)+φ2 (xn−1−µ)+ · · ·+φp (xn−p+1−µ)

because the final p observations xn−p+1, xn−p+2, . . . , xn in the time series x1, x2, . . . , xn have already

been observed. The forecasted value at time n+1 is a function of the final p values in the time series.

Applying this same process to the predicted value at time n+2 results in the time series model

Xn+2 = µ+φ1 (Xn+1−µ)+φ2 (Xn−µ)+ · · ·+φp (Xn−p+2−µ)+Zn+2.

This time, the value of Xn+1 has not been observed, so we replace it by its forecasted value when

taking the conditional expected value of both sides of the equation

X̂ n+2 = µ+φ1

(
X̂ n+1−µ

)
+φ2 (xn−µ)+ · · ·+φp (xn−p+2−µ) ,

because xn−p+2, xn−p+3, . . . , xn have already been observed. Continuing in this fashion, a recursive

formula for the forecasted value of Xn+h is

X̂ n+h = µ+φ1

(
X̂ n+h−1−µ

)
+φ2

(
X̂ n+h−2−µ

)
+ · · ·+φp

(
X̂ n+h−p−µ

)
.

Although we would prefer an explicit formula, the recursive formula is easy to implement for an ob-

served time series x1, x2, . . . , xn. As in the case of the AR(1) and AR(2) models, long-term forecasts

for a stationary AR(p) time series model tend to µ as the time horizon h→ ∞.

We would like to pair the point estimator X̂ n+h with an interval estimator, which is a prediction

interval in this setting. The prediction interval gives us an indication of the precision of the forecast.

In order to derive an exact two-sided 100(1−α)% prediction interval for Xn+h, it is helpful to write

the shifted AR(p) model as a shifted MA(∞) model. The coefficients θ1, θ2, . . . of a stationary

shifted AR(p) model written as an MA(∞) model

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·
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are given in terms of φ1, φ2, . . . , φp as was illustrated for p = 4 in Example 9.23. Consider this

model at time t = n+ 1. Since the error terms Zn, Zn−1, Zn−2, . . . are unknown but fixed because

they are associated with the observed time series x1, x2, . . . , xn, the conditional population variance

of Xn+1 is

V [Xn+1] =V [Zn+1] = σ2
Z

because the population variance of µ is zero and Zn+1 is the only random term in the model. The

error terms at time n and prior are observed and can therefore be treated as constants. Likewise,

considering the MA(∞) model at time t = n+2, the conditional population variance of Xn+2 is

V [Xn+2] =V [Zn+2 +θ1Zn+1] =
(
1+θ2

1

)
σ2

Z .

Similarly, the conditional population variance of Xn+3 is

V [Xn+3] =V [Zn+3 +θ1Zn+2 +θ2Zn+1] =
(
1+θ2

1 +θ2
2

)
σ2

Z .

Continuing in this fashion, the conditional population variance of Xn+h is

V [Xn+h] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

h−1

)
σ2

Z .

If we assume that the white noise terms in the MA(∞) representation of the AR(p) time series model

are Gaussian white noise terms, then Xn+h is also normally distributed because a linear combination

of mutually independent normal random variables is also normally distributed. So an exact two-

sided 100(1−α)% prediction interval for X̂ n+h is

X̂ n+h− zα/2

√

1+θ2
1 +θ2

2 + · · ·+θ2
h−1 σZ < Xn+h < X̂ n+h + zα/2

√

1+θ2
1 +θ2

2 + · · ·+θ2
h−1 σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1− α)% prediction interval provided

next.

Theorem 9.24 For a stationary shifted AR(p) time series model, a forecasted value of Xn+h can

be calculated by the recursive equation

X̂ n+h = µ̂ + φ̂1

(
X̂ n+h−1− µ̂

)
+ φ̂2

(
X̂ n+h−2− µ̂

)
+ · · ·+ φ̂p

(
X̂ n+h−p− µ̂

)
,

where X̂ n+1 = µ̂ + φ̂1 (xn− µ̂ )+ φ̂2 (xn−1− µ̂ )+ · · ·+ φ̂p (xn−p+1− µ̂ ). An approximate two-sided

100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√

1+ θ̂2
1 + θ̂2

2 + · · ·+ θ̂2
h−1 σ̂Z < Xn+h < X̂ n+h + zα/2

√

1+ θ̂2
1 + θ̂2

2 + · · ·+ θ̂2
h−1 σ̂Z ,

where θ̂1, θ̂2, . . . are the estimated coefficients in the MA(∞) model associated with the estimated

AR(p) model.

Example 9.31 For the time series of annual lynx pelt sales x1, x2, . . . , x55 from Ex-

ample 9.29, forecast the next five values (for years 1912–1916) in the time series and

give approximate 95% prediction intervals for the forecasted values assuming that the

transformed values in the time series arise from a shifted AR(4) time series model with

parameters estimated by maximum likelihood.
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The R code below uses the ar function to estimate the parameters in the shifted AR(4)

time series model to the natural logarithm of the time series values via maximum like-

lihood estimation. The predict function implements Theorem 9.24 to calculate the

forecasted values and associated standard errors for the fitted AR(4) model. These stan-

dard errors can be used to calculate approximate 95% prediction interval limits. The R

exp function is used to convert the forecasted values X̂ t+h, whose units are the natu-

ral logarithm of the annual number of lynx pelts sold, back to the original time series,

whose units are the annual number of lynx pelts sold.

y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

z = qnorm(0.975)

model = ar(x, order.max = 4, aic = FALSE, method = "mle")

forecast = predict(model, n.ahead = 40)

xhat = exp(forecast$pred)

pred.lo = exp(forecast$pred - z * forecast$se)

pred.hi = exp(forecast$pred + z * forecast$se)

The results for the first five forecasted values are summarized in Table 9.13.

Time t = 56 t = 57 t = 58 t = 59 t = 60

Year 1912 1913 1914 1915 1916

Forecast 5750 14,639 41,540 74,000 75,380

Lower prediction bound 3078 6642 17,962 31,907 31,031

Upper prediction bound 10,742 32,263 96,067 171,620 183,116

Table 9.13: Forecasts and 95% prediction intervals for the annual lynx pelt sales.

For the first time, we have encountered prediction interval bounds which are not sym-

metric about the point estimate because of the exponentiation of the forecasted values

and their prediction intervals. The widths of the prediction intervals in Table 9.13 tend

to increase with the predicted value. The first forecasted value has 95% prediction in-

terval

3078 < Y56 < 10,742

and the fifth forecasted value has the considerably wider 95% prediction interval

31,031 < Y60 < 183,116.

Figure 9.34 shows (a) the original time series y1, y2, . . . , y55 as points (•) connected

by lines, (b) the first 40 forecasted annual lynx pelt sales Ŷ56, Ŷ57, . . . , Ŷ95 as open

circles (◦), and (c) the 95% prediction intervals as a shaded region. There are six key

observations concerning Figure 9.34.
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Figure 9.34: Annual lynx pelt sales forecasts and 95% prediction intervals.

• The forecasted values exhibit a similar periodicity to that of the original time se-

ries.

• The forecasted values seem to be reasonable estimates of the future values of the

time series for the first cycle or two.

• The widths of the 95% prediction intervals associated with h = 7, 8, . . . , 12 are

considerably narrower than the width of the 95% prediction interval at h = 5.

So unlike the previous two time series (the active beaver temperatures fit to the

AR(1) model in Example 9.10 and the Lake Huron levels fit to the AR(2) model

in Example 9.21), the prediction interval widths do not increase monotonically in

h.

• The amplitude of the cycles of the forecasted values decreases with time. As the

time horizon h increases, it becomes less certain where the time series is in a cycle,

so the forecasts converge to µ̂ = ȳ= 25,600 pelts sold annually. Depending on the

application, this might not be a welcome aspect of the forecasted values. Using

a time series model that explicitly contains a cyclic component might be more

appropriate for forecasting in this setting.

• The random sampling variability which is evident in the observed time series val-

ues y1, y2, . . . , x55 is less evident in the forecasted values Ŷ56, Ŷ57, . . . , Ŷ95. Ob-

served time series values tend to exhibit the typical random sampling variability;

forecasted values for a stationary shifted AR(4) time series model of the trans-

formed time series tend to be smooth.

This subsection has introduced the AR(p) time series model. The important results for an AR(p)

model are listed below.

• The standard AR(p) model can be written algebraically and with the backshift operator B as

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt and φ(B)Xt = Zt ,

where φ(B)= 1−φ1B−φ2B2−·· ·−φpBp is the characteristic polynomial and Zt ∼WN
(
0, σ2

Z

)

(Definition 9.3).
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• The shifted AR(p) model can be written algebraically and with the backshift operator B as

(Theorem 9.20)

Xt−µ= φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt and φ(B)(Xt −µ)= Zt .

• The AR(p) model is always invertible; the AR(p) model is stationary when the solutions of

φ(B) = 0 all lie outside of the unit circle in the complex plane (Theorem 8.3).

• The AR(p) population autocorrelation function is a mixture of damped exponential functions,

associated with real roots of φ(B), and damped sinusoidal functions, associated with complex

roots of φ(B) (Theorem 9.18).

• The AR(p) population partial autocorrelation function cuts off after lag p (Theorem 9.19),

making its shape easier to recognize than the population autocorrelation function for the sta-

tistical counterparts associated with a realization of a time series.

• The stationary shifted AR(p) model can be written as a shifted MA(∞) model (as illustrated

in Example 9.23).

• The p+2 parameters in the shifted AR(p) model, µ, φ1, φ2, . . . , φp, and σ2
Z , can be estimated

from a realization of a time series x1, x2, . . . , xn by the method of moments (Theorem 9.21),

least squares (Theorem 9.22), and maximum likelihood. The point estimators for µ, φ1, φ2,

. . . , φp, and σ2
Z are denoted by µ̂ , φ̂1, φ̂2, . . . , φ̂p, and σ̂2

Z , and are typically paired with

asymptotically exact two-sided 100(1−α)% confidence intervals (Theorem 9.23).

• The forecasted value X̂ n+h in a shifted AR(p) model is a function of the last p values in an

observed time series x1, x2, . . . , xn and can be calculated by a recursive formula. The forecast

approaches µ̂ = x̄ as the time horizon h→∞. The associated prediction interval has width that

increases as h increases and approaches a limit as the time horizon h→ ∞ (Theorem 9.24).

9.1.4 Computing

The R time series functions used in this section are summarized here. The ARMAacf function com-

putes the population autocorrelation function or the population partial autocorrelation function for

an ARMA(p, q) time series model. The generic version of the function is

ARMAacf(ar = numeric(), ma = numeric(), lag.max = r, pacf = FALSE)

where ar is a vector containing the autoregressive coefficients φ1, φ2, . . . , φp, ma is a vector contain-

ing the moving average coefficients θ1, θ2, . . . , θq, lag.max contains the number of lags required,

and pacf is a logical object. The function returns ρ(0), ρ(1), . . . , ρ(lag.max) when pacf is FALSE,

or ρ∗(1), ρ∗(2), . . . , ρ∗(lag.max) when pacf is TRUE. The ARMAacf function is illustrated in Ex-

ample 9.25.

The arima.sim function generates a simulation of a time series. The generic version of the

function is

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),

n.start = NA, start.innov = rand.gen(n.start, ...),

...)
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where model is a list with components ar containing the autoregressive coefficients φ1, φ2, . . . , φp,

and ma containing the moving average coefficients θ1, θ2, . . . , θq, n is the length of the simulated

time series to be generated, rand.gen is a function to generate the white noise terms, n.start is

the length of the warm-up period, and start.innov is a time series of white noise terms used in

the warm-up period. The returned value is a vector containing the n simulated time series values

x1, x2, . . . , xn. The arima.sim function is illustrated in Examples 9.2, 9.13, and 9.18. The warm-up

period associated with the arima.sim function can be avoided by generating initial values from the

appropriate multivariate distribution. For an AR(1) model with Gaussian white noise error terms,

the rnorm function, whose generic syntax is

rnorm(n, mean = 0, sd = 1)

where n is the number of random variates to generate, mean is the population mean, and sd is the

population standard deviation, can be used to seed the simulated time series. The rnorm function is

illustrated in Example 9.1. For an AR(p) model, with p > 1, with Gaussian white noise error terms,

the mvrnorm function from the MASS package, whose generic syntax is

mvrnorm(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)

where n is the number of random vectors to generate, mu is the population mean vector, and Sigma

is the population variance–covariance matrix, can be used to seed the simulated time series. The

mvrnorm function is illustrated in Examples 9.12 and 9.26.

When determining parameter estimates that cannot be expressed in closed form, the optim func-

tion provides general-purpose optimization capability that can be applied to minimizing the sum of

squares to find the least squares estimates or maximizing the log likelihood function to find the

maximum likelihood estimators. The generic syntax for optim is

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)

where par is a vector containing initial parameter estimates and fn is the function to be minimized

(by default). The optim function is illustrated in Examples 9.5, 9.6, and 9.16. A parameter estima-

tion function that is exclusively for autoregressive time series models is ar. The generic format for

ar is

ar(x, aic = TRUE, order.max = NULL,

method = c("yule-walker", "burg", "ols", "mle", "yw"),

na.action, series, ...)

where x is a vector containing the observed time series values, aic is a logical variable (TRUEmeans

that the Akaike Information Criterion is used to choose the order of the model and FALSE means

that an autoregressive model of order order.max is fitted), order.max is maximum order of the

autoregressive model to fit, method is the estimation method ("yule-walker" or "yw" for Yule–

Walker, "burg" for Burg’s algorithm, "ols" for least squares, "mle" for maximum likelihood), and

na.action indicates how to handle missing values in the time series. The ar function is illustrated

in Examples 9.7, 9.8, 9.10, 9.17, 9.19, 9.21, 9.27, 9.28, and 9.31. The arima function also estimates

parameters from an observed time series. The generic format for arima is

arima(x, order = c(0L, 0L, 0L),

seasonal = list(order = c(0L, 0L, 0L), period = NA),
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xreg = NULL, include.mean = TRUE, transform.pars = TRUE,

fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond,

SSinit = c("Gardner1980", "Rossignol2011"), optim.method = "BFGS",

optim.control = list(), kappa = 1e6)

where x is a vector containing the observed time series values, order is a vector containing the

values of p, d, and q, include.mean is a logical variable (TRUE includes estimation of a population

mean term µ and FALSE estimates just the parameters in the standard model), and method is CSS

(conditional sum of squares) or ML (maximum likelihood). The arima function is illustrated in

Examples 9.9, 9.18, 9.20, and 9.29.

Three functions were introduced in this section for assessing model adequacy. The Box.test

function computes the Box–Pierce or Ljung–Box test statistic and associated p-value. The generic

syntax is

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0)

where x is a vector containing the observed time series values, lag is the number of sample auto-

correlation function values to be used in the test, type is either "Box-Pierce" or "Ljung-Box",

and fitdf is the number of degrees of freedom to be subtracted in the case of x being a time series

of residuals. The Box.test function is illustrated in Examples 9.8, 9.19, and 9.30, along with the

hist and qqnorm functions, which are helpful in visually assessing the normality of the residuals.

Forecasting can be performed automatically using the generic predict function, which calcu-

lates predicted values of a time series from a fitted function. The predict function is illustrated in

Examples 9.10, 9.21, and 9.31.

More details on the R functions used in this section can be found using the help function.

Sample invocations of the functions are displayed using the example function.

This concludes the introduction to the autoregressive time series model, with subsections devoted

to the AR(1), AR(2), and AR(p) models. An analogous treatment of moving average models is

contained in the next section.

9.2 Moving Average Models

Moving average models for a time series will be introduced in this section. A moving average model

of order q is a special case of an ARMA(p, q) model with no autoregressive terms (that is, p = 0)

and q moving average terms, specified as

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

where θ1, θ2, . . . , θq are real-valued parameters and {Zt} is a time series of white noise. Rather

than diving right into an MA(q) model, we first have separate subsections for the MA(1) and MA(2)

models because the mathematics are somewhat easier than the general case and some important

geometry and intuition can be developed with these restricted models. In the subsection on the

MA(1) model that follows, we will

• define the time series model for {Xt},

• determine the values of the parameters associated with an invertible model,

• derive the population autocorrelation and partial autocorrelation functions,
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• develop algorithms for simulating observations from the time series,

• inspect simulated realizations to establish patterns, and

• estimate parameters from a time series realization {xt}.

The important steps of model assessment, model selection, and forecasting future values of the

times series are left as exercises because they follow along the same lines as those steps for the

autoregressive models covered in the previous section.

The purpose of deriving the population autocorrelation and partial autocorrelation functions is

to build an inventory of shapes and patterns for these functions that can be used to identify tentative

time series models from their sample counterparts by making a visual comparison between popula-

tion and sample versions. This inventory of shapes and patterns plays an analogous role to knowing

the shapes of various probability density functions (for example, the bell-shaped normal probability

density function or the rectangular-shaped uniform distribution) in the analysis of univariate data

in which the shape of the histogram is visually compared to the inventory of probability density

function shapes.

In the MA(1) subsection that follows, a single example of a time series will be carried through

the various statistical procedures given in the list above. Stationarity plays a critical role in time

series analysis because we are not able to forecast future values of the time series without knowing

that the probability model is stable over time. This is why the visual assessment of a plot of the time

series is always a critical first step in the analysis of a time series. Fortunately, all MA(q) time series

models are stationary.

9.2.1 The MA(1) Model

The moving average model with one term is the simplest of the ARMA family of time series models

in terms of the ability to derive probabilistic properties.

Definition 9.4 A first-order moving average time series model, denoted by MA(1), for the time

series {Xt} is defined by

Xt = Zt +θZt−1,

where θ is a real-valued parameter and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term, plus the

parameter θ multiplied by the white noise term from one time period ago. No subscript is necessary

on the θ parameter because there is only one θ parameter in the MA(1) model. So there are two

parameters that define an MA(1) model: the coefficient θ and the population variance of the white

noise σ2
Z .

Some authors prefer to parameterize the MA(1) model as

Xt = θ0Zt +θ1Zt−1,

where θ0 and θ1 are real-valued parameters. We avoid this parameterization because the θ0 param-

eter is redundant in the sense that the population variance of the white noise σ2
Z is absorbed into the

θ0 parameter. Also, some authors use a − rather than a + between two terms on the right-hand side

of the model.
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To illustrate the thinking behind the MA(1) model in a specific context, let Xt represent the

monthly unemployment, as a percentage, in month t. The MA(1) model indicates that this month’s

unemployment, denoted by Xt , equals θ multiplied by last month’s random white noise term, θZt−1,

plus this month’s random white noise term Zt .

MA(1) models are used less often than autoregressive models, and this is partly due to more

limited potential shapes for the population autocorrelation function, as will be seen next.

Stationarity and the Population Autocorrelation Function

One initial important question concerning the MA(1) model is whether or not the model is sta-

tionary. Rather than appealing to Theorem 8.4, we show this below using first principles. Recall

from Definition 7.6 that a time series model is stationary if (a) the expected value of Xt is constant

for all t, and (b) the population covariance between Xs and Xt depends only on the lag |t− s|. The

expected value of Xt is

E [Xt ] = E [Zt +θZt−1] = E [Zt ]+θE [Zt−1] = 0

for all values of the parameters θ and σ2
Z , and all values of t. Using the defining formula for popula-

tion covariance, the population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= E
[
(Xs−E [Xs]) (Xt −E [Xt ])

]

= E [XsXt ]

= E
[
(Zs +θZs−1)(Zt +θZt−1)

]

= E [ZsZt ]+θE [Zs−1Zt ]+θE [ZsZt−1]+θ2E [Zs−1Zt−1]

=







V [Zt ]+θ2V [Zt−1] |t− s|= 0

θV [Zt ] |t− s|= 1

0 |t− s|= 2, 3, . . .

=







(
1+θ2

)
σ2

Z |t− s|= 0

θσ2
Z |t− s|= 1

0 |t− s|= 2, 3, . . . .

Since E [Xt ] = 0 for all values of t and the population autocovariance function depends only on the

lag |t− s|, we conclude that the MA(1) time series model is stationary. Furthermore, the population

autocovariance function can be expressed in terms of the lag k as

γ(k) =







(
1+θ2

)
σ2

Z k = 0

θσ2
Z k = 1

0 k = 2, 3, . . . .

Dividing by the population autocovariance function by γ(0) = V [Xt ] =
(
1+θ2

)
σ2

Z gives the popu-

lation autocorrelation function

ρ(k) =







1 k = 0

θ/
(
1+θ2

)
k = 1

0 k = 2, 3, . . . .

This derivation constitutes a proof of the following result.
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Theorem 9.25 The MA(1) time series {Xt} is stationary for all values of the parameters θ and σ2
Z

with population autocorrelation function

ρ(k) =







1 k = 0

θ/
(
1+θ2

)
k = 1

0 k = 2, 3, . . . .

So the population autocorrelation function consists of a single nonzero value at lag 1 for a

nonzero parameter θ and zero values thereafter. Six important observations concerning this pop-

ulation autocorrelation function are given below.

• The sign of ρ(1) is the same as the sign of θ.

• The population autocorrelation function cuts off after lag 1 for an MA(1) time series model.

The time series model has a “memory” of just one time period. Figure 9.35 illustrates the

relationship between the white noise values {Zt} and the MA(1) time series observations

{Xt}. Observations of the time series that are two or more time periods apart, such as X2 and

X4, have no white noise terms in common, so the lag 2 population autocorrelation, ρ(2), is

zero. The third observation in the time series X3, for example, shares the white noise term

Z2 with X2 and the white noise term Z3 with X4, but is not affected by any white noise terms

before Z2 or after Z3.

white noise −→ Z0 Z1 Z2 Z3 Z4 Z5 Z6 . . .

X1

X2

X3

X4

X5

X6

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 9.35: Relationship between white noise {Zt} and {Xt} for an MA(1) model.

• The lag 1 population autocorrelation ρ(1) = θ/
(
1+θ2

)
can be written as a quadratic equation

in θ as

ρ(1)θ2−θ+ρ(1) = 0.

For nonzero values of θ, the two roots of this quadratic equation are both positive or both

negative. Furthermore, a little algebra reveals that the product of the two roots of this quadratic

equation equals 1. Figure 9.36 shows the parabolas associated with this quadratic equation

for ρ(1) = 2/5 (with associated roots θ = 1/2 and θ = 2) and ρ(1) = −2/5 (with associated

roots θ =−1/2 and θ =−2).

• The value ρ(1) must lie in the interval −1/2 ≤ ρ(1) ≤ 1/2. This can be seen in the plot of

ρ(1) = θ/
(
1+θ2

)
versus θ given by the solid curve in Figure 9.37, which indicates that ρ(1)

is minimized at ρ(1) = −1/2 when θ = −1 and maximized at ρ(1) = 1/2 when θ = 1. This

constraint means that the MA(1) model is more limited in application than the autoregressive

models from the previous chapter. In order to fit an MA(1) model to observed time series

values x1, x2, . . . , xn, it must be the case that (a) the length of the time series n is large enough

(about n = 50 or n = 60) to use an ARMA model, (b) the sample autocorrelation function has

a single statistically significant spike at lag 1, and (c) the statistically significant spike at lag 1

satisfies −1/2≤ r1 ≤ 1/2 to be compatible with the constraint −1/2≤ ρ(1)≤ 1/2.



598 Chapter 9. Topics in Time Series Analysis

θ

g(θ)
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ρ(1) = 2/5
ρ(1) =−2/5

Figure 9.36: The parabola g(θ) = ρ(1)θ2−θ+ρ(1) for ρ(1) = 2/5 and ρ(1) =−2/5.

• Figure 9.37 also reveals a more subtle aspect of the population lag 1 autocorrelation. Notice

that for θ = 1/2, the population lag 1 autocorrelation is ρ(1) = 2/5. But for θ = 2, the

population lag 1 autocorrelation is also ρ(1) = 2/5. The geometry associated with these two

values of θ resulting in the same value for ρ(1) is indicated by the dashed lines in Figure 9.37.

This problem is not just limited to θ = 1/2 and θ = 2; there are an infinite number of pairs

of θ values that will result in the same population lag 1 autocorrelation function value. More

generally, the MA(1) model

Xt = Zt +θZt−1

and the MA(1) model

Xt = Zt +
1

θ
Zt−1

have identical population autocorrelation functions. This means that there is not a one-to-one

θ

ρ(1)

−0.6

−0.3

0.1

0.2

0.3

0.4

0.5

0.6

−5 −4 −3 −2 −1 1 2 3 4 5

Figure 9.37: Graph of ρ(1) = θ/
(
1+θ2

)
versus θ for an MA(1) time series model.
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correspondence between a particular value of θ and the associated value of ρ(1). This brings

up the notion of invertibility, which was defined in Definition 8.3. An invertible time series

model has a unique value of θ in the MA(1) model corresponding to a particular population

autocorrelation function.

Invertibility

All MA(1) models are stationary per Theorem 8.3 because there are a finite number of moving

average terms in Definition 9.4. Recall from Definition 8.3 that an ARMA(p, q) time series model

for {Xt} is invertible if the white noise term at time t can be expressed as

Zt =
∞

∑
j=0

π jXt− j,

where the coefficients π j satisfy
∞

∑
j=0

π2
j < ∞.

There are no restrictions on θ necessary to ensure stationarity for an MA(1) model. However,

it can be advantageous to restrict the values of θ in order to achieve invertibility. Returning to

Figure 9.37, we can use the definition of invertibility to determine whether we use |θ|< 1 or |θ|> 1

for the invertibility region for an MA(1) model.

Just as we were able to write an AR(1) time series model as an MA(∞) time series model in

Section 9.1.1, we now perform the algebraic steps necessary to write an MA(1) time series model

as an AR(∞) time series model. We want to write Zt in terms of current and previous values of Xt as

shown in Definition 8.3. To begin, recall that the MA(1) model given by

Xt = Zt +θZt−1

can be shifted in time and is equally valid for other t values, for example,

Xt−1 = Zt−1 +θZt−2

Xt−2 = Zt−2 +θZt−3

... =
...

These formulas can be solved for Zt−1, Zt−2, . . . as

Zt−1 = Xt−1−θZt−2

Zt−2 = Xt−2−θZt−3

... =
...

Making successive substitutions into the MA(1) model results in

Xt = Zt +θZt−1

= Zt +θ(Xt−1−θZt−2)

= Zt +θXt−1−θ2Zt−2

= Zt +θXt−1−θ2 (Xt−2−θZt−3)
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= Zt +θXt−1−θ2Xt−2 +θ3Zt−3

...

= Zt +θXt−1−θ2Xt−2 +θ3Xt−3−θ4Xt−4 + · · · .

This can be recognized as an AR(∞) time series model.

Theorem 9.26 An MA(1) model with parameter θ can be written as the AR(∞) model

Xt = Zt +θXt−1−θ2Xt−2 +θ3Xt−3−θ4Xt−4 + · · · .

Representing an MA(1) model as an AR(∞) model is known as duality. Solving this equation

for Zt gives

Zt = Xt −θXt−1 +θ2Xt−2−θ3Xt−3 +θ4Xt−4−·· · ,
which is the form required for Definition 8.3. So the coefficients π0, π1, π2, . . . for the MA(1) model

from Definition 8.3 are

π0 = 1, π1 =−θ, π2 = θ2, π3 =−θ3, π4 = θ4, . . . ,

or in general, π j = (−θ) j, for j = 0, 1, 2, . . . . Definition 8.3 requires that

∞

∑
j=0

∣
∣π j

∣
∣=

∞

∑
j=0

∣
∣
∣(−θ) j

∣
∣
∣= 1+θ+θ2 +θ3 + · · ·< ∞

to achieve stationarity. This summation is a geometric series that converges when |θ|< 1, so this is

the invertibility region for an MA(1) model.

Theorem 9.27 The MA(1) time series model is invertible when −1 < θ < 1.

The invertibility criterion −1 < θ < 1 ensures that each value of θ in the interval corresponds

to a unique MA(1) time series model. Stated in another fashion, invertibility implies that there is a

one-to-one correspondence between the value of the θ parameter and the population autocorrelation

function.

The MA(1) time series model can be written in terms of the backshift operator B as

Xt = (1+θB)Zt = Zt +θZt−1.

Doubling up the use of θ as a function name, the expression

θ(B) = 1+θB

is the characteristic polynomial for the MA(1) model. Notice that the MA(1) model is invertible

when |θ| < 1, which corresponds to the root of θ(B) = 0 falling outside of the interval [−1, 1].
Solving θ(B) = 1+ θB = 0 results in B = −1/θ. This notion will be generalized in the next two

subsections for higher-order MA models as the roots of θ(B) = 0 falling outside of the unit circle in

the complex plane to establish invertibility.

Now that stationarity for all MA(1) time series models has been established, the condition for

invertibility has been established, and the population autocorrelation function has been derived, we

turn to determining the partial autocorrelation function.
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Population Partial Autocorrelation Function

The population partial autocorrelation function can be determined by using the defining for-

mula in Definition 7.4. The lag zero population partial autocorrelation is ρ∗(0) = 1. The lag one

population partial autocorrelation is ρ∗(1) = ρ(1) = θ/
(
1+θ2

)
. After a little algebra, the lag two

population partial autocorrelation is

ρ∗(2) =

∣
∣
∣
∣

1 ρ(1)
ρ(1) ρ(2)

∣
∣
∣
∣

∣
∣
∣
∣

1 ρ(1)
ρ(1) 1

∣
∣
∣
∣

=
ρ(2)− [ρ(1)]2

1− [ρ(1)]2
=− [ρ(1)]2

1− [ρ(1)]2
=−θ2

(
1−θ2

)

1−θ6
.

The lag three population partial autocorrelation is

ρ∗(3) =

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣
∣
∣
∣
∣
∣

=
[ρ(1)]3

1−2[ρ(1)]2
=

θ3
(
1−θ2

)

1−θ8
.

This pattern generalizes to the lag k population partial autocorrelation

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . , which can also be written as

ρ∗(k) =
(−1)k+1θk

1+θ2 +θ4 + · · ·+θ2k

for k = 1, 2, . . . . This constitutes a proof of the following result.

Theorem 9.28 The invertible MA(1) time series model for {Xt} with −1 < θ < 1 has population

partial autocorrelation function

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . .

When θ= 0, both the population autocorrelation function and the partial autocorrelation function

have just a single spike at ρ(0) = ρ∗(0) = 1; the MA(1) model reduces to just white noise in this

case. When 0 < θ < 1, ρ(1) > 0 and ρ∗(k) tails out and alternates in sign. When −1 < θ < 0,

ρ(1)< 0 and ρ∗(k) tails out and is negative for k = 1, 2, . . . .

Example 9.32 Plot the first eight lags of the population autocorrelation function ρ(k)
and the population partial autocorrelation function ρ∗(k) for an MA(1) model with

θ = 0.9.

The values of the population autocorrelation function and the population partial auto-

correlation function can be calculated using the formulas in Theorems 9.25 and 9.28,

respectively, or by calling the built-in R ARMAacf function as shown below.
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ARMAacf(ar = 0, ma = 9 / 10, 8)

ARMAacf(ar = 0, ma = 9 / 10, 8, pacf = TRUE)

The plots of these functions are displayed in Figure 9.38. As expected for an MA(1)

model, the population autocorrelation function cuts off after lag 1 and the population

partial autocorrelation alternates in sign and tails out.

0 1 2 3 4 5 6 7 8

−1

0

1

0 1 2 3 4 5 6 7 8

−1

0

1

kk

ρ(k) ρ∗(k)

Figure 9.38: Graphs of ρ(k) (left) and ρ∗(k) (right) for an MA(1) model with θ = 9/10.

The Shifted MA(1) Model

The population mean function for the MA(1) model is E [Xt ] = 0, which is not of much use in

practice because most real-world time series are not centered around zero. Adding a third parameter

µ to overcome this shortcoming results in the enhanced MA(1) model

Xt = µ+Zt +θZt−1,

which has population mean function E [Xt ] = µ and population autocorrelation function and popu-

lation autocorrelation function given in Theorems 9.25 and 9.28 because population variance and

covariance are unaffected by a shift in the time series model. There are now three parameters for the

time series model: µ, θ, and σ2
Z .

Theorem 9.29 A shifted first-order moving average model for the time series {Xt} is defined by

Xt = µ+Zt +θZt−1,

where µ, θ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise. This

model is invertible when −1 < θ < 1. This model is stationary for all values of the parameters µ,

θ, and σ2
Z . The expected value of Xt is E [Xt ] = µ. The population autocorrelation function and

partial autocorrelation function are given in Theorems 9.25 and 9.28.

Simulation

An MA(1) time series can be simulated by appealing to the defining formula for the MA(1)

model from Definition 9.4:

Xt = Zt +θZt−1.
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The algorithm given below generates an initial white noise value Z0, and then uses an additional n

white noise terms Z1, Z2, . . . , Zn to generate the time series values X1, X2, . . . , Xn using the MA(1)

defining formula. Indentation denotes nesting in the algorithm.

t← 0

generate Zt ∼WN
(
0, σ2

Z

)

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θZt−1

The three-parameter shifted MA(1) time series model that includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

So to generate a realization of an MA(1) time series model in R, we must define (a) the value of θ,

(b) the distribution of the white noise, (c) the value of σ2
Z , and, if this is a shifted MA(1) model,

(d) the value of the shift parameter µ.

Example 9.33 Generate a realization of n = 100 observations from an MA(1) time

series model with θ = 9/10, Gaussian white noise terms, and σ2
Z = 1.

The parameter θ = 9/10 just barely falls in the invertibility region −1 < θ < 1. This

choice of θ results in a population lag 1 autocorrelation that is very close to its largest

possible value. The population lag 1 autocorrelation function value associated with this

model is

ρ(1) =
θ

1+θ2
=

9/10

1+(9/10)2
=

90

181
∼= 0.4972,

so we expect a nearby value for r1 from the simulated time series values. The R code

below generates n = 100 simulated time series values and places them in the vector

named x.

set.seed(37)

n = 100

z = rnorm(n + 1)

x = numeric(n)

theta = 0.9

for (t in 1:n) x[t] = z[t + 1] + theta * z[t]

Use the plot.ts function to plot the time series contained in x, the acf function to plot

the associated correlogram, and the pacf function plot the associated sample partial

autocorrelation function.

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The time series plot of the realization, the associated correlogram, and the associated

sample partial autocorrelation function for θ = 0.9 and standard normal noise terms are

given in Figure 9.39. A horizontal line is drawn on the time series plot at E [Xt ] = 0.



604 Chapter 9. Topics in Time Series Analysis

1 100

−5
−4
−3
−2
−1

0
1
2
3
4
5

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

kk

rk r∗k

Figure 9.39: Time series plot, rk, and r∗k for n = 100 simulated values from an MA(1) model.

The time series contains short runs above and below the population mean, which are

consistent with the statistically significant lag 1 sample autocorrelation function value

r1 = 0.450. This value is slightly smaller than the associated population value. The

sample autocorrelation function values at lags 2 through 15 do not differ from zero by

a statistically significant amount, except for the sample lag 10 autocorrelation function

value r10 =−0.207. This value falls just slightly outside of the 95% confidence bounds

±
zα/2√

n
=± z0.025√

100
=±1.96

10
=±0.196.

This spike in the correlogram is not considered statistically significant because (a) there

is nothing about the time series that would indicate that a lag of 10 is a special lag,

(b) the spike in the correlogram at lag 10 falls just slightly outside of the confidence

bounds, and (c) we expect 1 in 20 of the correlogram spikes to fall outside of the 95%

confidence bounds because of random sampling variability, even if the MA(1) model

were perfect (as it is in this case). The graphs of ρ(k) and ρ∗(k) mirror their population
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counterparts in Figure 9.38. You are encouraged to place these R statements in a for

loop (of course, with the set.seed call outside of the loop) that generates multiple

realizations of the MA(1) time series with a call to Sys.sleep to provide a short time

delay for you to inspect the trio of plots. This will give you a feel for how this MA(1)

time series, its correlogram, and its sample partial autocorrelation function vary from

one realization to the next.

Another way to think about a realization of an MA(1) model is to make scatterplots

of adjacent observations and observations that are two time units apart. The left-hand

plot in Figure 9.40 illustrates the positive sample correlation between xt−1 and xt for

the realization, which is consistent with the positive lag 1 population autocorrelation.

The n− 1 = 99 pairs of points plotted are the adjacent values in the realization of the

time series, (xt−1, xt). The population autocorrelation function cuts off after lag 1 for an

MA(1) time series model. This is supported by the right-hand plot in Figure 9.40, which

shows the n−2= 98 pairs (xt−2, xt) for the realization, which appear to be independent.

The regression lines have been added to each plot. The additional R statements below

indicate that the p-values for the statistical significance of the slopes associated with the

two plots are p = 9.3 ·10−7 and p = 0.65, respectively.

summary(lm(x[2:n] ~ x[1:(n - 1)]))

summary(lm(x[3:n] ~ x[1:(n - 2)]))

These p-values indicate that the slope of the line in the left-hand plot differs significantly

from zero, while the slope of the line in the right-hand plot does not differ significantly

from zero.
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Figure 9.40: Scatterplots of pairs of simulated MA(1) observations.

Example 9.34 Generate a realization of n = 100 observations from a shifted MA(1)

time series model with µ = 20, θ =−9/10, Gaussian white noise terms, and σ2
Z = 1.

This time series corresponds to the opposite extreme case of the MA(1) because the

coefficient θ =−0.9 also (barely) falls in the invertibility region −1 < θ < 1. We again
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assume that the Gaussian white noise has population variance σ2
Z = 1, but now include

a shift parameter µ = 20. The population lag 1 autocorrelation function value associated

with this model is

ρ(1) =
θ

1+θ2
=

−9/10

1+(−9/10)2
=− 90

181
∼=−0.4972.

So this choice of θ results in a population lag 1 autocorrelation that is very close to its

smallest possible value. The R code below simulates n = 100 observations from this

shifted MA(1) model. This code differs from the previous code in that it avoids the use

of a for loop, which is a more efficient way to generate observations in R. The time

series plot of the realization of n = 100 observations and the associated correlogram for

θ =−0.9 is given in Figure 9.41.

set.seed(37)

n = 100

z = rnorm(n + 1)
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Figure 9.41: Time series plot, rk, and r∗k for n = 100 simulated values from an MA(1) model.
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theta = -0.9

x = z[2:(n + 1)] + theta * z[1:n]

x = x + 20

The time series plot reveals that adjacent observations in the time series tend to be on

opposite sides of the population mean, which is consistent with the sample lag 1 auto-

correlation r1 =−0.524. The sample autocorrelation function values for lags 2 through

15 do not differ from zero by a statistically significant amount. So the sample autocor-

relation cuts off after lag 1 as expected. Furthermore, the sample partial autocorrelation

tails out as expected. The arima.sim function can also be used to generate a realization

of an MA(1) time series model using fewer keystrokes. The R single statement

x = 20 + arima.sim(list(ma = -0.9), n = 100)

generates 100 values from a shifted MA(1) model with θ = −0.9, µ = 20 and σ2
Z = 1.

The default probability distribution for the white noise terms is Gaussian white noise.

Having established the probabilistic properties of the MA(1) model, we now turn to statistical

topics, beginning with the estimation of the model parameters.

Parameter Estimation

There are several techniques for estimating the parameters in an MA(1) model; as was the case

for the autoregressive models, we look at the method of moments, least squares, and maximum like-

lihood estimation techniques separately. Parameter estimation is more difficult for moving average

models, as numerical methods are typically required to calculate the parameter estimates.

Approach 1: Method of moments. We begin with the shifted MA(1) model from Defini-

tion 9.4:

Xt = µ+Zt +θZt−1.

We want to estimate the three unknown parameters µ, θ, and σ2
Z from an observed time series {xt}. In

the case of the shifted MA(1) model, we match the population and sample (a) first-order moments,

(b) second-order moments, and (c) lag 1 autocorrelation. These will be written with upper case

values Xt although these will be replaced with numeric values xt for a particular observed time

series. Placing the population moments of the left-hand side of the equation and the associated

sample moments on the right-hand side of the equation results in three equations in three unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

or

µ = X̄

V [Xt ]+E [Xt ]
2 = γ(0)+µ2 =

(
1+θ2

)
σ2

Z +µ2 =
1

n

n

∑
t=1

X2
t

θ

1+θ2
= r1.
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The third equation is a quadratic equation in θ:

r1θ2−θ+ r1 = 0,

which corresponds to the parabolas in Figure 9.36, except that ρ(1) is replaced by r1. Using the

quadratic formula, the product of the two roots

θ =
1±
√

1−4r2
1

2r1

equals 1, so the root that falls within the invertibility region −1 < θ̂ < 1 should be chosen. Some

algebra shows that this can be done by always selecting the minus in the ± portion of the formula.

Once the point estimator θ̂ has been chosen, the first two equations can be solved as

µ̂ = X̄ and σ̂2
Z =

(1/n)∑n
t=1 X2

t − µ̂ 2

1+ θ̂2
.

It appears that we have closed-form solutions to the method of moments estimators, but there is a

subtle wrinkle in this derivation. Because of random sampling variability there is a chance that the

lag 1 sample autocorrelation r1 might be greater than 1/2 or less than −1/2, even if the population

time series model truly is a shifted MA(1) model satisfying the invertibility criterion −1 < θ < 1.

In this case the quadratic formula yields complex roots. So the method of moments parameter

estimation approach is recommended for initial parameter estimates only if the constraint |r1|< 1/2

stated in the result that follows is met.

Theorem 9.30 The method of moments estimators for a shifted MA(1) model from a time series

x1, x2, . . . , xn with |r1|< 1/2 are

µ̂ = X̄ , θ̂ =
1−
√

1−4r2
1

2r1
, σ̂2

Z =
(1/n)∑n

t=1 X2
t − µ̂ 2

1+ θ̂2
.

Thus, the method of moments point estimators in Theorem 9.30 should only be used for deter-

mining initial estimators of µ, θ, and σ2
Z from x1, x2, . . . , xn when the following criteria are met:

• the number of observations in the time series is greater than about n = 60 or n = 70,

• the time series appears to be stationary,

• the sample autocorrelation function has a single statistically significant spike at lag 1,

• the sample partial autocorrelation function tails out, and

• −1/2 < r1 < 1/2.

The method of moments estimators are generally used to find initial point estimates for the

parameters in an MA(1) model, which are subsequently used in an iterative scheme to find the least

squares or maximum likelihood estimators. This will be illustrated next on a time series consisting

of chemical yields.
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Example 9.35 Consider the time series consisting of the production record of n = 210

consecutive yield values in a chemical production process in Table 9.14. The entries are

read row wise. Determine an appropriate model for this time series and find the method

of moments initial estimates for the parameters.

The first step is to plot the time series, sample autocorrelation function, and sample par-

tial autocorrelation function. The following R code uses the plot.ts, acf, and pacf

functions to produce the graphs of the time series and correlogram given in Figure 9.42.

The raw time series values are stored in a file named yields.dat.

x = scan("yields.dat")

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The time series appears to be stationary. The time series frequently jumps from one side

of the sample mean x̄ = 84.1 to the other, indicating a negative sample correlation be-

tween adjacent values in the time series. The sample lag 1 autocorrelation r1 =−0.289

falls outside of the 95% confidence bounds, so we can conclude that there is a single sta-

tistically significant spike at lag 1. There are marginally statistically significant spikes

at lags 2 and 6, which we will attribute to random sampling variability. The sample par-

tial autocorrelation function has statistically significant spikes at lags 1, 2, and 3 which

are negative and decrease in magnitude. Since −1/2 < r1 < 1/2, the time series plot

and the shapes of rk and r∗k indicate that the shifted MA(1) model

Xt = µ+Zt +θZt−1

with a negative value of θ might be appropriate. The R statements that follow are used

to estimate the model parameters using Theorem 9.30.

85.5 81.7 80.6 84.7 88.2 84.9 81.8 84.9 85.2 81.9 89.4 79.0 81.4 84.8

85.9 88.0 80.3 82.6 83.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.9 81.5

83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.4 86.3 80.7 83.8 90.5 84.5 82.4

86.7 83.0 81.8 89.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.3 88.4 86.6

84.6 79.7 86.0 84.2 83.0 84.8 83.6 81.8 85.9 88.2 83.5 87.2 83.7 87.3

83.0 90.5 80.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.5 86.1 82.6 85.4

84.7 82.8 81.9 83.6 86.8 84.0 84.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4

83.0 85.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.8 84.2 83.5 86.5 85.0

80.4 85.7 86.7 86.7 82.3 86.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.9

85.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.4 84.5 86.2 85.6 83.2 85.7

83.5 80.1 82.2 88.6 82.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.1 80.6

87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.6 83.5 78.1 88.8 81.9 83.3 80.0

87.2 83.3 86.6 79.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.6 84.4 84.4

82.2 88.9 80.9 85.1 87.1 84.0 76.5 82.7 85.1 83.3 90.4 81.0 80.3 79.8

89.0 83.7 80.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.1 82.3 86.7 80.2

Table 9.14: Production record of n = 210 consecutive chemical yields.
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Figure 9.42: Time series plot, rk, and r∗k for n = 210 chemical yields.

x = scan("yields.dat")

r1 = acf(x, plot = FALSE)$acf[2]

muhat = mean(x)

thetahat = (1 - sqrt(1 - 4 * r1 ^ 2)) / (2 * r1)

sigma2hat = (mean(x ^ 2) - muhat ^ 2) / (1 + thetahat ^ 2)

This code yields the following method of moments point estimators for the three pa-

rameters:

µ̂ = 84.1 θ̂ =−0.318 σ̂2 = 7.50.

This value of θ̂ falls within the invertibility region −1 < θ < 1 for the shifted MA(1)

time series model.

Approach 2: Least squares. Consider the shifted stationary MA(1) model

Xt = µ+Zt +θZt−1
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from Theorem 9.29. For least squares estimation, we first establish the sum of squares S as a function

of the parameters µ and θ. Numerical methods are required to determine the least squares estimators

of µ and θ. Once these least squares estimators have been determined, the population variance of the

white noise σ2
Z will be estimated.

Solving the shifted MA(1) model defining formula for Zt results in

Zt = Xt −µ−θZt−1.

Seeding this recursive formula with Z0 = 0 gives the residuals

Z1 = X1−µ

Z2 = X2−µ−θZ1

Z3 = X3−µ−θZ2

... =
...

Zn = Xn−µ−θZn−1.

Thus, the sum of squared errors is

S =
n

∑
t=1

Z2
t = (X1−µ)2 +

n

∑
t=2

(Xt −µ−θZt−1)
2 .

Numerical methods are required to find the parameter estimates. This will be illustrated next for the

time series of chemical yields.

Example 9.36 Find the least squares estimators for the time series of chemical yields

given in Example 9.35.

The R code below uses the optim function to perform a search to find the least squares

parameter estimates for µ and θ. The first statement reads the time series values into

the vector x. The second statement uses the length function to calculate the number

of observations in the time series. The third statement defines the function s, which

calculates the sum of squares. The last statement calls the optim function with the

method of moments estimators as initial parameter estimates as its first argument. The

optim function minimizes the function in its second argument by default.

x = scan("yields.dat")

n = length(x)

s = function(parameters) {

mu = parameters[1]

theta = parameters[2]

z = numeric(n)

z[1] = x[1] - mu

for (t in 2:n) z[t] = x[t] - mu - theta * z[t - 1]

sum(z ^ 2)

}

optim(c(84.1, -0.318), s, method = "L-BFGS-B")

The optim function is being called in this case to perform a two-dimensional search

without any derivative information being supplied. In order to visualize what the optim
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function is up against, picture yourself standing blindfolded on the side a mountain. The

position where you are standing corresponds to the initial estimates for the parameters.

In order to find the least squares parameter estimates, you want to take steps that lead

you to the bottom of the valley, where the height corresponds to the sum of squares of

the residuals. For maximum likelihood estimation, you want to take steps that lead you

to the peak of the mountain, where the height corresponds to the likelihood function.

But you are not given any gradient information from the function about the best direc-

tion to proceed for your next step. Regardless of the argument selected in the method

argument, the internal algorithm in the optim function converges to roughly the same

parameter estimates, as shown in Table 9.15. All five of the methods round to µ̂ = 84.13

and θ̂ = −0.483. The columns in Table 9.15 give the method, the number of calls to

the function, the number of calls to evaluate the gradient, the least squares parameter

estimates of µ, the least squares parameter estimates of θ, and the associated sums of

squares S.

Method Function Gradient µ̂ θ̂ S

Nelder�Mead 67 NA 84.12932 −0.48259 1484.989

BFGS 22 6 84.12942 −0.48261 1484.989

CG 180 23 84.12942 −0.48261 1484.989

L�BFGS�B 17 17 84.12942 −0.48261 1484.989

SANN 10000 NA 84.13053 −0.48269 1484.990

Table 9.15: MA(1) least squares parameter estimates for the chemical yields.

There is a large difference between the method of moments estimator of θ, which

was θ̂ = −0.318 from Example 9.35, and the least squares estimator of θ, which is

θ̂ = −0.483 from Table 9.15. This is an instance of why the method of moments esti-

mators are only used for initial estimates for iterative schemes for finding least squares

estimates or maximum likelihood estimates. The population variance of the white noise

can be estimated using the method of moments formula as

σ̂2
Z =

(1/n)∑n
t=1 X2

t − µ̂ 2

1+ θ̂2
= 5.61.

Approach 3: Maximum likelihood estimation. We use the arima function to do the heavy

lifting with respect to the estimation of the parameters in the MA(1) time series model via maximum

likelihood. In addition to the point estimates, confidence intervals are based on the asymptotic

distribution of the maximum likelihood estimator θ̂, which for large values of n is

V
[
θ̂
]∼= 1−θ2

n
.

So when the parameter θ is estimated by maximum likelihood from a time series, an asymptotically

exact 100(1−α)% confidence interval for θ is given in the result below. It is based on the consis-

tency and the asymptotic normality of maximum likelihood estimators, which in this case implies

that

θ̂
a∼ N

(

θ,
1−θ2

n

)

.

Replacing θ by its maximum likelihood estimator in the variance yields the following result.
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Theorem 9.31 For an invertible MA(1) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for θ is given by

θ̂− zα/2

√

1− θ̂2

n
< θ < θ̂+ zα/2

√

1− θ̂2

n
,

where θ̂ is the maximum likelihood estimator and zα/2 is the 1−α/2 fractile of the standard normal

distribution.

The formula for the confidence interval from Theorem 9.31 will be illustrated for the chemical

yield data from the previous two examples.

Example 9.37 Find the maximum likelihood estimators for µ, θ, and σ2
Z for fitting

a shifted MA(1) time series model to the time series of chemical yields from Exam-

ple 9.35. Give a 95% confidence interval for θ and µ.

The following R code uses the arima function to calculate the maximum likelihood

estimators for µ, θ, and σ2
Z , estimate the variance–covariance matrix of the standard

errors, and display the standard errors of the estimators.

x = scan("yields.dat")

fit = arima(x, order = c(0, 0, 1), include.mean = TRUE, method = "ML")

fit$coef

fit$var.coef

fit$sigma2

sqrt(fit$var.coef[1, 1])

sqrt(fit$var.coef[2, 2])

The resulting fitted MA(1) time series model to significant digits via maximum likeli-

hood estimation is

Xt = µ̂ +Zt + θ̂Zt−1

or
Xt = 84.13 + Zt − 0.480Zt−1,

(0.0958) (0.0667)

where Zt is white noise with estimated population variance σ̂2
Z = 7.071. The numbers in

parentheses just below the parameter estimates are the estimated standard errors of the

associated parameter estimates. Using the standard errors from arima, the associated

approximate 95% confidence intervals are

−0.611 < θ < −0.349

83.94 < µ < 84.32.

The 95% confidence interval for θ using Theorem 9.31 is slightly narrower than that

produced by the arima function: −0.599 < θ <−0.362.

The parameter estimates using the method of moments, least squares, and maximum likelihood

estimation from the previous three examples are summarized in Table 9.16. Notice that the least
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Method µ̂ θ̂ σ̂2
Z

Method of moments 84.1 −0.318 7.50

Ordinary least squares 84.1 −0.483 5.61

Maximum likelihood estimation 84.1 −0.480 7.07

Table 9.16: Point estimators for the MA(1) parameters for the n = 210 chemical yields.

squares and maximum likelihood estimates of θ differ significantly from the associated method of

moments estimator of θ.

In the interest of brevity, we leave the model assessment, model selection, and forecasting steps

of the process for the chemical yields time series as an exercise. The derivations for these procedures

follow along the same lines as those for the autoregressive models from the previous section.

This subsection has introduced the MA(1) time series model. The key results for an MA(1)

model are listed below.

• The standard MA(1) model can be written algebraically and with the backshift operator B as

Xt = Zt +θZt−1 and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θB (Definition 9.4).

• The shifted MA(1) model can be written algebraically and with the backshift operator B as

(Theorem 9.29)

Xt = µ+Zt +θZt−1 and Xt = µ+θ(B)Zt .

• The MA(1) model is stationary for all finite real-valued parameters θ and σ2
Z (Theorem 9.25).

• The MA(1) model is invertible when −1 < θ < 1 (Theorem 9.27).

• The MA(1) model can be written as an AR(∞) model when −1 < θ < 1 as (Theorem 9.26)

Xt = Zt +θXt−1−θ2Xt−2 +θ3Xt−3−·· ·

• The MA(1) model lag 1 population autocorrelation is ρ(1) = θ/
(
1+θ2

)
, and ρ(k) = 0 for

k = 2, 3, . . . (Theorem 9.25). The lag 1 population autocorrelation satisfies the inequality

−1/2≤ ρ(1)≤ 1/2 (Figure 9.37).

• The MA(1) lag k population partial autocorrelation for −1 < θ < 1 is

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . (Theorem 9.28).

• A time series of n+ 1 white noise values Z0, Z1, Z2, . . . , Zn can be converted to n simulated

observations X1, X2, . . . , Xn by using the MA(1) defining formula Xt = Zt +θZt−1.

• The parameters in the MA(1) model can be estimated via the method of moments, least

squares estimation, and maximum likelihood estimation.
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9.2.2 The MA(2) Model

The additional term in the MA(2) model gives it increased flexibility over the associated MA(1)

model.

Definition 9.5 A second-order moving average time series model, denoted by MA(2), for the time

series {Xt} is defined by

Xt = Zt +θ1Zt−1 +θ2Zt−2,

where θ1 and θ2 are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term, plus the

parameter θ1 multiplied by the white noise term from one time period ago, plus the parameter θ2

multiplied by the white noise term from two time periods ago. So there are three parameters that

define an MA(2) model: the coefficients θ1 and θ2, and the population variance of the white noise

σ2
Z . As was the case of the MA(1) model, some authors use a − rather than a + between three terms

on the right-hand side of the model.

The probabilistic properties and statistical methods associated with an MA(2) model are straight-

forward generalizations of those properties and methods for the MA(1) model. Rather than deriving

these results from first principles, we simply state several of these results without proof and then

conduct a Monte Carlo simulation experiment which highlights issues that arise in model selection.

• The standard MA(2) model can be written algebraically and with the backshift operator B as

Xt = Zt +θ1Zt−1 +θ2Zt−2 and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θ1B+θ2B2.

• The shifted MA(2) model can be written algebraically and with the backshift operator B as

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 and Xt = µ+θ(B)Zt .

• MA(2) models are stationary for all finite, real-valued parameters µ, θ1, θ2, and σ2
Z .

• Just as the stationarity region for the AR(2) model has a triangular shape, the invertibility

region for the MA(2) model also has a triangular shape defined by the three constraints

θ1 +θ2 >−1, θ2−θ1 >−1, θ2 < 1.

This region is an upside-down version of the region for an AR(2) time series model depicted

in Figure 9.12. In other words, the triangles are equivalent when reflected vertically about the

origin.

• The population autocovariance function is

γ(k) =







(
1+θ2

1 +θ2
2

)
σ2

Z k = 0

(θ1 +θ1θ2)σ2
Z k = 1

θ2σ2
Z k = 2

0 k = 3, 4, . . .
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• The population autocorrelation function is

ρ(k) =







1 k = 0

(θ1 +θ1θ2)/
(
1+θ2

1 +θ2
2

)
k = 1

θ2/
(
1+θ2

1 +θ2
2

)
k = 2

0 k = 3, 4, . . .

• The population partial autocorrelation function of an MA(2) model can be determined by

using the defining formula from Definition 7.8.

• A simulated realization X1, X2, . . . , Xn of a time series from an MA(2) model is generated by

the following algorithm.

t←−1

generate Zt ∼WN
(
0, σ2

Z

)

t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θ1Zt−1 +θ2Zt−2

• The parameters of an MA(2) time series model can be estimated by the method of moments,

least squares, and maximum likelihood estimation. As shown in the next example, the arima

function can be used in R to calculate these parameter estimates.

The previous subsections have analyzed n observed values of a time series in order to determine

an AR(p) or MA(q) model which adequately describes the probabilistic mechanism governing the

observed time series. Instead of following this same pattern, we instead conduct a Monte Carlo

simulation experiment that highlights weaknesses in the model selection process.

Example 9.38 Consider a standard (unshifted) MA(2) model with parameters θ1 = 0.4,

θ2 = 0.6, and σ2
Z = 1. For a realization of n = 60 observations from this time series

fitted by maximum likelihood estimation, use Monte Carlo simulation to estimate the

probability that the correct model is identified if the AIC criterion is used to determine

the correct model.

This Monte Carlo simulation experiment answers an important question in time series

analysis. If we have just a single realization of a time series (this is often the case in

practice) which is governed by an approximately ARMA model, what is the probability

that we correctly identify the p and q values associated with the ARMA(p, q) time series

model which generated the observations?

The MA(2) model is the population time series model in this particular simulation ex-

periment. The choice of parameters θ1 = 0.4 and θ2 = 0.6 falls in the invertibility

region, so this particular population MA(2) model is both stationary and invertible. Fur-

thermore, the parameters θ1 = 0.4 and θ2 = 0.6 have been chosen so that the population

autocorrelation function is

ρ(k) =







1 k = 0

(0.4+0.4 ·0.6)/
(
1+0.42 +0.62

)
k = 1

0.6/
(
1+0.42 +0.62

)
k = 2

0 k = 3, 4, . . .
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or

ρ(k) =







1 k = 0

0.42 k = 1

0.39 k = 2

0 k = 3, 4, . . . .

As anticipated, the population autocorrelation cuts off after lag 2. So we expect that

the first two values in the sample autocorrelation function computed from a realiza-

tion of this time series model, r1 and r2, will be statistically significant, and the oth-

ers will fall between the confidence bounds ±1.96/
√

60 = ±0.25. The coefficients

θ1 and θ2 have been chosen so that the first two values in the population autocorrela-

tion function, ρ(1) = 0.42 and ρ(2) = 0.39, both fall outside of the confidence bounds

±1.96/
√

60 =±0.25 associated with the sample autocorrelation function. This choice

of parameters has been made to give the ARMA modeling procedure a good chance of

correctly identifying the underlying population MA(2) time series model.

The R code below generates realizations of 1000 time series of length n = 60 from

an MA(2) model with θ1 = 0.4, θ2 = 0.6, and σ2
Z = 1. The arima.sim function is

used to generate each realization, and the simulated values are placed in the vector x.

The two inner nested for loops fit all ARMA(p, q) models to the simulated values, for

p = 0, 1, 2, . . . , 5 and q = 0, 1, 2, . . . , 5 using the arima function. The AIC for each of

the fitted models are stored in the a matrix. Finally, the which.min function is used to

determine which of the 6 ·6 = 36 models has the lowest AIC value.

set.seed(3)

nrep = 1000

a = matrix(0, 6, 6)

r = matrix(0, 6, 6)

for (i in 1:nrep) {

x = arima.sim(list(ma = c(0.4, 0.6)), n = 60)

for (p in 0:5)

for (q in 0:5)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

j = which.min(a)

r[j] = r[j] + 1

print(a)

print(j)

print(r)

}

100 * r / nrep

Table 9.17 contains the estimated probabilities of the selection of the various models

expressed as percents. The good news is that the MA(2) model is the one that is chosen

most often of the 36 models based on the AIC criterion. The associated bad news is

that the MA(2) model is chosen less than half of the time. So in the practical case of

analyzing a single time series of n = 60 values, there is a better than 0.5 probability that

this procedure will identify the wrong population time series model. This illustrates the

unwelcome effect of random sampling variability in model selection.

Bear in mind that the estimated probabilities given in Table 9.17 only apply to the use

of the AIC criterion and the parameter settings θ1 = 0.4, θ2 = 0.6, σ2
Z = 1, and n = 60.
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q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

p = 0 0.2% 0.0% 40.1% 4.9% 2.4% 1.9%

p = 1 0.7% 0.0% 3.1% 6.0% 1.4% 1.6%

p = 2 0.7% 0.9% 3.7% 1.3% 5.3% 1.5%

p = 3 3.2% 1.6% 2.6% 0.7% 1.9% 2.2%

p = 4 0.9% 0.9% 2.0% 1.4% 1.5% 1.1%

p = 5 0.6% 0.6% 0.8% 0.7% 1.0% 0.6%

Table 9.17: Estimated probabilities of selection based on AIC criterion.

Changing any one of these parameters will alter the probabilities. The purpose of this

example is to highlight the pitfalls associated with fitting a time series model to a single

realization of n time series values. The probability of an incorrect selection is high, and

this is an argument for collecting a longer time series when possible. In addition, if a

time series is collected periodically (for example, n values collected annually), then the

fits to various realizations should be compared.

To summarize the models considered so far in this chapter, the AR(1), AR(2), MA(1), and

MA(2) models are parsimonious in the sense that they have significant explanatory power with few

parameters. By deriving the population autocorrelation function and partial autocorrelation function

for these models, we now possess an inventory of possible shapes that guide us toward one particular

time series model or another. Figure 9.43 gives examples of these shapes for various values of the

parameters.

9.2.3 The MA(q) Model

The MA(1) and MA(2) models introduced in the previous two subsections generalize to the MA(q)

model defined in this section.

Definition 9.6 A moving average time series model with q terms, denoted by MA(q), for the time

series {Xt} is defined by

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

where θ1, θ2, . . . , θq are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term plus a linear

combination of the q previous white noise terms. So there are q+1 parameters that define an MA(q)

model: the coefficients θ1, θ2, . . . , θq, and the population variance of the white noise σ2
Z . As was

the case of the MA(1) and MA(2) models, some authors use a − rather than a + between terms on

the right-hand side of the model.

The probabilistic properties and statistical methods associated with an MA(q) model are deter-

mined in the usual fashion. Here are several of these results stated without proof.

• The population mean and variance of Xt are easily calculated by taking the expected value and
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Figure 9.43: Characteristic shapes of ρ(k) and ρ∗(k) for AR(1), AR(2), MA(1), and MA(2) models.

the population variance of both sides of the equation given in Definition 9.6:

E[Xt ] = E[Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q] = 0

and

V [Xt ] =V [Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

q

)
σ2

Z .

• The standard MA(q) model can be written algebraically and with the backshift operator B as

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.
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• The shifted MA(q) model can be written algebraically and with the backshift operator B as

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q and Xt = µ+θ(B)Zt .

• MA(q) models are stationary for all finite, real-valued parameters µ, θ1, θ2, . . . , θq, and σ2
Z .

• MA(q) models are invertible when the q roots of the characteristic equation

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq = 0

all lie outside of the unit circle in the complex plane.

• The population autocovariance function is

γ(k) =







(
1+θ2

1 +θ2
2 + · · ·+θ2

q

)
σ2

Z k = 0

(θ1 +θ1θ2 +θ2θ3 + · · ·+θq−1θq)σ2
Z k = 1

(θ2 +θ1θ3 +θ2θ4 + · · ·+θq−2θq)σ2
Z k = 2

...
...

θqσ2
Z k = q

0 k = q, q+1, . . . .

This can be written more compactly as

γ(k) =

{ (
θk +θ1θk+1 +θ2θk+2 + · · ·+θq−kθq

)
σ2

Z k = 0, 1, 2, . . . ,q
0 k = q, q+1, . . . ,

where θ0 = 1.

• The population autocorrelation function is

ρ(k)=

{ (
θk +θ1θk+1 +θ2θk+2 + · · ·+θq−kθq

)
/
(
1+θ2

1 + · · ·+θ2
q

)
k = 0, 1, . . . , q

0 k = q, q+1, . . . .

As expected, the population autocorrelation function cuts off after lag q.

• The population partial autocorrelation function of an MA(q) model can be determined by

using the defining formula from Definition 7.8.

• A simulated realization X1, X2, . . . , Xn of a time series from an MA(q) model is generated by

the following algorithm.

generate Z−(q−1), Z−(q−2), . . . , Z0 ∼WN
(
0, σ2

Z

)

t← 0

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

• The parameters of an MA(q) time series model can be estimated by the method of moments,

least squares, and maximum likelihood estimation. The arima function can be used in R to

calculate these parameter estimates for particular values of a time series x1, x2, . . . , xn.
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Table 9.18 shows some of the symmetry between autoregressive and moving average models.

When one aspect of the time series model is easier to derive for one of the models, it is often more

difficult to derive for the analogous time series model. The population autocorrelation function for an

MA(q) model is closed form, for example, but the population autocorrelation function for an AR(p)

model requires solving the Yule–Walker equations. As a second example on the statistical side, the

least squares estimators for the AR(1) model are closed form, but the least squares estimators for the

MA(1) model require numerical methods.

Autoregressive: AR(p) Moving Average: MA(q)

Model
φ(B)Xt = Zt Xt = θ(B)Ztdefinition

Characteristic
φ(B) = 1−φ1B−φ2B2−·· ·−φpBp θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq

polynomial

Stationarity
φ(B) = 0 roots outside of unit circle always stationary

condition

Invertibility
always invertible θ(B) = 0 roots outside of unit circle

condition

Equivalent
MA(∞) when stationary AR(∞) when invertible

model

General linear
finite series infinite series

model π weights

General linear
infinite series finite series

model ψ weights

Shape
tails out cuts off after lag q

of ρ(k)
Shape

cuts off after lag p tails out
of ρ∗(k)

Simulating
warm up period needed no warm up period needed

a realization

Table 9.18: AR(p) versus MA(q) models.

9.3 ARMA(p, q) Models

The autoregressive and moving average models outlined in the previous two sections often prove to

be inadequate time series models in a particular application. Occasions arise in which the best model

for a time series involves both autoregressive and moving average terms. Recall from Definition 8.4

that an ARMA(p, q) time series model with p autoregressive terms and q moving average terms is

Xt =

autoregressive portion
︷ ︸︸ ︷

φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q
︸ ︷︷ ︸

moving average portion

,

where {Xt} is the time series of interest, {Zt} is a time series of white noise, φ1, φ2, . . . , φp are real-

valued parameters associated with the AR portion of the model, and θ1, θ2, . . . , θq are real-valued
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parameters associated with the MA portion of the model. The ARMA(p, q) model can be written

more compactly as

φ(B)Xt = θ(B)Zt ,

where φ(B) and θ(B) are the characteristic polynomials defined by

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

This model on its own is of little practical use because most real-world time series are not cen-

tered around E[Xt ] = 0. Using the compact notation for the ARMA(p, q) time series model, a shift

parameter µ is easily added:

φ(B)(Xt −µ) = θ(B)Zt .

So there are p+ q+ 2 parameters that define a shifted ARMA(p, q) time series model: the p au-

toregressive coefficients φ1, φ2, . . . , φp, the q moving average coefficients θ1, θ2, . . . , θq, the shift

parameter µ, and the population variance of the white noise σ2
Z .

Recall from Table 9.7 in Example 9.20 that the ARMA(1, 1) model fitted by maximum likeli-

hood estimation gave a slightly lower AIC than the associated AR(2) model when applied to the

Lake Huron level time series. This section will consist of one long example that concerns the fit-

ting and assessing this ARMA(1, 1) model to determine whether it is an adequate model for the

Lake Huron levels. Rather than deriving all of the probabilistic properties and statistical methods

for the ARMA(1, 1) model, the arima function in R will be used to perform the fitting, leaving the

details to the reader. By default, the arima function (a) ignores external regressor variables, (b) ig-

nores seasonal variation, (c) includes a shift parameter µ, (d) uses the same parameterization for

the ARMA(p, q) process as that used in this text, (e) transforms the AR parameters φ1, φ2, . . . , φp

if necessary so that they stay in the stationarity region, and ( f ) uses a conditional sum of squares

method as initial parameter estimates, then returns the maximum likelihood estimators.

Example 9.39 Fit the ARMA(1, 1) model to the n = 98 annual Lake Huron levels from

1875–1972 described in Example 9.14. Assess the model adequacy of the fit and predict

the level of Lake Huron for the next five years (1973–1977).

The first R statement below fits the ARMA(1, 1) model to the Lake Huron levels. The

next four statements extract the estimated coefficients, estimated white noise variance,

estimated variance–covariance matrix of the coefficients, and the residuals.

fit = arima(LakeHuron, order = c(1, 0, 1))

coefficients = fit$coef

variance = fit$sigma2

variancecov = fit$var.coef

residuals = fit$residuals

The parameter estimates (to five-digit accuracy that is inherent in the time series values)

are

φ̂1 = 0.74490 θ̂1 = 0.32059 µ̂ = 579.06 σ̂2
Z = 0.47494.
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The estimated variance–covariance matrix of φ̂1, θ̂1, and µ̂ is





0.0060296 −0.0046761 0.0017655

−0.0046761 0.0128889 −0.0020637

0.0017655 −0.0020637 0.1225691



 .

Using the square roots of the diagonal elements of the variance–covariance matrix as

standard error estimates, the following additional R commands give approximate two-

sided 95% confidence intervals for the parameters.

coefficients[1] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[1, 1])

coefficients[2] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[2, 2])

coefficients[3] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[3, 3])

The approximate 95% confidence intervals are

0.59271 < φ1 < 0.89709 0.09808 < θ1 < 0.54310 578.37 < µ < 579.74.

Since none of these confidence intervals contains zero, we continue to entertain this

tentative ARMA(1, 1) model and transition to an analysis of the residuals.

The following R commands plot the residuals as a time series, along with the associated

sample autocorrelation function and sample partial autocorrelation function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = 40)

pacf(zhat, lag.max = 40)

The results are displayed in Figure 9.44. From the top graph, the residuals do not appear

to have any cyclic variation, trend, or serial correlation. The sample autocorrelation

function values for the residuals do not have any values that fall outside of the 95%

confidence limits. Likewise for the sample partial autocorrelation function values.

Since there are no sample autocorrelation function values that fall outside of the 95%

confidence limits ±1.96/
√

n in the plot in Figure 9.44 of the first 40 sample auto-

correlation function values associated with the residuals, and we expect 40 · 0.05 = 2

values to fall outside of these limits in the case of a good fit, we fail to reject H0 in this

case. The independence of the residuals is not rejected by this test. The tentative fitted

ARMA(1, 1) model is not rejected by this test.

The R code below calculates the Box–Pierce test statistic and the Ljung–Box test statis-

tic and the associated p-values using the built-in Box.test function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 3)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 3)

The Box–Pierce test statistic is 17.4 and the associated p-value is p = 0.997. The

Ljung–Box test statistic is 23.0 and the associated p-value is p = 0.966. We fail to
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Figure 9.44: Time series plot, rk, and r∗k for the residuals from a fitted ARMA(1, 1) model.

reject H0 in both tests based on the chi-square critical value with 40− 3 = 37 degrees

of freedom. The independence of the residuals is not rejected by this test. The tentative

fitted ARMA(1, 1) model is not rejected by these tests.

The following R code calculates the test statistic and the p-value for the turning point

test applied to the time series consisting of the residual values for the ARMA(1, 1) fit

to the Lake Huron time series.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

n = length(zhat)

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1
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}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for the

turning point test. The test statistic s is 1.21 and the p-value is p = 0.23. The turning

point test found that there were T = 69 turning points in the time series of the residuals,

and that is just slightly higher than the number that we expect to have if the residuals

from the fitted ARMA(1, 1) model were mutually independent random variables. We

again fail to reject the null hypothesis in this case. The independence of the residuals is

not rejected by this test. The tentative fitted ARMA(1, 1) model is not rejected by this

test.

The residuals are standardized by dividing by their sample standard deviation. The

following R statements plot a histogram of the standardized residuals using the hist

function and a QQ plot to assess normality using the qqnorm function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.45. The histogram shows that all standardized residu-

als fall between−2.5 and 2.5 and exhibit a roughly bell-shaped probability distribution,

with the exception of a deficit of residuals falling between −1.5 and −1.0. The hori-

zontal axis on the histogram is the standardized residual and the vertical axis is the

frequency. The QQ plot is approximately linear, indicating a reasonable approxima-

tion to normality for the standardized residuals. The horizontal axis on the QQ plot is

the standardized theoretical quantile and the vertical axis is the associated normal data

quantile. Although a formal statistical goodness-of-fit test (such as the Shapiro–Wilk

or the Kolmogorov–Smirnov test) should be conducted, it appears that the assumption

of Gaussian white noise is appropriate for the ARMA(1, 1) time series model based on

these two plots.
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Figure 9.45: Histogram (left) and QQ plot (right) of the fitted ARMA(1, 1) standardized residuals.
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We have seen a number of indicators that the ARMA(1, 1) time series model with Gaus-

sian error terms seems to be an adequate model for the Lake Huron lake level time

series, with the exception of a linear trend apparent by viewing the time series in Fig-

ure 9.19. The ARMA(1, 1) model has not been rejected by any of the model adequacy

tests.

The final fitted shifted ARMA(1, 1) model with maximum likelihood estimates for the

parameters is given by

Xt = 579.06+0.74490(Xt−1−579.06)+0.32059Zt−1 +Zt ,

where Zt is a sequence of independent and identically distributed N(0, 0.47494) error

terms.

With the shifted ARMA(1, 1) model established, we now consider forecasting future

values of a time series. In the case of the Lake Huron time series, this corresponds to

the one-step-ahead forecast for 1973, the two-steps-ahead forecast for 1974, the three-

steps-ahead forecast for 1975, etc. The code below uses the R predict function to

generate the forecasted values and their standard errors.

fit = arima(LakeHuron, order = c(1, 0, 1))

forecast = predict(fit, n.ahead = 5)

lower = forecast$pred - qnorm(0.975) * forecast$se

upper = forecast$pred + qnorm(0.975) * forecast$se

These standard errors can be used to calculate approximate two-sided 95% prediction

interval limits on the forecasted values. The results are summarized in Table 9.19.

Notice that the forecasts trend monotonically toward x̄ = 579 and the standard errors

increase as the time horizon h increases. The increasing standard error is consistent

with having less precision in the forecast as the time horizon h increases.

Time t = 99 t = 100 t = 101 t = 102 t = 103

Year 1973 1974 1975 1976 1977

Forecast 579.73 579.56 579.43 579.34 579.26

Standard error 0.689 1.007 1.146 1.216 1.254

Lower prediction bound 578.38 577.59 577.19 576.95 576.81

Upper prediction bound 581.08 581.53 581.68 581.72 581.72

Table 9.19: Forecasts and 95% prediction intervals for the Lake Huron time series.

Figure 9.46 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the first 10 forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦),
(c) the 95% prediction intervals as a shaded region, and (d) the next 10 actual average

lake level values in July for the years 1973–1982 taken from the NOAA Great Lakes

Experimental Research Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

as points (•) connected by lines. The forecasted values as well as the prediction intervals

given in Figure 9.46 associated with the fitted ARMA(1, 1) model are very similar to

those in Figure 9.25 from Example 9.21. The two models are clearly close competitors

for modeling the Lake Huron levels.
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Figure 9.46: Lake Huron level forecasts and 95% prediction intervals from an ARMA(1, 1) model.

ARMA modeling can achieve population autocorrelation function and population partial auto-

correlation function shapes that are not possible with just AR(p) and MA(q) models alone. For

an ARMA(p, q) model with p > 0 and q > 0, both the population autocorrelation function and the

population partial autocorrelation function tail off; neither of the two cut off after a certain lag.

An inherent weakness of ARMA modeling is that it requires stationarity. Many time series

which occur in practice are not stationary, and the next section gives techniques that can be used to

overcome this weakness.

9.4 Nonstationary Models

There are two commonly-used strategies for converting a nonstationary time series to a stationary

time series in order to use ARMA modeling (or some other model which requires stationarity) on

the resultant stationary time series. The first strategy is known as detrending. In this case, the

modeler estimates the trend, and then fits a stationary time series model to the difference between

the raw time series data and the estimated trend. The second strategy is known as differencing. In

this case the modeler differences the time series one or more times, resulting in a stationary time

series. Differencing carries the added benefit that no parameters are required other than the number

of differences to take. The following two subsections consider these two strategies.

9.4.1 Removing Trends Via Regression

Although regression is not the only way to detrend a time series, it provides an adequate roadmap on

how to proceed with the detrending process that generalizes to other mechanisms. This subsection

illustrates detrending with a single example. We return for a third time to the Lake Huron levels

which were fit to an AR(2) model in Section 9.1.2 and fit to an ARMA(1, 1) model in Section 9.3.

Example 9.40 We again consider the construction of a time series model from the

n = 98 annual observations of the level of Lake Huron (in feet) between 1875 and 1972



628 Chapter 9. Topics in Time Series Analysis

that was first encountered in Example 9.14. The observations are stored in a time se-

ries in R named LakeHuron. The scatterplot of the lake levels depicted in Figure 9.47

includes a regression line showing the downward trend in the lake levels over time.

The p-value for the statistical test for significance of the slope of this regression line

is p = 4 ·10−8, providing strong evidence of a downward trend over time, even though

the usual assumptions associated with simple linear regression with normal error terms

are not perfectly satisfied in this setting. Although the AR(2) and ARMA(1, 1) models

have been successfully fitted to this time series treating it as stationary, this tiny p-value

prevents us from fully embracing either of these models. The purpose of this example

is to explicitly consider this downward trend by fitting the residuals from this simple

linear regression model to an ARMA time series model.
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Figure 9.47: Lake Huron levels (1875–1972) with regression line.

The residuals from this simple linear regression form a new time series which will

be denoted by {yt}, where yt = xt − x̂t and x̂t is the fitted value in the simple linear

regression. The R statements below generate plots of the time series, the sample auto-

correlation function, and the sample partial autocorrelation function for the residuals of

the simple linear regression.

y = lm(LakeHuron ~ seq(1:98))$resid

plot.ts(y)

abline(h = mean(y))

acf(y, lag.max = 40)

pacf(y, lag.max = 40)

These plots are displayed in Figure 9.48. The time series of the residuals appears to

have no trend and also appears to be centered around zero. In fact, the time series is

exactly centered around zero because the residuals of this regression must sum to zero

via Theorem 1.6. This means that there is no need to include a shift parameter µ in the

ARMA model that we develop for the residuals. The sample autocorrelation function

of the residuals appears to be tailing out and the first two sample partial autocorrelation
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Figure 9.48: Residuals plot, rk, and r∗k for Lake Huron lake levels.

function values are statistically significant. This is strong evidence that an AR(2) model

is an appropriate tentative model for the residuals.

The following R statements fit the AR(2) model via maximum likelihood estimation to

the time series of residuals.

y = lm(LakeHuron ~ seq(1, 98))$resid

model = ar(y, order.max = 2, method = "mle")

This model should be subjected to all of the model assessment tests that have been

applied to all previous time series analyzed in previous examples. The residuals of the

estimated AR(2) model to the simple linear regression residuals result in large p-values

for the Box–Pierce test and the Box–Ljung test, along with a bell-shaped histogram and

an almost perfectly linear QQ normal plot. This evidence confirms the evidence in the

plots of rk and r∗k which pointed to an AR(2) model for the residuals of the simple linear

regression. The predict function can then be used in the usual fashion to forecast the

residuals into the future. The plot of the residuals, the next 10 forecasted residuals,
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and the associated 95% prediction intervals is given in Figure 9.49. As expected, the

forecasted values are smooth and converge to zero.
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Figure 9.49: Lake Huron residuals, forecasts, and 95% prediction intervals.

Finally, the last step is to translate Figure 9.49 back to the raw time series observations.

Figure 9.50 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the regression line associated with the original time series, (c) the first 10

forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦), (d) the 95% prediction

intervals as a shaded region, and (e) the next 10 actual average lake level values in July

for the years 1973–1982 taken from the NOAA Great Lakes Experimental Research

Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,
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Figure 9.50: Lake Huron levels (1875–1972) with regression line and forecasts.
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as points (•) connected by lines. Notice that the forecasted values converge to the

regression line as anticipated. Notice also that the actual values all exceed the forecasted

values and the first four forecasted values fall outside of the prediction limits. If we did

not know of these actual values, we would be satisfied with this detrended AR(2) time

series model. However, these actual values call into question whether the lake levels are

truly decreasing over time.

So far, there have been three different approaches to constructing a time series model for the

Lake Huron levels:

• the shifted AR(2) model from Examples 9.14, 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, and 9.21,

• the shifted ARMA(1, 1) model from Example 9.39, and

• the AR(2) model applied to the residuals from a simple linear regression from Example 9.40.

Which approach is preferred? Although the shifted AR(2) and shifted ARMA(1, 1) models fit-

ted to the raw time series are roughly comparable and give nearly-identical forecasts, the shifted

ARMA(1, 1) model has a slight edge for the following two reasons. First, from Table 9.7, the AIC

value is 215 for the shifted AR(2) model and the AIC value is 214 for the shifted ARMA(1, 1)

model. A smaller value implies a better fit. Second, the sum of squared residuals for the shifted

AR(2) model is 46.9 and the sum of squared residuals for the shifted ARMA(1, 1) model is 46.5. A

smaller sum of squared residuals for two models with an equal number of parameters is preferred.

Both models have four parameters. These two sums of squared residuals for the two models are

computed with the R statements

sum(arima(LakeHuron, order = c(2, 0, 0))$residuals ^ 2)

sum(arima(LakeHuron, order = c(1, 0, 1))$residuals ^ 2)

Although the differences between the AIC values and the sums of squares is small, the shifted

ARMA(1, 1) model holds a slight edge.

The detrended model from Example 9.40, on the other hand, is preferred over the two stationary

models because it explicitly models the decreasing lake levels over time. However, the fact that all

of the forecasted values in the detrended model are low relative to the actual values in the years

1973 to 1982 is troubling. Could it be the case that there was no downward trend after all? At

this point, some serious detective work is in order to see if the early values in the raw time series

were elevated by some external influence and should not be included as a part of the time series.

A rigorous search should be conducted for any external cause which might elevate the early values

in the time series: excess rainfall, elevated temperatures, dredging, bridge projects, flow control

projects, etc. As a particular instance, if the first 20 values of the time series can be eliminated due

to the identification of an assignable cause for the years 1875–1894, for example, the p-value from

simple linear regression testing for the statistical significance of the slope increases from a highly

significant p = 4 ·10−8 to a nonsignificant p = 0.11. The downward trend would now be slight and

a stationary model could be fitted to the remaining values in the time series.

Detrending has proved to be an effective method for transforming a nonstationary time series to

a stationary time series. The second technique involves differencing.

9.4.2 ARIMA(p, d, q) Models

George Box and Gwilym Jenkins devised a time series modeling methodology known as ARIMA

modeling. The I between AR and MA stands for integrated. These models are sometimes referred to
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as Box–Jenkins models. An ARIMA(p, d, q) time series model is one in which the dth-differenced

times series, ∇dXt , is an ARMA(p, q) time series. So ARIMA time series modeling uses repeated

differencing of the raw time series in order to achieve a time series which appears to be stationary.

ARMA modeling can be then applied to the resulting stationary time series.

Definition 9.7 An ARIMA(p, d, q) time series model for {Xt} is one in which the dth-differenced

times series, ∇dXt , is an ARMA(p, q) time series for some nonnegative integer d. An

ARIMA(p, d, q) model can be written in compact form as

φ(B)∇dXt = θ(B)Zt ,

where φ(B) and θ(B) are the usual characteristic polynomials for an ARMA(p, q) model and

Zt ∼WN
(
0, σ2

Z

)
.

Three key parameters in an ARIMA model are p, d, and q, which are all nonnegative inte-

gers. The parameter p is the number of coefficient parameters in the autoregressive portion of the

model. The parameter d is the number of differences that are applied to the original time series

in order to achieve stationarity. The parameter q is the number of coefficient parameters in the

moving average portion of the model. So the general format for specifying an ARIMA model is

ARIMA(p, d, q). In addition to the parameters p, d, and q, there are p+ q+ 1 parameters that

define an ARIMA(p, d, q) model: the p autoregressive parameters φ1, φ2, . . . ,φp, the q moving av-

erage parameters θ1, θ2, . . . ,θq, and the variance of the white noise σ2
Z . As in the case of ARMA

models, a shift parameter µ can be included in the model. If one or more of these parameters is zero,

they are omitted from the specification. An IMA(2, 1) model, for example, has p = 0 autoregressive

terms, d = 2 differences, and q = 1 moving average term. If a model only involves, for example, the

autoregressive portion of the model with two terms (that is, no differencing and no moving average

terms), then this model is specified as an AR(2) model. An ARMA(p, q) model is a special case of

an ARIMA(p, d, q) model when d = 0.

ARIMA modeling will be illustrated by a simulation example that will reveal what a realization

of an ARIMA process looks like, along with the R code required to fit these simulated values to an

ARIMA model.

Example 9.41 Simulate a realization of n = 100 observations from an ARI(1, 1) time

series model with φ = 0.8 and σ2
Z = 4. Fit the resulting simulated values to an ARIMA

model.

This problem gives one instance of what an ARIMA model with a nonzero value for d

looks like. The R code below uses the arima.sim function to generate a realization of

an ARIMA(1, 1, 0) time series model, which is more commonly known as an ARI(1, 1)

model. Even though 99 observations are requested, a total of 100 will be generated

because the differencing operator is being undone within arima.sim. The code also

plots the sample autocorrelation function and the sample partial autocorrelation function

of the simulated realization.

set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 99, sd = 2)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x, lag.max = 40)

pacf(x, lag.max = 40)
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The results are shown in Figure 9.51. The realization is clearly generated from a non-

stationary time series model with an overall meandering upward trend. This conclusion

is supported by the graphs of rk and r∗k .

The augmented Dickey–Fuller test can be used to assess the stationarity of the simulated

time series. It has been implemented in R in the adf.test function in the tseries

package. There is no need to run this test for this particular realization of the time series;

the time series plot clearly shows that this is a nonstationary time series. Now consider

fitting this time series realization to an ARIMA(p, d, q) model. Since the time series

realization exhibits a meandering linear increase, it is possible that a single difference

might be adequate for transforming this time series to achieve stationarity. Although

it is in some sense cheating because we know that the realization was generated from

an ARI(1, 1) time series model, the R code that follows takes a single difference of the

time series depicted in Figure 9.51 and plots the differenced series yt = ∇xt = xt−xt−1,

the associated sample autocorrelation function, and the sample partial autocorrelation

function.
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Figure 9.51: Time series plot, rk, and r∗k for a realization of a simulated ARI(1, 1) model.
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set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 100, sd = 2)

y = diff(x)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(y)

acf(y, lag.max = 40)

pacf(y, lag.max = 40)

Figure 9.52 shows a graph of the differenced time series and the associated graphs of

rk and r∗k . The differencing has achieved its goal; the differenced values appear to be

stationary. Furthermore, the sample partial autocorrelation function has a single statis-

tically significant value at lag 1 and then cuts off. (The statistically significant value at

lag 18 is attributed to random sampling variability because we expect that 2 of the 40

r∗k values will lie outside of the 95% bounds by chance.) The sample autocorrelation

appears to be gradually tailing out. This is evidence that supports an AR(1) model for
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Figure 9.52: Time series plot, rk, and r∗k for differences of a realization of the simulated values.
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the differenced values from the ARI(1, 1) realization, just as we suspected would be the

case.

The R statements

set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 100, sd = 2)

y = diff(x)

fit = arima(y, order = c(1, 0, 0), method = "ML")

fit$coef[1]

fit$sigma2

return an estimated coefficient φ̂= 0.73 (which is near the population value φ= 0.8) and

estimated white noise variance σ̂2
Z = 2.9 (which is near the population value σ2

Z = 4). A

Monte Carlo simulation could be conducted to see how far these estimated values stray

from their population counterparts. Increasing the length of the time series will make

these estimates closer to their associated population values on average.

The ARIMA modeling process is adequate for nonstationary models but is not well-suited to

handling cyclic variation. The SARIMA (seasonal autoregressive integrated moving average) model

has been formulated to overcome this weakness.

Definition 9.8 A seasonal ARIMA time series model for {Xt}, denoted by a SARIMA model of

order (p, d, q)× (P, D, Q)s with seasonal order s, is given in compact form by

φ(B)Φ(Bs)∇d∇D
s Xt = θ(B)Θ(Bs)Zt ,

where p, d, q, P, D, Q, and s are nonnegative integers,

• φ(B) = 1−φ1B−φ2B2−·· ·−φpBp,

• Φ(B) = 1−Φ1B−Φ2B2−·· ·−ΦPBP,

• θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq,

• Θ(B) = 1+Θ1B+Θ2B2 + · · ·+ΘQBQ,

and {Zt} ∼WN
(
0, σ2

Z

)
.

An ARIMA model is a special case of a SARIMA model when P = D = Q = 0. The ∇d term

in the SARIMA model is associated with an ordinary difference; the ∇D
s term is associated with

a seasonal difference. Consider the inside portion of the SARIMA defining formula, ∇d∇D
s Xt , in

a modeling setting in which monthly data is being collected and the modeler believes that there is

cyclic annual variation, so s = 12. In the case of d = 1 ordinary difference and D = 1 seasonal

difference, this portion of the SARIMA defining formula becomes

∇∇12Xt = ∇(∇12Xt)

= ∇(Xt −Xt−12)

= (Xt −Xt−12)− (Xt−1−Xt−13).

The ∇ operator is being used to eliminate a linear trend and the ∇12 operator is being used to elim-

inate seasonality. The seasonal AR term Φ(Bs) and the seasonal MA term Θ(Bs) in Definition 9.8

provide autoregressive and moving average terms for observations that are s units distant in time.
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Example 9.42 Forecast the next three years of international air travel based on the

AirPassengers time series from Example 7.2.

The plot of the time series is given in Figure 9.53. As indicated in Example 7.32, the

annual cycle associated with international air travel over this period does not appear to

be sinusoidal in nature. The peak months for international travel are in July and August

when school is not in session and the low month for international travel is November,

as seen in Figure 7.30. This time series provides a challenging modeling exercise be-

cause it exhibits a nonconstant variance, a trend, and periodicity. These three modeling

challenges will be addressed in that order, one by one.
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Figure 9.53: International airline passengers (in thousands) 1949–1960.

We begin by addressing the nonconstant variance. Since the variance appears to be

increasing over time, a logarithmic transformation is reasonable transformation to apply

to the time series. Let {xt} denote the original time series and let yt = lnxt . The R

statement

ts.plot(log(AirPassengers))

plots the natural logarithm of the raw time series. The plot of the transformed time

series is given in Figure 9.54.

The transformation appears to be effective. The variance of the logarithms of the raw

time series observations is now close to constant over time. The next step is to address

the trend. Since the trend of the transformed time series depicted in Figure 9.54 is

approximately linear, a single difference (d = 1) is taken. The differenced time series is

wt = ∇yt = ∇ lnxt = lnxt − lnxt−1.

(The resulting time series is not named zt to avoid any conflict with the white noise

terms.) This transformed and differenced time series, along with the associated sample

autocorrelation function and sample partial autocorrelation function are graphed with

the R statements
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Figure 9.54: Logarithm of international airline passengers (in thousands) 1949–1960.

w = diff(log(AirPassengers))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(w)

acf(w, lag.max = 40)

pacf(w, lag.max = 40)

The associated graphs are displayed in Figure 9.55. Instead of the usual 12 · 12 = 144

observations from the previous two figures, the differencing operation leaves only 143

observations, which is reflected in the labels on the horizontal axis of the plot of the

differences of the logarithms of the original time series values. The differencing has

proved to be successful. The time series plot of wt appears to be stationary. The strongly

statistically significant sample autocorrelation function values at lags 12, 24, and 36 are

a reminder that even though the nonconstant variance and trend have been addressed, the

cyclic variation has not been addressed. ARMA modeling is not appropriate at this point

because rk is neither tailing out nor cutting off. There is still an annual cyclic component

present in {wt}. A reasonable way to proceed is to employ a seasonal ARIMA model to

account for the cyclic variation. Backing up one level, we would like to fit a SARIMA

(p, d, q)× (P, D, Q)12 model to the natural logarithms of the raw passenger counts.

The choice s = 12 for the seasonal order is to account for the monthly collection of the

passenger counts which exhibit a clear annual cycle; the choice of d = 1 is appropriate

based on the fact that the time series {wt} in Figure 9.55 appears to be stationary. But

what about the other parameters (p, q, P, D, and Q)? An exhaustive search using the

arima function in R to locate the smallest value of AIC results in the following settings:

d = P = Q = 1

and

p = q = D = 0.
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Figure 9.55: Logarithm of international airline passengers (in thousands) 1949–1960.

The single R statement below fits the SARIMA (0, 1, 0)× (1, 0, 1)12 model to the log-

arithms of the passenger counts in the AirPassengers time series.

fit = arima(log(AirPassengers),

order = c(0, 1, 0),

seasonal = list(order = c(1, 0, 1), period = 12))

The maximum likelihood estimates of the parameters are Φ = 0.9877, Θ = −0.5935

and σ̂2
Z = 0.001526. So the fitted model is

(
1−0.9877B12

)
∇Yt =

(
1−0.5935B12

)
Zt ,

where Yt = ln Xt , and Zt ∼WN (0, 0.001526) This fitted SARIMA model achieves an

AIC value of −486.9953. There are several other competing SARIMA models with

nearby AIC values.

The final step is to use the fitted SARIMA model to forecast international airline travel

for the subsequent three years (36 months). The R code below fits the SARIMA model
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with the arima function, uses the predict function to calculate the forecasted values

and their standard errors, and then plots the original time series, the forecasted values,

and the 95% prediction intervals.

fit = arima(log(AirPassengers),

order = c(0, 1, 0),

seasonal = list(order = c(1, 0, 1), period = 12))

n = length(AirPassengers)

h = 36

forecast = predict(fit, n.ahead = h)

alpha = 0.05

crit = qnorm(1 - alpha / 2)

lo = forecast$pred - crit * forecast$se

hi = forecast$pred + crit * forecast$se

beginx = time(AirPassengers)[n]

deltax = deltat(AirPassengers)

xval1 = seq(beginx + deltax, beginx + h * deltax, length.out = h)

xval2 = c(xval1, rev(xval1))

yvals = exp(c(lo, rev(hi)))

ts.plot(AirPassengers, exp(forecast$pred), ylim = c(0, max(yvals)))

polygon(xval2, yvals, col = "gray50")

points(xval1, exp(forecast$pred), pch = 16, cex = 0.7, col = "white")

points(xval1, exp(forecast$pred), pch = 1, cex = 0.7)

This graph of the original time series and the 36 forecasted values is given in Fig-

ure 9.56. The forecasts from the SARIMA model show that the nonconstant variance,

trend, and cyclic variation have been adequately captured by the model. Since there

are 144+ 36 = 180 points squeezed so tightly together in the plot, a second graph of

the forecasted values for just the last three cycles of the observed time series and the

forecasted values is given in Figure 9.57.
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Figure 9.56: Forecasted international travel and 95% prediction intervals.
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Figure 9.57: Forecasted international travel and 95% prediction intervals.

These forecasts are crucial for airports, airline manufacturers, and associated businesses

as they can predict the impact of growth on supply chains, personnel requirements, and

logistics necessary to support air travel.

To summarize this section, the modeling of a nonstationary time series involves the following

steps.

• Plot the time series, noting any trends, seasonality, and nonconstant variance.

• Make the variance stable by applying appropriate transformations if necessary.

• Use detrending (possibly regression) or repeated differencing (to use an ARIMA model) to

create a stationary time series.

• Plot the stationary time series along with its sample autocorrelation function and sample par-

tial autocorrelation function.

• Hypothesize a tentative ARMA model for the stationary time series model. If there is a sea-

sonal component, consider a SARIMA model on the transformed time series.

• Fit the tentative ARMA or SARIMA model. Perform the model assessment tests on the tenta-

tive time series model. If the fitted tentative ARMA or SARIMA model fails these tests, then

hypothesize a new tentative model.

• Perform overfitting in the final model selection process to ensure that the best model has been

selected.

• Apply the final time series model in the fashion dictated by the problem setting (this is often

forecasting future values of the time series).

As illustrated in Example 9.42, time series modeling can be thought of as a step-by-step process of

identifying a removing causes of variation in the time series (for example, trend, cycles, autocorre-

lation) until all that remains is white noise.
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9.5 Spectral Analysis

In practice, many time series exhibit cyclic variation. The first two examples in Chapter 7 concern-

ing monthly residential power consumption and monthly international airline travel both contain a

cyclic component. The time series models derived from the general linear model do not explicitly

consider cyclic variation; these models exist in what is known as the time domain. Spectral analysis

considers modeling in the frequency domain. Spectral analysis decomposes a stationary time series

into sinusoidal components (that is, sine and cosine functions) in order to identify frequencies asso-

ciated with periodic components. Just as autoregressive models use regression on previous values

of a time series in the time domain, spectral analysis uses regression on sine and cosine terms in the

frequency domain.

Table 9.20 presents some new terminology that arises in spectral analysis and presents some

analogies with known data analysis techniques. The column headings indicate that the three sub-

sequent rows contain three application areas, three probability constructs, and their three statistical

counterparts.

• The first row concerns the analysis of univariate data. In probability theory, several commonly-

used probability distributions (for example, the exponential, normal, and binomial distribu-

tion) are investigated in order to build an inventory of potential probability distributions that

might adequately describe a univariate data set. When an analyst encounters a univariate data

set, one of the early steps in the analysis is to plot a histogram and compare its shape to the

inventory of probability density functions associated with known probability distributions.

• The second row concerns time series analysis in the time domain. Shapes of the population

autocorrelation function are derived for several commonly-used time series models (for ex-

ample, the AR(2), MA(1), and ARMA(1, 1) models) in order to build an inventory of shapes

such as those given in Figure 9.43 that might adequately describe the time series. When a

time series analyst encounters time series observations, one of the early steps in the analysis

is to plot the correlogram (a.k.a., the sample autocorrelation function) and compare its shape

to the inventory of known population autocorrelation functions.

• The third row concerns time series analysis in the frequency domain. Shapes of the spectral

density function are derived for several commonly-used time series models in order to build an

inventory of shapes that might adequately describe the periodic nature of a time series. When

a time series analyst encounters time series observations, one of the early steps is to plot the

periodogram and compare its shape to the inventory of known spectral density functions.

The next two subsections will focus on the spectral density function and its statistical counterpart,

the periodogram.

Application area Probability construct Statistical counterpart

univariate data probability density
histogram

analysis function

time series analysis: population autocorrelation
correlogram

time domain function

time series analysis: spectral density
periodogram

frequency domain function

Table 9.20: Population versus sample representations.
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9.5.1 The Spectral Density Function

The emphasis in the spectral analysis of a time series is the identification of the frequencies associ-

ated with cycles. The frequencies will be denoted here by ω. Just as the population autocorrelation

function is the natural tool for identifying and quantifying autocorrelation in the time domain, the

spectral density function is the natural tool for identifying and quantifying the frequencies associ-

ated with cyclic variation in the frequency domain. As seen in the following definition, the spectral

density function can be written in terms of the population autocovariance function.

Definition 9.9 Let {Xt} be a stationary time series with population autocovariance function γ(k).
The spectral density function f (ω) is

f (ω) =
1

π

[

γ(0)+2
∞

∑
k=1

γ(k)cos(ωk)

]

0 < ω < π.

The interpretation of the spectral density function is that f (ω)∆ω reflects the contribution of

frequencies in the interval (ω, ω+∆ω) to the variance of Xt for small values of ∆ω. When f (ω) is

high, then frequencies near ω have a large impact on Xt . When f (ω) is low, then frequencies near

ω have a small impact on Xt . The upper limit of the support of the spectral density function, π, is

known as the Nyquist frequency. Frequencies that exceed π are not captured by the spectral density

function. This is not a universal choice for the definition of the spectral density function or the upper

limit of its support. There are many valid alternative choices. A common alternative choice for the

upper limit of the support is 1/2.

The first example illustrates the calculation of a spectral density function for one of the most

basic time series models.

Example 9.43 Find the spectral density function for an ARMA(0, 0) time series model.

An ARMA(0, 0) model is simply white noise, so the population autocovariance function

is

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2, . . . .

Using Definition 9.9, the spectral density function is

f (ω) =
1

π

[

γ(0)+2
∞

∑
k=1

γ(k)cos(ωk)

]

=
σ2

Z

π
0 < ω < π.

Figure 9.58 shows the spectral density function for the ARMA(0, 0) process. Since

there is no cyclic variation whatsoever in the ARMA(0, 0) time series model, no fre-

quency stands out over another, so the spectral density function is uniformly distributed

of the frequencies between 0 and π. Each frequency on the interval (0, π) contributes

equally to the variance of Xt . Neither high frequencies nor low frequencies play a dom-

inant role in the in terms of cyclic variation of this process. Notice that the area under

f (ω) between 0 and π is σ2
X = σ2

Z .

The next example calculates the spectral density function of an MA(1) model. This particular

model was chosen because it has an autocovariance function that cuts off after lag 1, which means

that the summation given in Definition 9.9 consists of just a single term.
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Figure 9.58: Spectral density function for an ARMA(0, 0) model.

Example 9.44 Find the spectral density function for an MA(1) time series model.

As derived in Section 9.2.1, the population autocovariance function of an MA(1) time

series model is

γ(k) =







(
1+θ2

)
σ2

Z k = 0

θσ2
Z k = 1

0 k = 2, 3, . . . .

Using Definition 9.9, the spectral density function is

f (ω) =
1

π

[

γ(0)+2
∞

∑
k=1

γ(k)cos(ωk)

]

=
σ2

Z

π

[
1+θ2 +2θcosω

]
0 < ω < π.

In order to develop some intuition about the spectral density function, consider two

special cases of the MA(1) model: θ = 9/10 and θ = −9/10. These two values of θ
correspond to stationary and invertible MA(1) time series models.

When θ = 9/10, the spectral density function reduces to

f (ω) =
σ2

Z

π

[
181

100
+

9

5
cosω

]

0 < ω < π.

Figure 9.59 shows the spectral density function for an MA(1) model with θ = 9/10.

Since θ > 0, the lag 1 population autocorrelation is positive, which means that a real-

ization of this time series will linger above the mean for a few observations and then

linger below the mean for a few observations. But the number of observations that the

sequence lingers above or below the mean is random. This is the behavior that we saw

in the simulated values in Example 9.33. In the simulated realization, sometimes the

time series only lingers above or below the mean for just 2 or 3 simulated observations.

In other cases, the time series lingers above or below the mean for 6 or 7 simulated

observations. In other words, there is low-frequency variation in this time series, but it

does not have a single consistent frequency. This pattern of lingering on one side of the

mean corresponds to low frequency cycles, and those low frequency cycles correspond

to smaller values of ω. This is reflected in the spectral density function in Figure 9.59,

where the lower frequencies have larger values of f (ω) than the higher frequencies.

Lower frequency variation dominates.
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Figure 9.59: Spectral density function for an MA(1) model with θ = 9/10.

When θ =−9/10, the spectral density function reduces to

f (ω) =
σ2

Z

π

[
181

100
− 9

5
cosω

]

0 < ω < π.

Figure 9.60 shows the spectral density function for an MA(1) model with θ = −9/10.

Since θ < 0, the lag 1 population autocorrelation is negative, which means that the

observations in a realization of this time series will often jump from one side of the

mean value to the other. This is the behavior that we saw with the simulated values

in Example 9.34. In most cases, when one observation was on one side of the mean,

the next observation was on the other side of the mean. Occasionally, however, the time

series lingered for 2 or 3 observations on one side of the mean. Once again, this behavior

is random and does not correspond to a single consistent frequency. This pattern of

adjacent observations jumping from one side of the mean to the other corresponds to

high frequency cycles, and those high frequency cycles correspond to larger values of

ω. This is reflected in the spectral density function in Figure 9.60, where the higher

frequencies have larger values of f (ω). Higher frequency variation dominates.
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Figure 9.60: Spectral density function for an MA(1) model with θ =−9/10.

One common element from the spectral density functions given in the two previous examples

is that they both integrate to σ2
X . This is true in general. Some time series analysts prefer to divide

the spectral density function by σ2
X so that it will integrate to 1, making it a true probability density

function. The normalized spectral density function is given by

f ∗(ω) =
f (ω)

σ2
X

0 < ω < π.
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Dividing both sides of the equation in Definition 9.9 by γ(0) = σ2
X gives

f ∗(ω) =
1

π

[

1+2
∞

∑
k=1

ρ(k)cos(ωk)

]

0 < ω < π.

The associated normalized spectral cumulative distribution function is defined on the support of ω
in the usual fashion as

F∗(ω) =
∫ ω

0
f ∗(w)dw 0 < ω < π.

One advantage of normalizing these two functions is that there is now a clean interpretation of

F∗(ω). For frequencies ω1 and ω2 satisfying 0 < ω1 < ω2 < π, the expression F∗(ω2)−F∗(ω1)
denotes the proportion of the variance in {Xt} accounted for by frequencies on the interval (ω1, ω2).

9.5.2 The Periodogram

The periodogram is the statistical counterpart to the spectral density function. The periodogram

estimates the spectral density function for all frequencies between 0 and π. The shape of the pe-

riodogram reflects the frequencies that correspond to significant cyclic variation in a time series.

Peaks in the periodogram reveal the dominant frequencies associated with cyclical components in

an observed time series.

One topic that is crucial in time series analysis in the frequency domain is how often a time series

should be sampled. Consider sampling the outdoor air temperature, for example, in Washington,

DC. There are two significant cyclic components that should become apparent in such a time series.

First, there is a daily temperature cycle. Temperatures are warmer during the day and cooler at

night. This corresponds to high frequency variation. Second, there is an annual temperature cycle.

Temperatures are warmer during the summer and cooler during the winter. This corresponds to low

frequency variation. There is a factor of 365 (well, actually 365.24219) that separates the frequencies

of these two cycles which should be accounted for in how often the time series is sampled. The

following illustrations provide instances of sampling this time series too often, sampling this time

series not often enough, and sampling this time series at about the right intervals to capture these

two frequencies in a periodogram.

• Let’s say you sample 1000 outdoor air temperatures at Reagan National Airport in Washington

DC every second beginning at noon on July 20, 1969. This data collection will be over very

soon because 1000 seconds is only about 17 minutes. But you have not covered a daily cycle

or an annual cycle, so the frequencies for these two cycles cannot be detected from this sample.

The sampling is too frequent.

• Let’s say you sample 100 outdoor air temperatures at Reagan National Airport in Washington

DC annually beginning at noon on July 20, 1969. This experiment will take you a long time

to collect because the last value collected will be at noon on July 20, 2068. Even though you

have collected the observations through 100 annual temperature cycles and tens of thousands

of daily temperature cycles, neither the daily nor the annual cycle can be detected. All obser-

vations were made during the summer and during the day. The sampling was too infrequent.

• If you desire to detect both the daily and the annual outdoor air temperature cycles at Reagan

National Airport, then a sampling interval between the two extremes (every second and every

year from the previous two illustrations) must be used. So if you begin sampling hourly data

at noon on July 20, 1969 and collect this data for three years, you will have collected outdoor
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temperature observations over three annual cycles and about a thousand daily cycles. This

requires 3 ·365 ·24 = 26,280 outdoor air temperatures to be collected. This time series allows

an analyst to detect both daily and annual cycles. The periodogram, which estimates the

spectral density function will have a peak associated with the low frequency (annual) cycles

and a second peak associated with the high frequency (daily) cycles.

The details associated with computing the periodogram are left for a full-semester class in time

series analysis. Some of the fundamental ideas will be presented here in order to give a sense of the

development of the estimator. As has been the case in regression and survival analysis, we begin

with a model for a time series having cyclic behavior. One such model is

Xt = c · cos(ωt +φ),

where c is the amplitude of the cyclic variation, ω is the frequency of the cyclic variation, φ is a

phase shift parameter, and the angle is measured in radians. (The φ used here has nothing to do with

φ from the autoregressive time series models in the time domain.) Unfortunately, this model does

not contain any random terms, and such a time series only occurs rarely in practice. So adding a

time series of white noise {Zt} results in the much more practical model

Xt = c · cos(ωt +φ)+Zt .

Since the phase shift parameter can be tedious in parameter estimation, it is common practice in

spectral analysis to apply the trigonometric identity cos(x+y) = cosx cosy−sinx siny to this model,

which results in

Xt = acos(ωt)+bsin(ωt)+Zt ,

where a = c · cos(φ) and b =−c · sin(φ). This result is symmetric in the two primary trigonometric

functions sine and cosine. The derivation thus far has only involved a single frequency ω. As in

the previous outdoor air temperature example, it is often the case that there are multiple frequencies

of interest. The current time series model can be generalized by summing over the k frequencies

ω1, ω2, . . . , ωk:

Xt =
k

∑
j=1

(
a j cos(ω jt)+b j sin(ω jt)

)
+Zt ,

where the amplitudes a j and b j reflect the contribution of frequency ω j to the variability of Xt . For

example, if a j = b j = 0 for one particular index j, then the associated frequency ω j makes no contri-

bution to the variability of Xt . The three remaining loose ends are (a) the number of frequencies k to

consider, (b) which frequencies ω1, ω2, . . . , ωk to consider, and (c) how to estimate the amplitudes

a1, a2, . . . , ak and b1, b2, . . . , bk. These loose ends are easier to navigate if the number of elements

in the time series n happens to be even, which is assumed for now. If so, then the usual practice is to

let k = n/2 and space the ω j values uniformly between 0 and π as

ωm = 2πm/n m = 1, 2, . . . , n/2.

The lowest frequency that can be detected by the periodogram is ω1 = 2π/n and the highest fre-

quency that can be detected by the periodogram is ωn/2 = π, the Nyquist frequency. The peri-

odogram can be calculated in R with the spectrum function, which is available in the base lan-

guage. Periodograms often contain significant sampling variability and do not provide a consistent

estimator of the spectral density function, so time series analysts often use various techniques to

smooth the raw periodogram values.
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Example 9.45 Conduct a Monte Carlo simulation experiment with 1000 replications

that averages the periodograms associated with an MA(1) model with θ = −0.9 and

σ2
Z = 1 from a time series of n = 100 observed values.

This example uses the average of 1000 periodograms to estimate the spectral density

function. The R code below uses the arima.sim function to generate 1000 time series

of length n = 100 from an MA(1) time series model with θ = −0.9 and σ2
Z = 1. The

realizations of the time series are stored in the vector named x. The periodogram val-

ues are computed by the spectrum function and their cumulative values are stored in

the vector named s. Setting the plot argument to FALSE suppresses the plots of the

individual periodograms in the for loop. Setting the spans argument to a vector of

odd integers smooths the periodogram values. The spec component of the list returned

by the spectrum function returns the smoothed periodogram values. Finally, the plot

function is used to plot the periodogram values. Since the spectrum function returns

a support of (0, 1/2), this is stretched to yield a support of (0, π) in the final plot. The

curve that is plotted is k = n/2 = 100/2 = 50 segments connecting the spectral density

function estimates for the frequencies ω1 = 2π/100, ω2 = 4π/100, . . . , ω50 = π, which

are contained in the freq component of the list returned by the spectrum function.

set.seed(3)

s = numeric(50)

nrep = 1000

for (i in 1:nrep) {

x = arima.sim(list(order = c(0, 0, 1), ma = -0.9), n = 100)

s = s + spectrum(x, plot = FALSE, spans = c(3, 5))$spec

}

f = spectrum(x, plot = FALSE, spans = c(3, 5))$freq

plot(2 * pi * f, s / nrep, type = "l")

The average of the 1000 periodograms is plotted in Figure 9.61. As anticipated, the

shape of the average of the periodograms is about the same as the shape of the spec-

tral density function in Figure 9.60. The smoothness of the periodogram displayed in

Figure 9.60 is deceiving. It is smooth because it is an average of 1000 periodograms.

The individual periodograms generated within the for loop are very noisy, particularly

when the smoothing parameters in the call to spectrum are eliminated. In a time series

application, you will seldom work with the average of 1000 periodograms.

ω

f̂ (ω)

π

0

0

3.5

Figure 9.61: Periodogram averages for an MA(1) model with θ =−9/10.
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The previous example showed that the periodogram for the target MA(1) process, on average,

appears to converge to the associated spectral density function. As illustrated in the final example,

you will typically be working with just a single periodogram, which is typically quite noisy.

Example 9.46 Plot the periodogram associated with the annual lynx pelt sales at Hud-

son’s Bay Company in Canada from 1857 to 1911. This data set was first encountered

in Example 9.29.

The time series plot is given in Figure 9.62. There is a clear periodic component to

the time series with a spike in sales every 9 or 10 years, which should be captured by

the periodogram. The quickest way to generate a periodogram is with the R statements

given below.

pelt = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926,

5437, 16498, 35971, 76556, 68392, 37447, 45686, 7942,

5123, 7106, 11250, 18774, 30508, 42834, 27345, 17834,

15386, 9443, 7599, 8061, 27187, 51511, 74050, 78773,

33899, 18886, 11520, 8352, 8660, 12902, 20331, 36853,

56407, 39437, 26761, 15185, 4473, 5781, 9117, 19267,

36116, 58850, 61478, 36300, 9704, 3410, 3774)

spectrum(pelt)

This code can be embellished a little to (a) avoid the special treatment of the Nyquist

frequency, (b) extend the horizontal axis to π, (c) avoid the use of a logarithmic vertical

axis, and (d) include some smoothing of the periodogram with the following additional

R statements.

spec = spectrum(pelt, spans = c(3, 5), plot = FALSE)$spec

freq = spectrum(pelt, spans = c(3, 5), plot = FALSE)$freq

plot(2 * pi * freq, spec, type = "l")
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Figure 9.62: Time series plot for n = 55 annual lynx pelt sales (1857–1911).
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The smoothed periodogram is given in Figure 9.63 There is a pronounced spike cor-

responding to a frequency of ω = 0.1 · 2 · π = 0.6283. This corresponds to a period

of
2 ·π

0.1 ·2 ·π = 10,

which is consistent with the time series plot from Figure 9.62, which clearly displays a

cycle of length 10.

ω

f̂ (ω)

π

0

0

2.4 ·109

Figure 9.63: Periodogram for the lynx pelt sales.

9.6 Exercises

9.1 For a stationary AR(1) model, find V
[
X̄
]
. Give an approximation for V

[
X̄
]

for large values

of n.

9.2 Implement a Monte Carlo simulation that evaluates the method of moments, least squares,

and maximum likelihood estimation techniques for an AR(1) model with n = 100 observed

values and population parameters φ = −3/4 and σ2
Z = 1 and identify the technique that has

the smallest mean square error for estimating φ.

9.3 Consider a shifted AR(1) time series model with known parameter values µ, φ, and σ2
Z .

One realization of the time series x1, x2, . . . , x100 has been observed. Perform Monte Carlo

simulation experiments that provide convincing numerical evidence that the exact two-sided

95% prediction intervals for X101 and X102 are indeed exact prediction intervals for parameter

settings of your choice.

9.4 Consider a stationary shifted AR(1) model defined by

Xt = µ+φXt−1 +Zt ,

where µ,−1< φ < 1, and σ2
Z > 0 are fixed known parameters and Zt is Gaussian white noise.

Find expressions for

(a) lim
h→∞

E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn]

(b) lim
h→∞

V [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

9.5 Find the limiting half-width of a exact two-sided 100(1−α)% prediction interval for E
[
X̂ n+h

]

as the time horizon h→ ∞ for an AR(1) time series model with all parameters known.
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9.6 For a stationary shifted ARMA(p, q) time series model with population autocorrelation func-

tion ρ(k), the population variance of the sample mean is

V
[
X̄
]
=

σ2
X

n

[

1+2
n−1

∑
k=1

(

1− k

n

)

ρ(k)

]

.

This result was proved in Section 8.2.1. Use this result to find an approximate 95% con-

fidence interval for µ for the beaver data from Example 9.3 for a fitted shifted AR(1) time

series model with Gaussian white noise error terms.

9.7 The built-in R time series lh consists of n = 48 observations of the luteinizing hormone in

blood samples from a woman taken at 10 minute intervals.

(a) Plot the time series, the sample autocorrelation function and the sample partial auto-

correlation function.

(b) Suggest an ARMA(p, q) model based on your plots.

(c) Make a scatter plot of the data pairs (xt−1, xt).

(d) Compute the method of moments estimates of the parameters in the model suggested

in part (b).

(e) Compute the maximum likelihood estimates of the parameters in the model suggested

in part (b).

(f) Compute an approximate 95% confidence interval for φ.

(g) Forecast the next three values in the time series and report 95% prediction intervals for

the three forecasts.

(h) Perform some research on the luteinizing hormone and indicate some scientific evi-

dence that the time series model you suggested in part (b) is plausible.

9.8 Report the test statistic and p-value for the turning point test applied to the time series of

beaver temperatures in their active state from Example 9.3. Comment on the sign of the test

statistic and the magnitude of the p-value.

9.9 Consider the time series of n = 70 consecutive yields from a batch chemical process (from

Box, G.E.P., and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control,

Revised Edition, Holden–Day, page 32) given in Example 7.20.

(a) Plot the time series, the sample autocorrelation function and the sample partial auto-

correlation function.

(b) Suggest an ARMA(p, q) model based on your plots.

(c) Make a scatter plot of the data pairs (xt−1, xt).

(d) Compute the method of moments estimates of the parameters in the model suggested

in part (b).

(e) Compute the maximum likelihood estimates of the parameters in the model suggested

in part (b).

(f) Compute an approximate 95% confidence interval for φ.

(g) Forecast the next three values in the time series and report 95% prediction intervals for

the three forecasts.
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9.10 Consider an AR(1) model with population parameters φ = 0.8 and σ2
Z = 1, and Gaussian

white noise. Let r1, r2, r3 denote the sample autocorrelation function values of the residuals

of the fitted time series associated with n = 100 observations. Use Monte Carlo simulation

to estimate the population mean vector and population variance–covariance matrix, to one-

digit accuracy, of r1, r2, r3 when maximum likelihood estimation is used to estimate the

parameters.

9.11 Let B1 and B2 be the roots of the characteristic equation φ(B) = 1−φ1B−φ2B2 = 0 for an

AR(2) time series model

Xt = φ1Xt−1 +φ2Xt−2 +Zt .

Let G1 = B−1
1 and G2 = B−1

2 . A general solution for the lag k autocorrelation is (see Box,

G.E.P., and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, Revised

Edition, Holden–Day, page 59)

ρ(k) =

(
1−G2

2

)
Gk+1

1 −
(
1−G2

1

)
Gk+1

2

(G1−G2)(1+G1G2)

for G1 6= G2. Show that calculating the population autocorrelation in this fashion is the same

as using the recursive equation for the first five lags for an AR(2) process with parameters

(a) φ1 = 1/2, φ2 = 1/3,

(b) φ1 = 1, φ2 =−1/2.

9.12 Create a plot like the one in Figure 9.13 for an AR(2) model stationary region with ρ(1) =
−0.9,−0.8, . . . , 0.9 and ρ(2) =−0.9,−0.8, . . . , 0.9. No labels are necessary on your plot.

9.13 A stationary AR(2) time series model can be written as an MA(∞) time series model. The

coefficients θ1, θ2, . . . in the MA(∞) model can be calculated in four fashions. First, they

can be calculated using the recursive formulas in Theorem 9.12. Second, they can be written

explicitly as (Cryer, J.D. and Chan, K–S, Time Series Analysis: With Applications in R, 2008,

Springer, page 75):

θi =







(i+1)G i
1 φ2

1 +4φ2 = 0
(
G i+1

1 −G i+1
2

)
/(G1−G2) φ2

1 +4φ2 > 0

R i sin [(i+1)Θ]/sinΘ φ2
1 +4φ2 < 0

for i = 1, 2, . . . , where B1 and B2 are the roots of φ(B) = 1− φ1B− φ2B2, G1 = B−1
1 ,

G2 = B−1
2 , R =

√−φ2, and cosΘ = φ1/(2R). Third, the coefficients can be calculated by

using the factored form of the characteristic polynomial, and writing the model in terms of Xt

and equating coefficients. Fourth, the coefficients can be calculated by using the ARMAtoMA

function in R. Calculate the first eight coefficients of the MA(∞) model, θ1, θ2, . . . , θ8, using

these four methods for the following sets of AR(2) parameters:

(a) φ1 = 1, φ2 =−1/4,

(b) φ1 = 1/2, φ2 = 1/9,

(c) φ1 = 1, φ2 =−1/2.

These three parameter combinations correspond to one real root with multiplicity two, two

distinct real roots, and two complex roots of the characteristic equation φ(B) = 0.
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9.14 For an AR(2) time series model, the asymptotic variance–covariance matrix of the maximum

likelihood estimates φ̂1 and φ̂2 is

1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

]

.

What is the asymptotic population correlation between φ̂1 and φ̂2?

9.15 Consider an AR(2) time series model with φ1 = 1, φ2 =−1/2, and σ2
Z = 1. For a realization

of n = 100 observations X1, X2, . . . , X100 from this AR(2) model, give convincing numerical

evidence that the forecasted value for X103 is unbiased and that the 95% prediction interval

for X103 is exact.

9.16 Implement Theorem 9.17 on the R built-in LakeHuron time series to calculate the first five

forecasted values and associated prediction intervals. Do not just use the predict function.

9.17 Consider a standard AR(2) model for an observed time series of n = 100 values. The last two

values in the time series are x99 = 3 and x100 = 4. The estimated coefficients in the AR(2)

model are φ̂1 = 1 and φ̂2 =−0.5. Compute the next ten forecasted values X̂101, X̂102, . . . , X̂110

and comment on the shape of the forecasted values.

9.18 Consider a realization x1, x2, . . . , xn of a stationary shifted AR(2) time series model with

fixed known parameters µ, φ1, φ2, and σ2
Z . Write a formula for X̂ n+3 in terms of xn−1 and xn.

9.19 Consider the annual Lake Huron water level heights from 1875 to 1972 given in the R built-in

data set LakeHuron, appended by the next ten observations,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

for the years 1973 to 1982. Give the p-value associated with a test of the statistical signifi-

cance of the slope of the simple linear regression line for the augmented time series.

9.20 Consider the AR(3) model with coefficients

φ1 = 3/2 φ2 =−1 φ3 = 1/4.

(a) Is this model invertible?

(b) Is this model stationary?

(c) Calculate the first six coefficients of the associated MA(∞) model.

9.21 Two necessary, but not sufficient, conditions for stationarity of an AR(p) time series model

are (Cryer, J.D. and Chan, K–S, Time Series Analysis: With Applications in R, 2008, Springer,

page 76):

φ1 +φ2 + · · ·+φp < 1 and |φp|< 1.

(a) Show that these conditions hold for the stationary AR(4) time series model with

φ1 =
21

20
, φ2 =

1

20
, φ3 =−

23

40
, φ4 =

3

10
.

(b) Graphically or algebraically, show that these conditions are necessary but not sufficient

for falling in the triangular-shaped stationary region from Theorem 9.9 for an AR(2)

time series model.
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9.22 Consider the AR(4) time series model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and Gaussian white noise with population variance σ2
Z = 1. Conduct a Monte Carlo simula-

tion experiment that provides convincing numerical evidence that γ(0) = 3520/819.

9.23 The R vector phi contains the parameters φ1, φ2, . . . , φp in an AR(p) model. Write an R

function named is.stationary with a single parameter phi that returns TRUE if the AR(p)

model is stationary and FALSE otherwise.

9.24 The R code below takes initial p autocovariances γ(0), γ(1), . . . , γ(p− 1) for an AR(p)

model, which are stored in the vector gam, and places them in a variance–covariance ma-

trix GAMMA (denoted by Γ in the text).

GAMMA = matrix(0, p, p)

for (i in 1:p) {

for (j in 1:p) {

GAMMA[i, j] = gam[abs(i - j) + 1]

}

}

The code makes this conversion by using two nested for loops. Heather can do this calcula-

tion without using for loops. How does she do it?

9.25 Consider a time series that is governed by an AR(4) model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and Gaussian white noise with population variance σ2
Z = 1. Conduct a Monte Carlo sim-

ulation experiment that provides convincing numerical evidence that the 95% confidence

interval for φ3 based on the maximum likelihood estimators for an AR(4) time series model

is asymptotically exact.

9.26 For logarithms of the n = 55 annual lynx pelt sales time series from Example 9.29, find the

values of p and q associated with the ARMA(p, q) model that minimizes the AIC statistic.

Assume that the models are fitted by maximum likelihood.

9.27 Fit the AR(4) model to the logarithms of the n = 55 annual lynx pelt sales time series from

Example 9.29 by maximum likelihood. Simulate the fitted model to generate n = 55 random

annual lynx pelt sales from the fitted model. View a dozen or so such realizations and

comment on your faith in the fitted AR(4) time series model. Repeat the experiment for

a fitted ARMA(2, 3) time series model and comment.

9.28 Show that the MA(1) model

Xt = Zt +θZt−1,

and the MA(1) model

Xt = Zt +
1

θ
Zt−1

have the same population autocorrelation function.
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9.29 Show that −1/2≤ ρ(1)≤ 1/2 for an MA(1) model.

9.30 Derive the population autocorrelation function for the MA(1) model with arbitrary mean

value µ given by

Xt = µ+Zt +θZt−1,

in a similar fashion to the derivation for the standard MA(1) model.

9.31 Conduct the following Monte Carlo simulation experiment. Generate n = 100 observations

from an MA(1) time series model with θ = 0.9 and standard normal white noise terms.

Estimate the expected value and standard deviation of r1 and r2. Run enough replications to

that you can report your estimates to two significant digits.

9.32 Consider an MA(1) model with θ =−0.9 and Gaussian white noise with σ2
Z = 1. Generate a

dozen realizations of this time series for n = 100 observations each. Plot the time series and

the associated correlogram, using a call to Sys.sleep between each realization to view the

graphs. Write a paragraph that describes what you observe in the dozen realizations.

9.33 Consider an MA(1) time series model

Xt = Zt +θZt−1,

where {Zt} denotes Gaussian white noise. Let θ̂MOM be the method of moments estimator

of θ and let θ̂MLE be the maximum likelihood estimator of θ. One way to compare these two

estimators is the asymptotic relative efficiency, defined as

lim
n→∞

V
[
θ̂MOM

]

V
[
θ̂MLE

] .

Brockwell and Davis (2016, page 129) give the population variance of θ̂MOM and θ̂MLE as

approximately

V
[
θ̂MOM

]∼= 1+θ2 +4θ4 +θ6 +θ8

n(1+θ2)2
and V

[
θ̂MLE

]∼= 1−θ2

n
.

Write a Monte Carlo simulation that confirms these two formulas for n = 400, θ = 1/2, and

σ2
Z = 1.

9.34 The n = 45 daily average number of defects per truck at the final inspection at a manufac-

turing facility (from Burr, 1976, Statistical Quality Control Methods, Marcel Dekker, New

York), read row-wise, are given below.

1.20 1.50 1.54 2.70 1.95 2.40 3.44 2.83 1.76

2.00 2.09 1.89 1.80 1.25 1.58 2.25 2.50 2.05

1.46 1.54 1.42 1.57 1.40 1.51 1.08 1.27 1.18

1.39 1.42 2.08 1.85 1.82 2.07 2.32 1.23 2.91

1.77 1.61 1.25 1.15 1.37 1.79 1.68 1.78 1.84

Fit these data values to a shifted MA(1) time series model by the method of moments, least

squares, and maximum likelihood estimation.
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9.35 The formula for the population variance of the sample mean for a stationary time series

model (which was proved in Section 8.2.1) is

V
[
X̄
]
=

σ2
X

n

[

1+2
n−1

∑
k=1

(

1− k

n

)

ρ(k)

]

Show that this is approximately

V
[
X̄
]∼= σ2

X

n

[

1+2
∞

∑
k=1

ρ(k)

]

or, equivalently,

V
[
X̄
]∼= σ2

X

n

[
∞

∑
k=−∞

ρ(k)

]

for large values of n whenever the autocorrelation function values decay rapidly enough with

increasing k such that
∞

∑
k=1

|ρ(k)|< ∞.


